Thromb Haemost 2006; 95(01): 22-28
DOI: 10.1160/TH05-10-0974
Theme Issue Article
Schattauer GmbH

Migration of dendritic cells across blood and lymphatic endothelial barriers

Annalisa Del Prete
1   Section of Clinical Biochemistry, University of Bari, Bari, Italy
,
Massimo Locati
2   Institute of General Pathology, University of Milan, Milan, Italy
3   Istituto Clinico Humanitas, Rozzano, Italy
,
Karel Otero
3   Istituto Clinico Humanitas, Rozzano, Italy
,
Elena Riboldi
4   Section of General Pathology and Immunology, University of Brescia, Brescia, Italy
,
Alberto Mantovani
2   Institute of General Pathology, University of Milan, Milan, Italy
3   Istituto Clinico Humanitas, Rozzano, Italy
,
Annunciata Vecchi
3   Istituto Clinico Humanitas, Rozzano, Italy
,
Silvano Sozzani
4   Section of General Pathology and Immunology, University of Brescia, Brescia, Italy
› Author Affiliations
Financial support: This work was supported by AIRC (Associazione Italiana per la Ricerca sul Cancro), MIUR (Ministero dell’Istruzione Università e Ricerca), Association for International Cancer Resarch (grant no. 04–223) and by Fondazione Berlucchi. We acknowledge support from the European Commission FP6 ‘Network of Excellence’ initiative under contract no. LSHB-CT-2004–512074 DC-THERA.
Further Information

Publication History

Received 13 October 2005

Accepted after revision 06 December 2005

Publication Date:
15 December 2017 (online)

Summary

Dendritic cells (DC) are professional antigen presenting cells which playa pivotal role in the activation of adaptive immunity. Tissue invasion by pathogens induces the recruitment of blood DC to the site of infection and contributes to their subsequent migration to secondary lymphoid organs. This complex process relies on the expression and regulation of receptors for chemotactic factors on the surface of migrating DC and on the activation of adhesion molecules which allow DC to properly interact with both blood and lymphatic vessels. In the absence of correct tissue localization, DC fail to promote proper immune responses. Therefore, the interaction of DC with endothelial cells represents a fundamental step for DC biology.

 
  • References

  • 1 Steinman RM, Hawiger D, Nussenzweig MC. Tolerogenic dendritic cells. Annu Rev Immunol 2003; 21: 685-711.
  • 2 Banchereau J, Briere F, Caux C. et al. Immunobiology of dendritic cells. Annu Rev Immunol 2000; 18: 767-811.
  • 3 Banchereau J, Steinman RM. Dendritic cells and the control of immunity. Nature 1998; 392: 245-52.
  • 4 Sallusto F, Lanzavecchia A. Mobilizing dendritic cells for tolerance, priming, and chronic inflammation. J Exp Med 1999; 189: 611-4.
  • 5 Allavena P, Sica A, Vecchi A. et al. The chemokine receptor switch paradigm and dendritic cell migration: its significance in tumor tissues. Immunol Rev 2000; 177: 141-9.
  • 6 Cyster JG. Chemokines and the homing of dendritic cells to the T cell areas of lymphoid organs. J Exp Med 1999; 189: 447-50.
  • 7 Sallusto F, Palermo B, Lenig D. et al. Distinct patterns and kinetics of chemokine production regulate dendritic cell function. Eur J Immunol 1999; 29: 1617-25.
  • 8 Randolph GJ, Angeli V, Swartz MA. Dendritic-cell trafficking to lymph nodes through lymphatic vessels. Nat Rev Immunol 2005; 05: 617-28.
  • 9 Del Prete A, Vermi W, Dander E. et al. Defective dendritic cell migration and activation of adaptive immunity in PI3Kγ-deficient mice. Embo J 2004; 23: 3505-15.
  • 10 Gunn MD, Kyuwa S, Tam C. et al. Mice lacking expression of secondary lymphoid organ chemokine have defects in lymphocyte homing and dendritic cell localization. J Exp Med 1999; 189: 451-60.
  • 11 Förster R, Schubel A, Breitfeld D. et al. CCR7 coordinates the primary immune response by establishing functional microenvironments in secondary lymphoid organs. Cell 1999; 99: 23-33.
  • 12 Baggiolini M. Chemokines and leukocyte traffic. Nature 1998; 392: 565-8.
  • 13 Cavanagh LL, Von Andrian UH. Travellers in many guises: the origins and destinations of dendritic cells. Immunol Cell Biol 2002; 80: 448-62.
  • 14 Penna G, Vulcano M, Sozzani S. et al. Differential migration behavior and chemokine production by myeloid and plasmacytoid dendritic cells. Hum Immunol 2002; 63: 1164-71.
  • 15 Vermi W, Riboldi E, Wittamer V. et al. Role of ChemR23 in directing the migration of myeloid and plasmacytoid dendritic cells to lymphoid organs and inflamed skin. J Exp Med 2005; 201: 509-15.
  • 16 Colonna M, Trinchieri G, Liu YJ. Plasmacytoid dendritic cells in immunity. Nat Immunol 2004; 05: 1219-26.
  • 17 Mantovani A, Sozzani S. Chemokines. In: Balkwill F. editor. The Cytokine Network. Oxford: Oxford University Press; 2000: 103-25.
  • 18 Sozzani S. Dendritic cell trafficking: More than just chemokines. Cytokine Growth Factor Rev 2005; 16: 581-92.
  • 19 Locati M, Torre YM, Galliera E. et al. Silent chemoattractant receptors: D6 as a decoy and scavenger receptor for inflammatory CC chemokines. Cytokine Growth Factor Rev 2005; 16: 679-86.
  • 20 Murphy PM. The molecular biology of leukocyte chemoattractant receptors. Annu Rev Immunol 1994; 12: 593-633.
  • 21 Thelen M. Dancing to the tune of chemokines. Nat Immunol 2001; 02: 129-34.
  • 22 Baggiolini M, Dewald B, Moser B. Human chemokines: an update. Annu Rev Immunol 1997; 15: 675-705.
  • 23 Hirsch E, Katanaev VL, Garlanda C. et al. Central role for G protein-coupled phosphoinositide 3-kinase gamma in inflammation [see comments]. Science 2000; 287: 1049-53.
  • 24 Locati M, Deuschle U, Massardi ML. et al. Analysis of the gene expression profile activated by the CC chemokine ligand 5/RANTES and by lipopolysaccharide in human monocytes. J Immunol 2002; 168: 3557-62.
  • 25 Ferguson SS. Evolving concepts in G proteincoupled receptor endocytosis: the role in receptor desensitization and signaling. Pharmacol Rev 2001; 53: 1-24.
  • 26 Sozzani S, Sallusto F, Luini W. et al. Migration of dendritic cells in response to formyl peptides, C5a, and a distinct set of chemokines. J Immunol 1995; 155: 3292-5.
  • 27 Yang D, Chen Q, Gertz B. et al. Human dendritic cells express functional formyl peptide receptor-like-2 (FPRL2) throughout maturation. J Leukoc Biol 2002; 72: 598-607.
  • 28 Le Y, Murphy PM, Wang JM. Formyl-peptide receptors revisited. Trends Immunol 2002; 23: 541-8.
  • 29 Migeotte I, Riboldi E, Franssen JD. et al. Identification and characterization of an endogenous chemotactic ligand specific for FPRL2. J Exp Med 2005; 201: 83-93.
  • 30 Sozzani S, Longoni D, Bonecchi R. et al. Human monocyte-derived and CD34+ cell-derived dendritic cells express functional receptors for platelet activating factor. FEBS Lett 1997; 418: 98-100.
  • 31 Angeli V, Llodra J, Rong JX. et al. Dyslipidemia associated with atherosclerotic disease systemically alters dendritic cell mobilization. Immunity 2004; 21: 561-74.
  • 32 Banchereau J, Pascual V, Palucka AK. Autoimmunity through cytokine-induced dendritic cell activation. Immunity 2004; 20: 539-50.
  • 33 Howard OM, Dong HF, Yang D. et al. HistidyltRNA synthetase and asparaginyl-tRNA synthetase, autoantigens in myositis, activate chemokine receptors on T lymphocytes and immature dendritic cells. J Exp Med 2002; 196: 781-91.
  • 34 Howard OM, Dong HF, Su SB. et al. Autoantigens signal through chemokine receptors: uveitis antigens induce CXCR3 and CXCR5 expressing lymphocytes and immature dendritic cells to migrate. Blood 2005; 105: 4207-14.
  • 35 Sozzani S, Allavena P, D’Amico G. et al. Differential regulation of chemokine receptors during dendritic cell maturation: a model for their trafficking properties. J Immunol 1998; 161: 1083-6.
  • 36 Dieu MC, Vanbervliet B, Vicari A. et al. Selective recruitment of immature and mature dendritic cells by distinct chemokines expressed in different anatomic sites. J Exp Med 1998; 188: 373-86.
  • 37 Vecchi A, Massimiliano L, Ramponi S. et al. Differential responsiveness to constitutive vs. inducible chemokines of immature and mature mouse dendritic cells. J Leukoc Biol 1999; 66: 489-94.
  • 38 Ngo VN, Tang HL, Cyster JG. Epstein-Barr virusinduced molecule 1 ligand chemokine is expressed by dendritic cells in lymphoid tissues and strongly attracts naive T cells and activated B cells. J Exp Med 1998; 188: 181-91.
  • 39 Willimann K, Legler DF, Loetscher M. et al. The chemokine SLC is expressed in T cell areas of lymph nodes and mucosal lymphoid tissues and attracts activated T cells via CCR7. Eur J Immunol 1998; 28: 2025-34.
  • 40 Ohl L, Mohaupt M, Czeloth N. et al. CCR7 governs skin dendritic cell migration under inflammatory and steady-state conditions. Immunity 2004; 21: 279-88.
  • 41 MartIn-Fontecha A, Sebastiani S, Hopken UE. et al. Regulation of dendritic cell migration to the draining lymph node: impact on T lymphocyte traffic and priming. J Exp Med 2003; 198: 615-21.
  • 42 Robert C, Fuhlbrigge RC, Kieffer JD. et al. Interaction of dendritic cells with skin endothelium: A new perspective on immunosurveillance. J Exp Med 1999; 189: 627-36.
  • 43 Lin CL, Suri RM, Rahdon RA. et al. Dendritic cell chemotaxis and transendothelial migration are induced by distinct chemokines and are regulated on maturation. Eur J Immunol 1998; 28: 4114-22.
  • 44 D’Amico G, Bianchi G, Bernasconi S. et al. Adhesion, transendothelial migration, and reverse transmigration of in vitro cultured dendritic cells. Blood 1998; 92: 207-14.
  • 45 Geijtenbeek TB, Krooshoop DJ, Bleijs DA. et al. DC-SIGN-ICAM-2 interaction mediates dendritic cell trafficking. Nat Immunol 2000; 01: 353-7.
  • 46 Weis M, Schlichting CL, Engleman EG. et al. Endothelial determinants of dendritic cell adhesion and migration: new implications for vascular diseases. Arterioscler Thromb Vasc Biol 2002; 22: 1817-23.
  • 47 Dimmeler S, Zeiher AM. Endothelial cell apoptosis in angiogenesis and vessel regression. Circ Res 2000; 87: 434-9.
  • 48 Xu H, Guan H, Zu G. et al. The role of ICAM-1 molecule in the migration of Langerhans cells in the skin and regional lymph node. Eur J Immunol 2001; 31: 3085-93.
  • 49 Price AA, Cumberbatch M, Kimber I. et al. Alpha 6 integrins are required for Langerhans cell migration from the epidermis. J Exp Med 1997; 186: 1725-35.
  • 50 Bobryshev YV, Lord RS. Mapping of vascular dendritic cells in atherosclerotic arteries suggests their involvement in local immune-inflammatory reactions. Cardiovasc Res 1998; 37: 799-810.
  • 51 Millonig G, Niederegger H, Rabl W. et al. Network of vascular-associated dendritic cells in intima of healthy young individuals. Arterioscler Thromb Vasc Biol 2001; 21: 503-8.
  • 52 Gimbrone Jr. MA, Topper JN, Nagel T. et al. Endothelial dysfunction, hemodynamic forces, and atherogenesis. Ann N Y Acad Sci 2000; 902: 230-9 discussion 239-40.
  • 53 Tsao PS, Buitrago R, Chan JR. et al. Fluid flow inhibits endothelial adhesiveness. Nitric oxide and transcriptional regulation of VCAM-1. Circulation 1996; 94: 1682-9.
  • 54 Martin-Padura I, Lostaglio S, Schneemann M. et al. Junctional adhesion molecule, a novel member of the immunoglobulin superfamily that distributes at intercellular junctions and modulates monocyte transmigration. J Cell Biol 1998; 142: 117-27.
  • 55 Hirata K, Ishida T, Penta K. et al. Cloning of an immunoglobulin family adhesion molecule selectively expressed by endothelial cells. J Biol Chem 2001; 276: 16223-31.
  • 56 Aurrand-Lions M, Duncan L, Ballestrem C. et al. JAM-2, a novel immunoglobulin superfamily molecule, expressed by endothelial and lymphatic cells. J Biol Chem 2001; 276: 2733-41.
  • 57 Kostrewa D, Brockhaus M, D’Arcy A. et al. X-ray structure of junctional adhesion molecule: structural basis for homophilic adhesion via a novel dimerization motif. Embo J 2001; 20: 4391-8.
  • 58 Liu Y, Nusrat A, Schnell FJ. et al. Human junction adhesion molecule regulates tight junction resealing in epithelia. J Cell Sci 2000; 113: 2363-74.
  • 59 Bazzoni G, Martinez-Estrada OM, Mueller F. et al. Homophilic interaction of junctional adhesion molecule. J Biol Chem 2000; 275: 30970-6.
  • 60 Ostermann G, Weber KS, Zernecke A. et al. JAM-1 is a ligand of the β(2) integrin LFA-1 involved in transendothelial migration of leukocytes. Nat Immunol 2002; 03: 151-8.
  • 61 Barton ES, Forrest JC, Connolly JL. et al. Junction adhesion molecule is a receptor for reovirus. Cell 2001; 104: 441-51.
  • 62 Cera MR, Del Prete A, Vecchi A. et al. Increased DC trafficking to lymph nodes and contact hypersensitivity in junctional adhesion molecule-A-deficient mice. J Clin Invest 2004; 114: 729-38.
  • 63 Oliver G, Detmar M. The rediscovery of the lymphatic system: old and new insights into the development and biological function of the lymphatic vasculature. Genes Dev 2002; 16: 773-83.
  • 64 Karkkainen MJ, Alitalo K. Lymphatic endothelial regulation, lymphoedema, and lymph node metastasis. Semin Cell Dev Biol 2002; 13: 9-18.
  • 65 Qu C, Edwards EW, Tacke F. et al. Role of CCR8 and other chemokine pathways in the migration of monocyte-derived dendritic cells to lymph nodes. J Exp Med 2004; 200: 1231-41.
  • 66 Katou F, Ohtani H, Nakayama T. et al. Macrophagederived chemokine (MDC/CCL22) and CCR4 are involved in the formation of T lymphocyte-dendritic cell clusters in human inflamed skin and secondary lymphoid tissue. AmJ Pathol 2001; 158: 1263-70.
  • 67 Kriehuber E, Breiteneder-Geleff S, Groeger M. et al. Isolation and characterization of dermal lymphatic and blood endothelial cells reveal stable and functionally specialized cell lineages. J Exp Med 2001; 194: 797-808.
  • 68 Mancardi S, Stanta G, Dusetti N. et al. Lymphatic endothelial tumors induced by intraperitoneal injection of incomplete Freund’s adjuvant. Exp Cell Res 1999; 246: 368-75.
  • 69 Sozzani S, Vecchi A, Allavena P. et al. Chemotaxis and interaction with vascular or lymphatic endothelium. Methods Mol Biol 2004; 239: 1-16.
  • 70 Fra AM, Locati M, Otero K. et al. Cutting edge: scavenging of inflammatory CC chemokines by the promiscuous putatively silent chemokine receptor D6. J Immunol 2003; 170: 2279-82.
  • 71 Nibbs RJ, Kriehuber E, Ponath PD. et al. The betachemokine receptor D6 is expressed by lymphatic endothelium and a subset of vascular tumors. AmJ Pathol 2001; 158: 867-77.
  • 72 Bonecchi R, Locati M, Galliera E. et al. Differential recognition and scavenging of native and truncated macrophage-derived chemokine (macrophage-derived chemokine/CC chemokine ligand 22) by the D6 decoy receptor. J Immunol 2004; 172: 4972-6.
  • 73 Hamrah P, Chen L, Zhang Q. et al. Novel expression of vascular endothelial growth factor receptor (VEGFR)-3 and VEGF-C on corneal dendritic cells. Am J Pathol 2003; 163: 57-68.
  • 74 Yamagami S, Dana MR, Tsuru T. Draining lymph nodes play an essential role in alloimmunity generated in response to high-risk corneal transplantation. Cornea 2002; 21: 405-9.
  • 75 Stacker SA, Caesar C, Baldwin ME. et al. VEGF-D promotes the metastatic spread of tumor cells via the lymphatics. Nat Med 2001; 07: 186-91.
  • 76 Skobe M, Hawighorst T, Jackson DG. et al. Induction of tumor lymphangiogenesis by VEGF-C promotes breast cancer metastasis. Nat Med 2001; 07: 192-8.
  • 77 Facchetti F, Vermi W, Mason D. et al. The plasmacytoid monocyte/interferon producing cells. Virchows Arch 2003; 443: 703-17.
  • 78 Penna G, Sozzani S, Adorini L. Cutting edge: selective usage of chemokine receptors by plasmacytoid dendritic cells. J Immunol 2001; 167: 1862-6.
  • 79 Kohrgruber N, Groger M, Meraner P. et al. Plasmacytoid dendritic cell recruitment by immobilized CXCR3 ligands. J Immunol 2004; 173: 6592-602.
  • 80 de la Rosa G, Longo N, Rodriguez-Fernandez JL. et al. Migration of human blood dendritic cells across endothelial cell monolayers: adhesion molecules and chemokines involved in subset-specific transmigration. J Leukoc Biol 2003; 73: 639-49.
  • 81 Vanbervliet B, Bendriss-Vermare N, Massacrier C. et al. The inducible CXCR3 ligands control plasmacytoid dendritic cell responsiveness to the constitutive chemokine stromal cell-derived factor 1 (SDF-1)/ CXCL12. J Exp Med 2003; 198: 823-30.
  • 82 Krug A, Uppaluri R, Facchetti F. et al. IFN-producing cells respond to CXCR3 ligands in the presence of CXCL12 and secrete inflammatory chemokines upon activation. J Immunol 2002; 169: 6079-83.
  • 83 Nakano H, Yanagita M, Gunn MD. CD11c(+)B220(+)Gr-1(+) cells in mouse lymph nodes and spleen display characteristics of plasmacytoid dendritic cells. J Exp Med 2001; 194: 1171-8.
  • 84 Okunishi K, Dohi M, Nakagome K. et al. A novel role of cysteinyl leukotrienes to promote dendritic cell activation in the antigen-induced immune responses in the lung. J Immunol 2004; 173: 6393-402.
  • 85 Diacovo TG, Blasius AL, Mak TW. et al. Adhesive mechanisms governing interferon-producing cell recruitment into lymph nodes. J Exp Med 2005; 202: 687-96.
  • 86 Yoneyama H, Matsuno K, Zhang Y. et al. Evidence for recruitment of plasmacytoid dendritic cell precursors to inflamed lymph nodes through high endothelial venules. Int Immunol 2004; 16: 915-28.
  • 87 Cella M, Jarrossay D, Facchetti F. et al. Plasmacytoid monocytes migrate to inflamed lymph nodes and produce large amounts of type I interferon. Nat Med 1999; 05: 919-23.
  • 88 Farkas L, Beiske K, Lund-Johansen F. et al. Plasmacytoid dendritic cells (natural interferonalpha/beta-producing cells) accumulate in cutaneous lupus erythematosus lesions. Am J Pathol 2001; 159: 237-43.
  • 89 Lande R, Giacomini E, Serafini B. et al. Characterization and recruitment of plasmacytoid dendritic cells in synovial fluid and tissue of patients with chronic inflammatory arthritis. J Immunol 2004; 173: 2815-24.
  • 90 Wollenberg A, Wagner M, Gunther S. et al. Plasmacytoid dendritic cells:a new cutaneous dendritic cell subset with distinct role in inflammatory skin diseases. J Invest Dermatol 2002; 119: 1096-102.
  • 91 Zou W, Machelon V, Coulomb-L’Hermin A. et al. Stromal-derived factor-1 in human tumors recruits and alters the function of plasmacytoid precursor dendritic cells. Nat Med 2001; 07: 1339-46.
  • 92 Vermi W, Bonecchi R, Facchetti F. et al. Recruitment of immature plasmacytoid dendritic cells (plasmacytoid monocytes) and myeloid dendritic cells in primary cutaneous melanomas. J Pathology 2003; 200: 255-68.
  • 93 Hartmann E, Wollenberg B, Rothenfusser S. et al. Identification and functional analysis of tumor-infiltrating plasmacytoid dendritic cells in head and neck cancer. Cancer Res 2003; 63: 6478-87.
  • 94 Wittamer V, Franssen JD, Vulcano M. et al. Specific recruitment of antigen-presenting cells by chemerin, a novel processed ligand from human inflammatory fluids. J Exp Med 2003; 198: 977-85.
  • 95 Zabel BA, Silverio AM, Butcher EC. Chemokinelike receptor 1 expression and chemerin-directed chemotaxis distinguish plasmacytoid from myeloid dendritic cells in human blood. J Immunol 2005; 174: 244-51.
  • 96 Wittamer V, Bondue B, Guillabert A. et al. Neutrophil-mediated maturation of chemerin: a link between innate and adaptive immunity. J Immunol 2005; 175: 487-93.