Thromb Haemost 2006; 95(01): 29-35
DOI: 10.1160/TH05-07-0476
Theme Issue Article
Schattauer GmbH

Signaling through PI3Kγ: a common platform for leukocyte, platelet and cardiovascular stress sensing

Emilio Hirsch
1   Dipartimento di Genetica, Biologia e Biochimica. Università di Torino. Torino. Italy
,
Giuseppe Lembo
2   Department of Neurocardiology. Neuromed Institute. Pozzilli (Isernia). Italy
,
Giuseppe Montrucchio
3   Dipartimento di Fisiopatologia Clinica. Università di Torino. Torino. Italy
,
Christian Rommel
4   Serono Pharmaceutical Research Institute. Serono International S.A. Geneva. Switzerland
,
Carlotta Costa
1   Dipartimento di Genetica, Biologia e Biochimica. Università di Torino. Torino. Italy
,
Laura Barberis
1   Dipartimento di Genetica, Biologia e Biochimica. Università di Torino. Torino. Italy
› Author Affiliations
Further Information

Publication History

Received 07 July 2005

Accepted after resubmission 28 October 2005

Publication Date:
28 November 2017 (online)

Summary

The concerted activation of leukocytes and vessels shapes multiple physiological and pathological responses. A large number of these processes shares a common signal transduction platform involving the activation of plasma membrane bound G protein-coupled receptors (GPCRs). This event is usually amplified by the production of different intra-cellular second messenger molecules. Among these mediators, the phosphorylated lipid phosphatidylinositol (3,4,5)-trisphosphate (PIP3) produced by phosphoinositide 3-kinase γ (PI3Kγ) has recently emerged as a crucial signal in both vascular and white blood cells. The generation of mice lacking PI3Kγ showed that the GPCR/PI3Kγ/PIP3 signaling pathway controls diverse immune modulatory and vascular functions like respiratory burst, cell recruitment, mast cell reactivity, platelet aggregation, endothelial activation as well as smooth muscle contractility. The relative specificity of these events suggests that blocking PI3Kγ function might turn out beneficial for diseases like inflammation, allergy, thrombosis, and major cardiovascular disorders like hypertension, thus offering a wide range of therapeutic opportunities.

 
  • References

  • 1 Graef IA, Chen F, Crabtree GR. NFAT signaling in vertebrate development. Curr Opin Genet Dev 2001; 11: 505-12.
  • 2 Hill-Eubanks DC, Gomez MF, Stevenson AS, Nelson MT. NFAT regulation in smooth muscle. Trends Cardiovasc Med 2003; 13: 56-62.
  • 3 Vanhaesebroeck B, Leevers SJ, Ahmadi K. et al. Synthesis and function of 3-phosphorylated inositol lipids. Annu Rev Biochem 2001; 70: 535-602.
  • 4 Vlahos CJ, Matter WF, Hui KY. et al. A specific inhibitor of phosphatidylinositol 3-kinase, 2-(4-morpholinyl)-8-phenyl-4H-1-benzopyran-4-one (LY294002). J Biol Chem 1994; 269: 5241-8.
  • 5 Arcaro A, Wymann MP. Wortmannin is a potent phosphatidylinositol 3-kinase inhibitor: the role of phosphatidylinositol 3,4,5-trisphosphate in neutrophil responses. Biochem J 1993; 296: 297-301.
  • 6 Hawkins PT, Jackson TR, Stephens LR. Plateletderived growth factor stimulates synthesis of PtdIns(3,4,5)P3 by activatinga PtdIns(4,5)P2 3-OH kinase. Nature 1992; 358: 157-9.
  • 7 Katso R, Okkenhaug K, Ahmadi K. et al. Cellular function of phosphoinositide 3-kinases: implications for development, homeostasis, and cancer. Annu Rev Cell Dev Biol 2001; 17: 615-75.
  • 8 Stephens LR, Eguinoa A, Erdjument-Bromage H. et al. The G beta gamma sensitivity of a PI3K is dependent upona tightly associated adaptor, p101. Cell 1997; 89: 105-14.
  • 9 Krugmann S, Hawkins PT, Pryer N. et al. Characterizing the interactions between the two subunits of the p101/p110gamma phosphoinositide 3-kinase and their role in the activation of this enzyme by G beta gamma subunits. J Biol Chem 1999; 274: 17152-8.
  • 10 Stoyanov B, Volinia S, Hanck T. et al. Cloning and characterization of a G protein-activated human phosphoinositide-3 kinase. Science 1995; 269: 690-3.
  • 11 Stephens L, Anderson K, Stokoe D. et al. Protein kinase B kinases that mediate phosphatidylinositol 3,4,5-trisphosphate-dependent activation of protein kinase B. Science 1998; 279: 710-4.
  • 12 Voigt P, Brock C, Nurnberg B. et al. Assigning functional domains within the p101 regulatory subunit of phosphoinositide 3-kinase gamma. J Biol Chem 2005; 280: 5121-7.
  • 13 Suire S, Coadwell J, Ferguson GJ. et al. p84,a new Gbetagamma-activated regulatory subunit of the type IB phosphoinositide 3-kinase p110gamma. Curr Biol 2005; 15: 566-70.
  • 14 Hwang JI, Fraser ID, Choi S. et al. Analysis of C5a-mediated chemotaxis by lentiviral delivery of small interfering RNA. Proc Natl Acad Sci U S A 2004; 101: 488-93.
  • 15 Walker EH, Perisic O, Ried C. et al. Structural insights into phosphoinositide 3-kinase catalysis and signalling. Nature 1999; 402: 313-20.
  • 16 Pacold ME, Suire S, Perisic O. et al. Crystal structure and functional analysis of Ras binding to its effector phosphoinositide 3-kinase gamma. Cell 2000; 103: 931-43.
  • 17 Lopez-Ilasaca M, Gutkind JS, Wetzker R. Phosphoinositide 3-kinase gamma is a mediator of Gbetagamma-dependent Jun kinase activation. J Biol Chem 1998; 273: 2505-8.
  • 18 Rubio I, Rodriguez-Viciana P. et al. Interaction of Ras with phosphoinositide 3-kinase gamma. Biochem J 1997; 326: 891-5.
  • 19 Bondeva T, Pirola L, Bulgarelli-Leva G. et al. Bifurcation of lipid and protein kinase signals of PI3Kgamma to the protein kinases PKB and MAPK. Science 1998; 282: 293-6.
  • 20 al-Aoukaty A, Rolstad B, Maghazachi AA. Recruitment of pleckstrin and phosphoinositide 3-kinase gamma into the cell membranes, and their association with G beta gamma after activation of NK cells with chemokines. J Immunol 1999; 162: 3249-55.
  • 21 Hirsch E, Katanaev VL, Garlanda C, Azzolino O, Pirola L, Silengo L. et al. Central role for G proteincoupled phosphoinositide 3-kinase gamma in inflammation. Science 2000; 287: 1049-53.
  • 22 Li Z, Jiang H, Xie W. et al. Roles of PLC-beta2 and -beta3 and PI3Kgamma in chemoattractant-mediated signal transduction. Science 2000; 287: 1046-9.
  • 23 Sasaki T, Irie-Sasaki J, Jones RG. et al. Function of PI3Kgamma in thymocyte development, T cell activation, and neutrophil migration. Science 2000; 287: 1040-6.
  • 24 Condliffe AM, Davidson K, Anderson KE. et al. Sequential activation of class IB and class IA PI3K is important for the primed respiratory burst of human but not murine neutrophils. Blood 2005; 106: 1432-40.
  • 25 Wymann MP, Sozzani S, Altruda F. et al. Lipids on the move: phosphoinositide 3-kinases in leukocyte function. Immunol Today 2000; 21: 260-4.
  • 26 Okkenhaug K, Bilancio A, Farjot G. et al. Impaired B and T cell antigen receptor signaling in p110delta PI 3-kinase mutant mice. Science 2002; 297: 1031-4.
  • 27 Thomas MJ, Smith A, Head DH. et al. Airway inflammation: chemokine-induced neutrophilia and the class I phosphoinositide 3-kinases. Eur J Immunol 2005; 35: 1283-91.
  • 28 Yum HK, Arcaroli J, Kupfner J. et al. Involvement of phosphoinositide 3-kinases in neutrophil activation and the development of acute lung injury. J Immunol 2001; 167: 6601-8.
  • 29 Sadhu C, Dick K, Tino WT. et al. Selective role of PI3K delta in neutrophil inflammatory responses. Biochem Biophys Res Commun 2003; 308: 764-9.
  • 30 Sadhu C, Masinovsky B, Dick K. et al. Essential role of phosphoinositide 3-kinase delta in neutrophil directional movement. J Immunol 2003; 170: 2647-54.
  • 31 Puri KD, Doggett TA, Douangpanya J. et al. Mechanisms and implications of phosphoinositide 3-kinase delta in promoting neutrophil trafficking into inflamed tissue. Blood 2004; 103: 3448-56.
  • 32 Patrucco E, Notte A, Barberis L. et al. PI3Kgamma modulates the cardiac response to chronic pressure overload by distinct kinase-dependent and -independent effects. Cell 2004; 118: 375-87.
  • 33 Hannigan M, Zhan L, Li Z. et al. Neutrophils lacking phosphoinositide 3-kinase gamma show loss of directionality during N-formyl-Met-Leu-Phe-induced chemotaxis. Proc Natl Acad Sci U S A 2002; 99: 3603-8.
  • 34 Rickert P, Weiner OD, Wang F. et al. Leukocytes navigate by compass: roles of PI3Kgamma and its lipid products. Trends Cell Biol 2000; 10: 466-73.
  • 35 Del Prete A, Vermi W, Dander E. et al. Defective dendritic cell migration and activation of adaptive immunity in PI3Kgamma-deficient mice. Embo J 2004; 23: 3505-15.
  • 36 Ward SG. Do phosphoinositide 3-kinases direct lymphocyte navigation?. Trends Immunol 2004; 25: 67-74.
  • 37 Reif K, Okkenhaug K, Sasaki T. et al. Cutting edge: differential roles for phosphoinositide 3-kinases, p110gamma and p110delta, in lymphocyte chemotaxis and homing. J Immunol 2004; 173: 2236-40.
  • 38 Nombela-Arrieta C, Lacalle RA, Montoya MC. et al. Differential requirements for DOCK2 and phosphoinositide-3-kinase gamma during T and B lymphocyte homing. Immunity 2004; 21: 429-41.
  • 39 Rodriguez-Borlado L, Barber DF, Hernandez C. et al. Phosphatidylinositol 3-kinase regulates the CD4/CD8T cell differentiation ratio. J Immunol 2003; 170: 4475-82.
  • 40 Clayton E, Bardi G, Bell SE. et al. A crucial role for the p110delta subunit of phosphatidylinositol 3-kinase in B cell development and activation. J Exp Med 2002; 196: 753-63.
  • 41 Jou ST, Carpino N, Takahashi Y. et al. Essential, nonredundant role for the phosphoinositide 3-kinase p110delta in signaling by the B-cell receptor complex. Mol Cell Biol 2002; 22: 8580-91.
  • 42 Webb LM, Vigorito E, Wymann MP. et al. Cutting edge: T cell development requires the combined activities of the p110gamma and p110delta catalytic isoforms of phosphatidylinositol 3-kinase. J Immunol 2005; 175: 2783-7.
  • 43 Laffargue M, Calvez R, Finan P. et al. Phosphoinositide 3-kinase gamma is an essential amplifier of mast cell function. Immunity 2002; 16: 441-51.
  • 44 Ali K, Bilancio A, Thomas M. et al. Essential role for the p110delta phosphoinositide 3-kinase in the allergic response. Nature 2004; 431: 1007-11.
  • 45 Metcalfe DD, Baram D, Mekori YA. Mast cells. Physiol Rev 1997; 77: 1033-79.
  • 46 Kinet JP. The high-affinity IgE receptor (Fc epsilon RI): from physiology to pathology. Annu Rev Immunol 1999; 17: 931-72.
  • 47 Puri KD, Doggett TA, Huang CY. et al. The role of endothelial PI3Kgamma activity in neutrophil trafficking. Blood 2005; 106: 150-7.
  • 48 Vecchione C, Patrucco E, Marino G. et al. Protection from angiotensin II-mediated vasculotoxic and hypertensive response in mice lacking PI3Kgamma. J Exp Med 2005; 201: 1217-28.
  • 49 Ishii S, Kuwaki T, Nagase T, Maki K. et al. Impaired anaphylactic responses with intact sensitivity to endotoxin in mice lacking a platelet-activating factor receptor. J Exp Med 1998; 187: 1779-88.
  • 50 Alloatti G, Levi R, Malan D. et al. Phosphoinositide 3-kinase gamma-deficient hearts are protected from the PAF-dependent depression of cardiac contractility. Cardiovasc Res 2003; 60: 242-9.
  • 51 Seki T, Yokoshiki H, Sunagawa M. et al. Angiotensin II stimulation of Ca2+-channel current in vascular smooth muscle cells is inhibited by lavendustin-A and LY-294002. Pflugers Arch 1999; 437: 317-23.
  • 52 Viard P, Exner T, Maier U. et al. Gbetagamma dimers stimulate vascular L-type Ca2+ channels via phosphoinositide 3-kinase. Faseb J 1999; 13: 685-94.
  • 53 Quignard JF, Mironneau J, Carricaburu V. et al. Phosphoinositide 3-kinase gamma mediates angiotensin II-induced stimulation of L-type calcium channels in vascular myocytes. J Biol Chem 2001; 276: 32545-51.
  • 54 Benham CD, Hess P, Tsien RW. Two types of calcium channels in single smooth muscle cells from rabbit ear artery studied with whole-cell and single-channel recordings. Circ Res 1987; 61: I10-6.
  • 55 Steinberg SF. PI3King the L-type calcium channel activation mechanism. Circ Res 2001; 89: 641-4.
  • 56 Le Blanc C, Mironneau C, Barbot C. et al. Regulation of vascular L-type Ca2+ channels by phosphatidylinositol 3,4,5-trisphosphate. Circ Res 2004; 95: 300-7.
  • 57 Viard P, Butcher AJ, Halet G. et al. PI3K promotes voltage-dependent calcium channel trafficking to the plasma membrane. Nat Neurosci 2004; 07: 939-46.
  • 58 Go YM, Park H, Maland MC. et al. Phosphatidylinositol 3-kinase gamma mediates shear stress-dependent activation of JNK in endothelial cells. Am J Physiol 1998; 275: H1898-904.
  • 59 Hirsch E, Bosco O, Tropel P. et al. Resistance to thromboembolism in PI3Kgamma-deficient mice. Faseb J 2001; 15: 2019-21.
  • 60 Jackson SP, Schoenwaelder SM, Goncalves I. et al. PI 3-kinase p110beta: a new target for antithrombotic therapy. Nat Med 2005; 11: 507-14.
  • 61 Lian L, Wang Y, Draznin J. et al. The relative role of PLCbeta and PI3Kgamma in platelet activation. Blood 2005; 106: 110-7.
  • 62 Bos JL, de Rooij J, Reedquist KA. Rap1 signalling: adhering to new models. Nat Rev Mol Cell Biol 2001; 02: 369-77.
  • 63 Lova P, Paganini S, Sinigaglia F. et al. A Gi-dependent pathway is required for activation of the small GTPase Rap1B in human platelets. J Biol Chem 2002; 277: 12009-15.
  • 64 Woulfe D, Jiang H, Mortensen R. et al. Activation of Rap1B by G(i) family members in platelets. J Biol Chem 2002; 277: 23382-90.
  • 65 Lova P, Paganini S, Hirsch E, Barberis L, Wymann M, Sinigaglia F. et al. A selective role for phosphatidylinositol 3,4,5-trisphosphate in the Gi-dependent activation of platelet Rap1B. J Biol Chem 2003; 278 (01) 131-8.
  • 66 Resendiz JC, Feng S, Ji G. et al. Purinergic P2Y12 receptor blockade inhibits shear-induced platelet phosphatidylinositol 3-kinase activation. Mol Pharmacol 2003; 63: 639-45.
  • 67 Woulfe D, Jiang H, Morgans A. et al. Defects in secretion, aggregation, and thrombus formation in platelets from mice lacking Akt2. J Clin Invest 2004; 113: 441-50.
  • 68 Chen J, De S, Damron DS. et al. Impaired platelet responses to thrombin and collagen in AKT-1-deficient mice. Blood 2004; 104: 1703-10.
  • 69 Crackower MA, Oudit GY, Kozieradzki I. et al. Regulation of myocardial contractility and cell size by distinct PI3K-PTEN signaling pathways. Cell 2002; 110: 737-49.
  • 70 Camps M, Ruckle T, Ji H. et al. Blockade of PI3Kgamma suppresses joint inflammation and damage in mouse models of rheumatoid arthritis. Nat Med 2005; 11: 936-43.
  • 71 Schmidt EK, Fichelson S, Feller SM. PI3 kinase is important for Ras, MEK and Erk activation of Epostimulated human erythroid progenitors. BMC Biol 2004; 02: 7.