Thromb Haemost 2004; 92(06): 1377-1386
DOI: 10.1160/TH04-06-0380
Platelets and Blood Cells
Schattauer GmbH

A variant thrombasthenic phenotype associated with compound heterozygosity of integrin β3-subunit: (Met124Val)β3 alters the subunit dimerization rendering a decreased number of constitutive active αIIbβ3 receptors

Consuelo González-Manchón
1   Department of Physiopathology and Human Molecular Genetics, Centro de Investigaciones Biológicas (CSIC), Madrid, Spain
,
Nora Butta
1   Department of Physiopathology and Human Molecular Genetics, Centro de Investigaciones Biológicas (CSIC), Madrid, Spain
,
Susana Larrucea
1   Department of Physiopathology and Human Molecular Genetics, Centro de Investigaciones Biológicas (CSIC), Madrid, Spain
,
Elena G. Arias-Salgado
1   Department of Physiopathology and Human Molecular Genetics, Centro de Investigaciones Biológicas (CSIC), Madrid, Spain
,
Sonia Alonso
1   Department of Physiopathology and Human Molecular Genetics, Centro de Investigaciones Biológicas (CSIC), Madrid, Spain
,
Angela López
1   Department of Physiopathology and Human Molecular Genetics, Centro de Investigaciones Biológicas (CSIC), Madrid, Spain
,
Roberto Parrilla
1   Department of Physiopathology and Human Molecular Genetics, Centro de Investigaciones Biológicas (CSIC), Madrid, Spain
› Author Affiliations
Financial support: This work has been supported in part by grants from the Direccion General de Investigacion (SAF 2000-0127, BMC2002-01053 and BMC2003-01409), Fondo de Investigaciones Sanitarias (FIS-PI021263). N. Butta is recipient of a tenure track grant Ramon y Cajal from the Spanish Ministry of Science. Susana Larrucea was supported by a postdoctoral fellowships from the Comunidad de Madrid (08.4/0015.1/2001) and Sonia Alonso by a predoctoral fellowship from the Gabierno Vasco (BF201-40).
Further Information

Publication History

Received 17 June 2004

Accepted after revision 20 September 2004

Publication Date:
04 December 2017 (online)

Summary

We report the analysis of a variant case of thrombasthenic phenotype that is a compound heterozygote for two mutations located within the metal ion dependent adhesion site (MIDAS) of the β3 subunit.The patient inherited a maternal allele carrying the Met124Val substitution and a paternal allele that changes Asp119 to Tyr. Phenotyping of the human platelet antigen 1 (HPA-1) showed that the platelet αIIbβ3 complex in the patient was mostly accounted for by the Asp 119Tyr allele that does not bind to fibrinogen (Fg). The patient showed agonistinduced binding of platelets to Fg but neither binding to PAC-1 nor cell aggregation could be detected, most likely due to the minute expression (≤5%) of αIIb(124Val)β3 receptors. CHO cells expressing (124Val)β3 showed a diminished surface expression of αIIbβ3, enhanced adhesion to immobilized Fg, and spontaneous aggregation in the presence of soluble Fg, suggesting that (124Val)β3 may confer constitutive activity to the αIIb(124Val)β3 receptors. A distinct feature of these cells is the failure of DTT to enhance the binding to soluble Fg and the formation of cell aggregates. The substitution of (124Met)β3 by either a polar or a positively charged amino acid restored the surface exposure and function of the αIIbβ3 receptors whereas a negatively charged residue did not.

 
  • References

  • 1 Chen YQ, Trikha M, Gao X. et al. Ectopic expression of platelet integrin αIIbβ3 in tumor cells from various species and histological origin. Int J Cancer 1997; 72: 642-8.
  • 2 Nurden AT, Caen JP. Specific roles for platelet surface glycoproteins in platelet function. Nature 1975; 255: 720-2.
  • 3 Savage B, Saldivar E, Ruggeri ZM. Initiation of platelet adhesion by arrest onto fibrinogen or translocation on von Willebrand factor. Cell 1996; 84: 289-97.
  • 4 Moroi M, Jung SM. Integrin-mediated platelet adhesion. Front Biosci 1998; July 23, 03 D 719-28.
  • 5 Shattil S, Kashiwagi H, Pampori N. Integrin signaling: the platelet paradigm. Blood 1998; 91: 2645-57.
  • 6 Calzada MJ, Alvarez MV, GonzálezRodríguez J. Agonist-specific structural rearrangements of integrin αIIbβ3 Confirmation of the bent conformation in platelets at rest and after activation. J Biol Chem 2002; 277: 39899-08.
  • 7 Xiong JP, Stehle T, Zhang R. et al. Crystal structure of the extracellular segment of integrin alpha Vbeta3 in complex with an ArgGly-Asp ligand. Science 2002; 296: 151-5.
  • 8 Xiong JP, Stehle T, Goodman SL. et al. New insight into the structural basis of integrin activation. Blood 2003; 102: 1155-9.
  • 9 Adair BD, Yeager M. Three dimensional model of the human platelet integrin alphaIIbbeta3 based on electron cryomicroscopy and x-ray crystallography. Proc Natl Acad Sci USA 2002; 99: 14059-64.
  • 10 Sun QH, Liu CY, Wang R. et al. Disruption of the long-range GPIIIa Cys(5)-Cys(435) disulfide bond results in the production of constitutively active GPIIb-IIIa (alpha(IIb)beta(3)) integrin complexes. Blood 2002; 100: 2094-01.
  • 11 French DL, Coller BS. Hematologically important mutations: Glanzmann thrombasthenia. Blood Cells Mol Dis 1997; 23: 39-51.
  • 12 Butta N, Arias-Salgado EG, GonzálezManchón C. et al. Disruption of the β3 663687 disulfide bridge confers constitutive activity to β3 integrins. Blood 2003; 102: 2491-7.
  • 13 Larrucea S, González-Manchón C, Butta N. et al. Agonist-induced aggregation of CHO cells coexpressing the human receptors for fibrinogen (integrin αIIbβ3) and the platelet activating factor: Dissociation between adhesion and aggregation. Blood 2002; 99: 2819-27.
  • 14 Glanzmann E. Hereditäre hemorrhagische Thrombasthenie: ein Beitrag zur Pathologie der Blutplättchen. J Kinderke 1918; 88: 11341.
  • 15 Caen JP, Castaldi PA, Lecrec JC. et al. Congenital bleeding disorders with long bleeding time and normal platelet count I. Glanzmann’s thrombasthenia. Am J Med 1966; 41: 4-26.
  • 16 Caen JP. Glanzmann’s thrombasthenia. Clinical Haematology 1972; 01: 383-92.
  • 17 Nurden AT, Rosa JP, Fournier D. et al. A variant of Glanzmann’s thrombasthenia with abnormal GPIIb-IIIa complexes in the platelet membrane. J Clin Invest 1987; 79: 962-9.
  • 18 Fournier DJ, Kabral A, Castaldi PA. et al. A variant of Glanzmann’s thrombasthenia characterized by abnormal glycoprotein IIb/IIIa complex formation. Thromb Haemost 1989; 62: 977-83.
  • 19 George JN, Caen JP, Nurden AT. Glanzmann’s thrombasthenia: The spectrum of clinical disease. Blood 1990; 75: 1383-95.
  • 20 Lin ECK, Ratnikov BI, Tsai PM. et al. Evidence that the Integrin β3 and β5 subunits contain a metal ion-dependent adhesion sitelike motif but lack an I domain. J Biol Chem 1997; 272: 14236-43.
  • 21 Tozer EC, Liddington RC, Sutcliffe MJ. et al. Ligand binding to integrin αIIbβ3 is dependent on a MIDAS-like domain in the β3 subunit. J Biol Chem 1996; 271: 21978-84.
  • 22 Mould AP, Askari JA, Barton S. et al. Integrin activation involves a conformational change in the alpha 1 helix of the beta subunit Adomain. J Biol Chem 2002; 277: 19800-5.
  • 23 Arias-Salgado EG, Butta N, GonzálezManchón C. et al. Competition between normal (674C) and mutant (674R) subunits: role of the molecular chaperone BiP in the processing of GPIIb-IIIa complexes. Blood 2001; 97: 2640-7.
  • 24 Chomczynski P, Sacchi N. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem 1987; 162: 156-9.
  • 25 Loftus JC, O’Toole TE, Plow EF. et al. A β3 integrin mutation abolishes ligand binding and alters divalent cation-dependent conformation. Science 1990; 249: 915-8.
  • 26 Bajt ML, Loftus JC. Mutation of a ligand binding domain of beta3 integrin Integral role of oxygenated residues in alpha IIb beta 3 (GPIIb-IIIa) receptor function. J Biol Chem 1994; 269: 20913-9.
  • 27 Ward CM, Chao Y-L, Kato GJ. et al. Substitution of Asn, but not Tyr, for Asp 119 of the β3 integrin subunit preserves fibrin binding and clot retraction. Blood 1997; 90 26a, Suppl. 1-2.
  • 28 Sorel N, Brabant S, Christiaens L. et al. A rapid and specific whole blood HPA-1 phenotyping by flow cytometric using wo commercialized monoclonal antibodies directed against GPIIIa and GPIIb-IIIa. Br J Hematol 2004; 124: 221-3.
  • 29 Thorton JM. Disulphide bridges in globular proteins. J Mol Biol 1981; 151: 261-87.
  • 30 Srinivasan N, Sowdhamini R, Ramakrishnan C. et al. Conformations of disulfide bridges in proteins. Int J Peptide Protein Res 1990; 36: 147-55.
  • 31 Ambo H, Kamata T, Handa M. et al. Three novel integrin beta3 subunit missense mutations (H280P, C560F, and G579S) in thrombasthenia, including one (H280P) prevalent in Japanese patients. Biochem Biophys Res Commun 1998; 251: 763-8.
  • 32 Ruiz C, Liu CY, Sun QH. et al. A point mutation in the cysteine-rich domain of glycoprotein (GP) IIIa results in the expression of a GPIIb-IIIa (alphaIIbbeta3) integrin receptor locked in a high-affinity state and a Glanzmann thrombasthenia-like phenotype. Blood 2001; 98: 2432-41.
  • 33 Chen P, Melchior C, Brons NH. et al. Probing conformational changes in the I-like domain and the cysteine-rich repeat of human beta 3 integrins following disulfide bond disruption by cysteine mutations: identification of cysteine 598 involved in alphaIIbbeta3 activation. J Biol Chem 2001; 276: 38628-35.
  • 34 Li R, Mitra N, Gratkowski H. et al. Activation of integrin alphaIIbbeta3 by modulation of transmembrane helix associations. Science 2003; 300: 795-8.
  • 35 Kashiwagi H, Tomiyama Y, Tadokoro S. et al. A mutation in the extracellular cysteine-rich repeat region of the beta3 subunit activates integrins alphaIIbbeta3 and alphavbeta3. Blood 1999; 93: 2559-68.
  • 36 Arnaout MA. Integrin structure: new twists and turns in dynamic cell adhesion. Immunol Rev 2002; 186: 125-40.
  • 37 Takagi J, Springer TA. Integrin activation and structural rearrangement. Immunol Rev 2002; 186: 141-63.
  • 38 Takagi J, Petre BM, Walz T. et al. Global conformational rearrangements in integrin extracellular domains in outside-in and inside-out signaling. Cell 2002; 110: 599-611.