Fortschr Neurol Psychiatr 2008; 76(1): 49-56
DOI: 10.1055/s-2007-980144
Fort- und Weiterbildung
© Georg Thieme Verlag Stuttgart · New York

Die funktionelle Organisation des frontalen Kortex

Teil 1: Grundlegende Erkenntnisse aus den Systemischen NeurowissenschaftenFunctional Organisation of Frontal CortexPart 1: Elementary Findings in Systemic NeuroscienceE.  K.  Diekhof1 , O.  Gruber1
  • 1Klinik für Psychiatrie und Psychotherapie, Georg-August-Universität Göttingen
Further Information

Publication History

Publication Date:
14 January 2008 (online)

Lernziele

Die Erforschung der Ursachen neuropsychiatrischer Störungsbilder setzt ein weitreichendes Verständnis der normalen Funktionsweise des menschlichen Gehirns voraus. Da vor allem viele psychiatrische Störungsbilder speziell mit Dysfunktionen des Frontalhirns in Verbindung gebracht werden, beschäftigt sich dieser Übersichtsartikel mit der funktionellen Organisation des frontalen Kortex beim gesunden Menschen und bei nichtmenschlichen Primaten. Dabei wird, ausgehend von der traditionellen Untergliederung des Frontalhirns in einen lateralen frontodorsalen, einen frontoorbitalen und einen frontomedialen Anteil, eine umfassende Übersicht über den aktuellen Forschungsstand zur funktionellen Segregation frontaler Kortizes gegeben, wobei insbesondere Ergebnisse aus modernen neurophysiologischen und hirnbildgebenden Studien Berücksichtigung finden. Ferner werden hierbei einige allgemeine Funktionsprinzipien des Frontalhirns herausgearbeitet. Dementsprechend sollen in diesem Beitrag verschiedene Fortbildungsziele vermittelt werden:

Allgemeine funktionelle Unterteilung des Stirnhirns Neurophysiologische Funktionsprinzipien des Frontalhirns nichtmenschlicher Primaten Hirnbildgebende Befunde und die Funktionalität des lateralen Frontalhirns Hirnbildgebende Befunde und die Funktionalität des medialen Frontalhirns Hirnbildgebende Befunde und die Funktionalität des orbitalen Frontalhirns

Literatur

  • 1 Fuster J M. The Prefrontal Cortex: Anatomy, Physiology and Neuropsychology of the Frontal Lobe. New York: Raven Press 1989
  • 2 Freedman D J, Riesenhuber M, Poggio T, Miller E K. Visual categorization and the primate prefrontal cortex: neurophysiology and behavior.  J Neurophysiol. 2002;  88 929-941
  • 3 Wallis J D, Anderson K C, Miller E K. Single neurons in prefrontal cortex encode abstract rules.  Nature. 2001;  411 953-956
  • 4 Watanabe M, Hikosaka K, Sakagami M, Shirakawa S. Coding and monitoring of motivational context in the primate prefrontal cortex.  J Neurosci. 2002;  22 2391-2400
  • 5 Groenewegen H J, Uylings H B. The prefrontal cortex and the integration of sensory, limbic and autonomic information.  Prog Brain Res. 2000;  126 3-28
  • 6 Schoenbaum G, Setlow B. Integrating orbitofrontal cortex into prefrontal theory: common processing themes across species and subdivisions.  Learn Mem. 2001;  8 134-147
  • 7 Hikosaka K, Watanabe M. Delay activity of orbital and lateral prefrontal neurons of the monkey varying with different rewards.  Cereb Cortex. 2000;  10 263-271
  • 8 Hasegawa R P, Matsumoto M, Mikami A. Search target selection in monkey prefrontal cortex.  J Neurophysiol. 2000;  84 1692-1696
  • 9 Arbib M A. Perceptual Structures and Distributed Motor Control. In: Brooks VB (ed). Handbook of Physiology; Nervous System, Vol. II. Bethesda: American Physiological Society 1981: 1448-1480
  • 10 Funahashi S, Bruce C J, Goldman-Rakic P S. Mnemonic coding of visual space in the monkey’s dorsolateral prefrontal cortex.  J Neurophysiol. 1989;  61 331-349
  • 11 Constantinidis C, Williams G V, Goldman-Rakic P S. A role for inhibition in shaping the temporal flow of information in prefrontal cortex.  Nat Neurosci. 2002;  5 175-180
  • 12 Goldman-Rakic P S. The prefrontal landscape: Implications of functional architecture for understanding human mentation and the central executive.  Philos Trans R Soc Lond B Biol Sci. 1996;  351 1445-1453
  • 13 Wilson F AW, Scalaidhe S PO, Goldman-Rakic P S. Dissociation of object and spatial processing domains in the primate prefrontal cortex.  Science. 1993;  260 1955-1957
  • 14 Petrides M. Specialized systems for the processing of mnemonic information in the primate prefrontal cortex.  Philos Trans R Soc Lond B Biol Sci. 1996;  351 1455-1461
  • 15 Goodale M A, Milner A D. Separate visual pathways for perception and action.  Trends Neurosci. 1992;  15 20-25
  • 16 Rainer G, Asaad W F, Miller E K. Selective representation of relevant information by neurons in the primate prefrontal cortex.  Nature. 1998;  393 577-579
  • 17 Nauta W JH. The problem of the frontal lobe: a reinterpretation.  J Psychiatr Res. 1971;  8 167-187
  • 18 Duncan J. An adaptive coding model of neural function in prefrontal cortex.  Nat Rev Neurosci. 2001;  2 820-829
  • 19 Baddeley A D, Hitch G J. Working Memory. In: Bower G (ed). Recent Advances in Learning and Motivation Vol. VIII. New York: Academic Press 1974: 47-90
  • 20 Gnadt J W, Andersen R A. Memory-related motor planning activity in posterior parietal cortex of macaque.  Exp Brain Res. 1988;  70 216-220
  • 21 D'Esposito M, Postle B R, Ballard D, Lease J. Maintenance versus manipulation of information held in working memory: an event-related fMRI study.  Brain Cogn. 1999;  41 66-86
  • 22 Glahn D C, Kim J, Cohen M S. et al . Maintenance and manipulation in spatial working memory: dissociations in the prefrontal cortex.  Neuroimage. 2002;  17 201-213
  • 23 Duncan J, Owen A M. Common regions of the human frontal lobe recruited by diverse cognitive demands.  Trends Cogn Sci. 2000;  23 475-483
  • 24 D'Esposito M, Postle B R, Rypma B. Prefrontal cortical contributions to working memory: evidence from event-related fMRI studies.  Exp Brain Res. 2000;  133 3-11
  • 25 Courtney S M, Petit L, Maisog J M, Ungerleider L G, Haxby J V. An area specialized for spatial working memory in human frontal cortex.  Science. 1998;  279 1347-1351
  • 26 Nystrom L E, Braver T S, Sabb F W, Delgado M R, Noll D C, Cohen J D. Working memory for letters, shapes, and locations: fMRI evidence against stimulus-based regional organization in human prefrontal cortex.  Neuroimage. 2000;  11 424-446
  • 27 Ungerleider L G, Courtney S M, Haxby J V. A neural system for visual working memory.  Proc Natl Acad Sci USA. 1998;  95 883-890
  • 28 Gruber O. Two different brain systems underlie phonological short-term memory in humans.  Neuroimage. 2000;  11 407
  • 29 Gruber O. Effects of domain-specific interference on brain activation associated with verbal working memory task performance.  Cereb Cortex. 2001;  11 1047-1055
  • 30 Gruber O, Cramon D Y von. Domain-specific distribution of working memory processes along human prefrontal and parietal cortices: a functional magnetic resonance imaging study.  Neurosci Lett. 2001;  297 29-32
  • 31 Gruber O, Cramon D Y von. The functional neuroanatomy of human working memory revisited - evidence from 3T-fMRI studies using classical domain-specific interference tasks.  Neuroimage. 2003;  19 797-809
  • 32 Romanski L M, Tian B, Fritz J, Mishkin M, Goldman-Rakic P S, Rauschecker J P. Dual streams of auditory afferents target multiple domains in the primate prefrontal cortex.  Nat Neurosci. 1999;  2 1131-1136
  • 33 Petrides M, Pandya D N. Dorsolateral prefrontal cortex: comparative cytoarchitectonic analysis in the human and the macaque brain and corticocortical connection patterns.  Eur J Neurosci. 1999;  11 1011-1036
  • 34 Gruber O. The Co-Evolution of Language and Working Memory Capacity in the Human Brain. In: Stamenov M, Gallese V (eds). Mirror Neurons and the Evolution of Brain and Language. Advances in Consciousness Research, 42 (Series B). Amsterdam & Philadelphia: John Benjamins 2002: 77-86
  • 35 Gruber O, Goschke T. Executive control emerging from dynamic interactions between brain systems mediating language, working memory and attentional processes.  Acta Psychologica. 2004;  115 105-121
  • 36 Botvinick M M, Braver T S, Carter C S, Barch D M, Cohen J C. Conflict monitoring and cognitive control.  Psychol Rev. 2001;  108 624-652
  • 37 Ullsperger M, Cramon D Y von. Error monitoring using external feedback: specific roles of the habenular complex, the reward system, and the cingulate motor area revealed by functional magnetic resonance imaging.  J Neurosci. 2003;  23 4308-4314
  • 38 Ridderinkhof K R, Ullsperger M, Crone E A, Nieuwenhuis S. The role of the medial frontal cortex in cognitive control.  Science. 2004;  306 443-447
  • 39 Koski L, Paus T. Functional connectivity of the anterior cingulate cortex within the human frontal lobe: a brain-mapping meta-analysis.  Exp Brain Res. 2000;  133 5-65
  • 40 Matsumoto K, Tanaka K. The role of the medial prefrontal cortex in achieving goals.  Curr Opin Neurobiol.. 2004;  14 178-185
  • 41 Ferstl E C, Cramon D Y von. What does the fronto-median cortex contribute to language processing: Coherence or Theory of Mind?.  Neuroimage. 2002;  17 1599-1612
  • 42 Kringelbach M L, Rolls E T. The functional neuroanatomy of the human orbitofrontal cortex: evidence from neuroimaging and neuropsychology.  Prog Neurobiol. 2004;  72 341-372
  • 43 Kringelbach M L. The human orbitofrontal cortex: linking reward to hedonic experience.  Nat Rev Neurosci. 2005;  6 691-702
  • 44 Kringelbach M L, O'Doherty J, Rolls E T, Andrews C. Activation of the human orbitofrontal cortex to a liquid food stimulus is correlated with its subjective pleasantness.  Cereb Cortex. 2003;  13 1064-1071
  • 45 Rolls E T. The functions of the orbitofrontal cortex.  Brain Cogn. 2004;  55 11-29
  • 46 Rolls E T, Kringelbach M L, De Araujo I E. Different representations of pleasant and unpleasant odours in the human brain.  Eur J Neurosci. 2003;  18 695-703
  • 47 O'Doherty J, Kringelbach M L, Rolls E T, Hornak J, Andrews C. Abstract reward and punishment representations in the human orbitofrontal cortex.  Nat Neurosci. 2001;  4 95-102
  • 48 Elliott R, Frith C D, Dolan R J. Dissociable functions in the medial and lateral orbitofrontal cortex: evidence from human neuroimaging studies.  Cereb Cortex. 2000;  10 308-317
  • 49 Krawczyk D C. Contributions of the prefrontal cortex to the neural basis of human decision making.  Neurosci Biobehav Rev. 2002;  26 631-664
  • 50 O'Doherty J, Critchley H, Deichmann R, Dolan R J. Dissociating valence of outcome from behavioral control in human orbital and ventral prefrontal cortices.  J Neurosci. 2003;  23 931-7939

Prof. Dr. Oliver Gruber

Klinik für Psychiatrie und Psychotherapie, Georg-August-Universität

Von-Siebold-Str. 5

37075 Göttingen

Email: ogruber@gwdg.de

    >