Semin Liver Dis 2001; 21(4): 501-516
DOI: 10.1055/s-2001-19031
Copyright © 2001 by Thieme Medical Publishers, Inc., 333 Seventh Avenue, New York, NY 10001, USA. Tel.: +1(212) 584-4662

Congenital Disorders of Glycosylation and the Pediatric Liver

Hudson H. Freeze
  • Glycobiology and Carbohydrate Chemistry Program, The Burnham Institute, La Jolla, California
Further Information

Publication History

Publication Date:
17 December 2001 (online)

ABSTRACT

Congenital disorders of glycosylation (CDG) are caused by defects in protein N-glycosylation. These inherited disorders impact multiple organ systems, including the liver, its glycoprotein products, and the gastrointestinal system. Many patients have hypotonia, psychomotor retardation, developmental delay, and failure to thrive. Limited awareness of CDG and the diverse biological functions of glycosylation contribute to underdiagnosis of these disorders. Pediatric hepatologists and gastroenterologists are likely to encounter CDG patients early on in their workups. This review will discuss the clinical pictures, biochemistry, molecular defects, diagnosis, and, for one type, an effective treatment. The broad and diverse CDG presentations within and between the various types indicate that it should be considered in any case of unexplained developmental delay, hepatopathology, especially hepatic fibrosis and/or steatosis, protein-losing enteropathy, coagulopathy, hypoglycemia, and failure to thrive.

REFERENCES

  • 1 Varki A, Cummings R, Esko J. Essentials of Glycobiology.  1st ed. New York: Spring Harbor Laboratory Press 1999
  • 2 Varki A. Biological roles of oligosaccharides: all of the theories are correct.  Glycobiology . 1993;  3 97-130
  • 3 Jaeken J, Matthijs G, Carchon H. Defects of N-glycan synthesis. In: Scriver CR, Beaudet AL, Sly WS, Valle D, eds. The Metabolic and Molecular Bases of Inherited Diseases, 8th ed New York: McGraw-Hill, Medical Publishing Division 2001: 1601-1622
  • 4 Aebi M, Hennet T. Congenital disorders of glycosylation: genetic model systems lead the way.  Trends Cell Biol . 2001;  11 136-141
  • 5 Marquardt T, Freeze H. Congenital disorders of glycosylation: glycosylation defects in man and biological models for their study.  Biol Chem . 2001;  382 161-177
  • 6 Westphal V, Srikrishna G, Freeze H H. Congenital disorders of glycosylation: have you encountered them?.  Genet Med . 2000;  2 329-337
  • 7 Schachter H. Diseases with deficiencies in asparagine-linked glycosylation. A. Carbohydrate-deficient glycoprotein syndromes. In: Hames BD, Glover DM, eds. Molecular and Cellular Glycobiology. Frontiers in Molecular Biology Series Oxford: Oxford University Press 2000: 133-157
  • 8 Jaeken J, Stibler H, Hagberg B. The carbohydrate-deficient glycoprotein syndrome. A new inherited multisystemic disease with severe nervous system involvement.  Acta Paediatr Scand Suppl . 1991;  375 1-71
  • 9 Jaeken J, Carchon H, Stibler H. The carbohydrate-deficient glycoprotein syndromes: pre-Golgi and Golgi disorders?.  Glycobiology . 1993;  3 423-428
  • 10 Freeze H H. Disorders in protein glycosylation and potential therapy: tip of an iceberg?.  J Pediatr . 1998;  133 593-600
  • 11 Schachter H. Congenital disorders involving defective N-glycosylation of proteins.  Cell Mol Life Sci . 2001;  58 1085-1104
  • 12 Krasnewich D, Gahl W A. Carbohydrate-deficient glycoprotein syndrome.  Adv Pediatr . 1997;  44 109-140
  • 13 Helenius A, Aebi M. Intracellular functions of N-linked glycans.  Science . 2001;  291 2364-2369
  • 14 Kornfeld R, Kornfeld S. Assembly of asparagine-linked oligosaccharides.  Annu Rev Biochem . 1985;  54 631-664
  • 15 Silberstein S, Gilmore R. Biochemistry, molecular biology, and genetics of the oligosaccharyltransferase.  FASEB J . 1996;  10 849-858
  • 16 Kopito R R, Ron D. Conformational disease.  Nat Cell Biol . 2000;  2 E207-E209
  • 17 Liao W, Chan L. Tunicamycin induces ubiquitination and degradation of apolipoprotein B in HepG2 cells.  Biochem J . 2001;  353 493-501
  • 18 Hirschberg C B, Robbins P W, Abeijon C. Transporters of nucleotide sugars, ATP, and nucleotide sulfate in the endoplasmic reticulum and Golgi apparatus.  Annu Rev Biochem . 1998;  67 49-69
  • 19 Mackiewicz A, Ganapathi M K, Schultz D. Monokines regulate glycosylation of acute-phase proteins.  J Exp Med . 1987;  166 253-258
  • 20 Brinkman-van der Linden C E, van Ommen C E, van Dijk W. Glycosylation of alpha 1-acid glycoprotein in septic shock: changes in degree of branching and in expression of sialyl Lewis(x) groups.  Glycoconj J . 1996;  13 27-31
  • 21 Burda P, Aebi M. The dolichol pathway of N-linked glycosylation.  Biochim Biophys Acta . 1999;  1426 239-257
  • 22 Freeze H H, Aebi M. Molecular basis of carbohydrate-deficient glycoprotein syndromes type I with normal phosphomannomutase activity.  Biochim Biophys Acta . 1999;  1455 167-178
  • 23 Stanley P. Glycosylation mutants of animal cells.  Annu Rev Genet . 1984;  18 525-552
  • 24 Hennet T, Ellies L G. The remodeling of glycoconjugates in mice.  Biochim Biophys Acta . 1999;  1473 123-136
  • 25 Marek K W, Vijay I K, Marth J D. A recessive deletion in the GlcNAc-1-phosphotransferase gene results in peri-implantation embryonic lethality.  Glycobiology . 1999;  9 1263-1271
  • 26 Rauch F, Prud'homme J, Arabian A. Heart, brain, and body wall defects in mice lacking calreticulin.  Exp Cell Res . 2000;  256 105-111
  • 27 Mesaeli N, Nakamura K, Zvaritch E. Calreticulin is essential for cardiac development.  J Cell Biol . 1999;  144 857-868
  • 28 Campbell R M, Metzler M, Granovsky M. Complex asparagine-linked oligosaccharides in Mgat1-null embryos.  Glycobiology . 1995;  5 535-543
  • 29 Metzler M, Gertz A, Sarkar M. Complex asparagine-linked oligosaccharides are required for morphogenic events during post-implantation development.  EMBO J . 1994;  13 2056-2065
  • 30 Ioffe E, Stanley P. Mice lacking N-acetylglucosaminyltransferase I activity die at mid-gestation, revealing an essential role for complex or hybrid N-linked carbohydrates.  Proc Natl Acad Sci U S A . 1994;  91 728-732
  • 31 Priatel J J, Chui D, Hiraoka N. The ST3Gal-I sialyltransferase controls CD8+ T lymphocyte homeostasis by modulating O-glycan biosynthesis.  Immunity . 2000;  12 273-283
  • 32 Hennet T, Chui D, Paulson J C. Immune regulation by the ST6Gal sialyltransferase.  Proc Natl Acad Sci U S A . 1998;  95 4504-4509
  • 33 Chui D, Sellakumar G, Green R. Genetic remodeling of protein glycosylation in vivo induces autoimmune disease.  Proc Natl Acad Sci U S A . 2001;  98 1142-1147
  • 34 Demetriou M, Granovsky M, Quaggin S. Negative regulation of T-cell activation and autoimmunity by Mgat5 N-glycosylation.  Nature . 2001;  409 733-739
  • 35 Alton G, Hasilik M, Niehues R. Direct utilization of mannose for mammalian glycoprotein biosynthesis.  Glycobiology . 1998;  8 285-295
  • 36 Davis J A, Freeze H H. Studies of mannose metabolism and effects of long-term mannose ingestion in the mouse.  2001 (unpublished manuscript).
  • 37 Kristiansson B, Borulf S, Conradi N. Intestinal, pancreatic and hepatic involvement in carbohydrate-deficient glycoprotein syndrome type I.  J Pediatr Gastroenterol Nutr . 1998;  27 23-29
  • 38 Participants. ``First International Workshop on CDGS,'' Leuven, Belgium, November 12-13, 1999. Letter to the Glyco-Forum. Carbohydrate-deficient glycoprotein syndromes become congenital disorders of glycosylation: an updated nomenclature for CDG.  Glycobiology . 2000;  10 iii-v
  • 39 Luhn K, Wild M K, Eckhardt M. The gene defective in leukocyte adhesion deficiency II encodes a putative GDP- fucose transporter.  Nat Genet . 2001;  28 69-72
  • 40 Lubke T, Marquardt T, Etzioni A. Complementation cloning identifies CDG-IIc, a new type of congenital disorders of glycosylation, as a GDP-fucose transporter deficiency.  Nat Genet . 2001;  28 73-76
  • 41 Yamashita K, Ideo H, Ohkura T. Sugar chains of serum transferrin from patients with carbohydrate deficient glycoprotein syndrome. Evidence of asparagine-N-linked oligosaccharide transfer deficiency.  J Biol Chem . 1993;  268 5783-5789
  • 42 Wada Y, Nishikawa A, Okamoto N. Structure of serum transferrin in carbohydrate-deficient glycoprotein syndrome.  Biochem Biophys Res Commun . 1992;  189 832-836
  • 43 Schachter H, Jaeken J. Carbohydrate-deficient glycoprotein syndrome type II.  Biochim Biophys Acta . 1999;  1455 179-192
  • 44 Seta N, Barnier A, Hochedez F. Diagnostic value of Western blotting in carbohydrate-deficient glycoprotein syndrome.  Clin Chim Acta . 1996;  254 131-140
  • 45 Körner C, Knauer R, Holzbach U. Carbohydrate- deficient glycoprotein syndrome type V: deficiency of dolichyl-P-Glc:Man9GlcNAc2-PP-dolichyl glucosyltransferase.  Proc Natl Acad Sci U S A . 1998;  95 13200-13205
  • 46 Stibler H, Cederberg B. Diagnosis of the carbohydrate-deficient glycoprotein syndrome by analysis of transferrin in filter paper blood spots.  Acta Paediatr . 1993;  82 55-59
  • 47 Harrison H H, Miller K L, Harbison M D. Multiple serum protein abnormalities in carbohydrate-deficient glycoprotein syndrome: pathognomonic finding of two-dimensional electrophoresis?.  Clin Chem . 1992;  38 1390-1392
  • 48 Pohl S, Hoffmann A, Rudiger A. Hypoglycosylation of a brain glycoprotein (b-trace protein) in CDG syndromes due to phosphomannomutase deficiency and N-acetylglucosaminyl-transferase II deficiency.  Glycobiology . 1997;  7 1077-1084
  • 49 Grünewald S, Huyben K, de Jong G J. β-trace protein in human cerebrospinal fluid: a diagnostic marker for N-glycosylation defects in brain.  Biochim Biophys Acta . 1999;  1455 54-60
  • 50 Yamashita K, Ohkura T, Ideo H. Electrospray ionization-mass spectrometric analysis of serum transferrin isoforms in patients with carbohydrate-deficient glycoprotein syndrome.  J Biochem (Tokyo) . 1993;  114 766-769
  • 51 Lacey J M, Bergen H R, Magera M J. Rapid determination of transferrin isoforms by immunoaffinity liquid chromatography and electrospray mass spectrometry.  Clin Chem . 2001;  47 513-518
  • 52 Charlwood J, Clayton P, Keir G. Defective galactosylation of serum transferrin in galactosemia.  Glycobiology . 1998;  8 351-357
  • 53 Stibler H, von Dobeln U, Kristiansson B. Carbohydrate-deficient transferrin in galactosaemia.  Acta Paediatr . 1997;  86 1377-1378
  • 54 Jaeken J, Pirard M, Adamowicz M. Inhibition of phosphomannose isomerase by fructose 1-phosphate: an explanation for defective N-glycosylation in hereditary fructose intolerance.  Pediatr Res . 1996;  40 764-766
  • 55 Sillanaukee P, Strid N, Allen J P. Possible reasons why heavy drinking increases carbohydrate-deficient transferrin.  Alcohol Clin Exp Res . 2001;  25 34-40
  • 56 Arndt T. Carbohydrate-deficient transferrin as a marker of chronic alcohol abuse: a critical review of preanalysis, analysis, and interpretation.  Clin Chem . 2001;  47 13-27
  • 57 Fletcher J M, Matthijs G, Jaeken J. Carbohydrate-deficient glycoprotein syndrome: beyond the screen.  J Inherit Metab Dis . 2000;  23 396-398
  • 58 Dupre T, Cuer M, Barrot S. Congenital disorder of glycosylation Ia with deficient phosphomannomutase activity but normal plasma glycoprotein pattern.  Clin Chem . 2001;  47 132-134
  • 59 Stibler H, Skovby F. Failure to diagnose carbohydrate-deficient glycoprotein syndrome prenatally.  Pediatr Neurol . 1994;  11 71
  • 60 Clayton P, Winchester B, Di Tomaso E. Carbohydrate-deficient glycoprotein syndrome: normal glycosylation in the fetus.  Lancet . 1993;  341 956
  • 61 Grunewald S, Schollen E, Van Schaftingen E. High residual activity of PMM2 in patients' fibroblasts: possible pitfall in the diagnosis of CDG-Ia (phosphomannomutase deficiency).  Am J Hum Genet . 2001;  68 347-354
  • 62 Krasnewich D, Gahl W A. Carbohydrate-deficient glycoprotein syndrome.  Adv Pediatr . 1997;  44 109-140
  • 63 Patterson M C. Screening for ``prelysosomal disorders'': carbohydrate-deficient glycoprotein syndromes.  J Child Neurol . 1999;  14 (S16-S22)
  • 64 de Lonlay P, Seta N, Barrot S. A broad spectrum of clinical presentations in congenital disorders of glycosylation I: a series of 26 cases.  J Med Genet . 2001;  38 14-19
  • 65 Marquardt T, Lühn K, Srikrishna G. Correction of leukocyte adhesion deficiency type II with oral fucose.  Blood . 1999;  94 3976-3985
  • 66 Keir G, Winchester B G, Clayton P. Carbohydrate-deficient glycoprotein syndromes: inborn errors of protein glycosylation.  Ann Clin Biochem . 1999;  36 20-36
  • 67 Westphal V, Enns G M, McCracken M F. Functional analysis of novel mutations in a congenital disorder of glycosylation Ia patient with mixed Asian ancestry.  Mol Genet Metab . 2001;  73 71-76
  • 68 van Ommen H C, Peters M, Barth P G. Carbohydrate-deficient glycoprotein syndrome type 1a: a variant phenotype with borderline cognitive dysfunction, cerebellar hypoplasia, and coagulation disturbances.  J Pediatr . 2000;  136 400-403
  • 69 Van Schaftingen E, Jaeken J. Phosphomannomutase deficiency is a cause of carbohydrate-deficient glycoprotein syndrome type I.  FEBS Lett . 1995;  377 318-320
  • 70 Matthijs G, Schollen E, Pardon E. Mutations in PMM2, a phosphomannomutase gene on chromosome 16p13, in carbohydrate-deficient glycoprotein type I syndrome (Jaeken syndrome).  Nat Genet . 1997;  16 88-92
  • 71 Pirard M, Achouri Y, Collet J F. Kinetic properties and tissular distribution of mammalian phosphomannomutase isozymes.  Biochem J . 1999;  339 201-207
  • 72 Matthijs G, Schollen E, Bjursell C. Mutations in PMM2 that cause congenital disorders of glycosylation, type Ia (CDG-Ia).  Hum Mutat . 2000;  16 386-394
  • 73 Drouin-Garraud V, Belgrand M, Grunewald S. Neurological presentation of a congenital disorder of glycosylation CDG-Ia: implications for diagnosis and genetic counseling.  Am J Med Genet . 2001;  101 46-49
  • 74 de Lonlay P, Seta N, Barrot S. A broad spectrum of clinical presentations in congenital disorders of glycosylation I: a series of 26 cases.  J Med Genet . 2001;  38 14-19
  • 75 Kjaergaard S, Skovby F, Schwartz M. Absence of homozygosity for predominant mutations in PMM2 in Danish patients with carbohydrate-deficient glycoprotein syndrome type 1.  Eur J Hum Genet . 1998;  6 331-336
  • 76 Matthijs G, Schollen E, Van Schaftingen E. Lack of homozygotes for the most frequent disease allele in carbohydrate-deficient glycoprotein syndrome type 1A.  Am J Hum Genet . 1998;  62 542-550
  • 77 Schollen E, Kjaergaard S, Legius E. Lack of Hardy-Weinberg equilibrium for the most prevalent PMM2 mutation in CDG-Ia (congenital disorders of glycosylation type Ia).  Eur J Hum Genet . 2000;  8 367-371
  • 78 Comings D E, MacMurray J P. Molecular heterosis: a review.  Mol Genet Metab . 2000;  71 19-31
  • 79 Freeze H H, Westphal V. Balancing N-glycosylation to avoid disease.  Biochimie . 2001;  83 791-799
  • 80 Panneerselvam K, Freeze H H. Mannose corrects altered N-glycosylation in carbohydrate-deficient glycoprotein syndrome fibroblasts.  J Clin Invest . 1996;  97 1478-1487
  • 81 Körner C, Lehle L, von Figura K. Carbohydrate-deficient glycoprotein syndrome type 1: correction of the glycosylation defect by deprivation of glucose or supplementation of mannose.  Glycoconj J . 1998;  15 499-505
  • 82 Mayatepek E, Schröder M, Kohlmuller D. Continuous mannose infusion in carbohydrate-deficient glycoprotein syndrome type I.  Acta Paediatr . 1997;  86 1138-1140
  • 83 Mayatepek E, Kohlmüller D. Mannose supplementation in carbohydrate-deficient glycoprotein syndrome type I and phosphomannomutase deficiency.  Eur J Pediatr . 1998;  157 605-606
  • 84 Kjaergaard S, Kristiansson B, Stibler H. Failure of short-term mannose therapy of patients with carbohydrate-deficient glycoprotein syndrome type 1A.  Acta Paediatr . 1998;  87 884-888
  • 85 Marquardt T, Hasilik M, Niehues R. Mannose therapy in carbohydrate-deficient glycoprotein syndrome type I-first results of the German multicenter study.  Amino Acids . 1997;  12 389
  • 86 Alton G, Kjaergaard S, Etchison J R. Oral ingestion of mannose elevates blood mannose levels: a first step toward a potential therapy for carbohydrate-deficient glycoprotein syndrome type I.  Biochem Mol Med . 1997;  60 127-133
  • 87 Bunn H F, Higgins P J. Reaction of monosaccharides with proteins: possible evolutionary significance.  Science . 1981;  213 222-224
  • 88 de Koning J T, Dorland L, van Diggelen P O. A novel disorder of N-glycosylation due to phosphomannose isomerase deficiency.  Biochem Biophys Res Commun . 1998;  245 38-42
  • 89 de Koning J T, Dorland L, Nikkels P. Phosphomannose isomerase deficiency with cyclic vomiting and congenital hepatic fibrosis.  J Inherit Metab Dis . 1998;  21 96
  • 90 de Koning J T, Dorland L, van Diggelen P O. A novel disorder of N-glycosylation due to phosphomannose isomerase deficiency.  Biochem Biophys Res Commun . 1998;  245 38-42
  • 91 de Koning J T, Nikkels P G, Dorland L. Congenital hepatic fibrosis in 3 siblings with phosphomannose isomerase deficiency.  Virchows Arch . 2000;  437 101-105
  • 92 Babovic-Vuksanovic D, Patterson M C, Schwenk W F. Severe hypoglycemia as a presenting symptom of carbohydrate-deficient glycoprotein syndrome.  J Pediatr . 1999;  135 775-781
  • 93 Niehues R, Hasilik M, Alton G. Carbohydrate-deficient glycoprotein syndrome type Ib. Phosphomannose isomerase deficiency and mannose therapy.  J Clin Invest . 1998;  101 1414-1420
  • 94 de Lonlay P, Cuer M, Vuillaumier-Barrot S. Hyperinsulinemic hypoglycemia as a presenting sign in phosphomannose isomerase deficiency: a new manifestation of carbohydrate-deficient glycoprotein syndrome treatable with mannose.  J Pediatr . 1999;  135 379-383
  • 95 Pelletier V A, Galéano N, Brochu P. Secretory diarrhea with protein-losing enteropathy, enterocolitis cystica superfilialis, intestinal lymphangiectasia, and congenital hepatic fibrosis: a new syndrome.  J Pediatr . 1986;  108 61-65
  • 96 Jaeken J, Matthijs G, Saudubray J M. Phosphomannose isomerase deficiency: a carbohydrate-deficient glycoprotein syndrome with hepatic-intestinal presentation.  Am J Hum Genet . 1998;  62 1535-1539
  • 97 Pedersen P S, Tygstrup I. Congenital hepatic fibrosis combined with protein-losing enteropathy and recurrent thrombosis.  Acta Paediatr Scand . 1980;  69 571-574
  • 98 Westphal V, Kjaergaard S, Davis J A. Genetic and metabolic analysis of the first adult with congenital disorder of glycosylation type ib: long-term outcome and effects of mannose supplementation.  Mol Genet Metab . 2001;  73 77-85
  • 99 Rush J S, Panneerselvam K, Waechter C J. Mannose supplementation corrects GDP-mannose deficiency in cultured fibroblasts from some patients with congenital disorders of glycosylation (CDG).  Glycobiology . 2000;  10 829-835
  • 100 Panneerselvam K, Freeze H H. Mannose enters mammalian cells using a specific transporter that is insensitive to glucose.  J Biol Chem . 1996;  271 9417-9421
  • 101 Dupre T, Ogier-Denis E, Moore S E. Alteration of mannose transport in fibroblasts from type I carbohydrate deficient glycoprotein syndrome patients.  Biochim Biophys Acta . 1999;  1453 369-377
  • 102 Ogier-Denis E, Blais A, Houri J J. The emergence of a basolateral 1-deoxymannojirimycin-sensitive mannose carrier is a function of intestinal epithelial cell differentiation. Evidence for a new inhibitory effect of 1-deoxymannojirimycin on facilitative mannose transport.  J Biol Chem . 1994;  269 4285-4290
  • 103 Panneerselvam K, Etchison J R, Freeze H H. Human fibroblasts prefer mannose over glucose as a source of mannose for N-glycosylation. Evidence for the functional importance of transported mannose.  J Biol Chem . 1997;  272 23123-23129
  • 104 Smith D J, Proudfoot A, Friedli L. PMI40, an intron-containing gene required for early steps in yeast mannosylation.  Mol Cell Biol . 1992;  12 2924-2930
  • 105 Schwarzenberg S J. Congenital hepatic fibrosis-is it really a matter of ``a spoonful of sugar?'' Hepatology .  1999;  30 582-583
  • 106 Freeze H H. New diagnosis and treatment of congenital hepatic fibrosis.  J Pediatr Gastroenterol Nutr . 1999;  29 104-106
  • 107 Bewley J D, Reid J S. Mannans and glucomannans. In: Bewley JD, ed. Biochemistry of Storage Carbohydrates in Green Plants London: Academic, 1985: 289-304
  • 108 Reid J S. Galactomannans. In: Bewley JD, ed. Biochemistry of Storage Carbohydrates in Green Plants London: Academic, 1985: 265-288
  • 109 Grünewald S, Imbach T, Huijben K. Clinical and biochemical characteristics of congenital disorder of glycosylation type Ic, the first recognized endoplasmic reticulum defect in N-glycan synthesis.  Ann Neurol . 2000;  47 776-781
  • 110 Imbach T, Grunewald S, Schenk B. Multi-allelic origin of congenital disorder of glycosylation (CDG)-Ic.  Hum Genet . 2000;  106 538-545
  • 111 Westphal V, Murch S, Kim S. Reduced heparan sulfate accumulation in enterocytes contributes to protein-losing enteropathy in a congenital disorder of glycosylation.  Am J Pathol . 2000;  157 1917-1925
  • 112 de Praeter M C, Gerwig G J, Bause E. A novel disorder caused by defective biosynthesis of N-linked oligosaccharides due to glucosidase I deficiency.  Am J Hum Genet . 2000;  66 1744-1756
  • 113 Imbach T, Burda P, Kuhnert P. A mutation in the human ortholog of the Saccharomyces cerevisiae ALG6 gene causes carbohydrate-deficient glycoprotein syndrome type-Ic.  Proc Natl Acad Sci U S A . 1999;  96 6982-6987
  • 114 Reiss G, te Heesen S, Zimmerman J. Isolation of the ALG6 locus of Saccharomyces cerevisiae required for glucosylation in the N-linked glycosylation pathway.  Glycobiology . 1996;  6 493-498
  • 115 Körner C, Knauer R, Stephani U. Carbohydrate deficient glycoprotein syndrome type IV: deficiency of dolichyl-P-Man:Man5GlcNAc2-PP-dolichyl mannosyltransferase.  EMBO J . 1999;  18 6816-6822
  • 116 Imbach T, Schenk B, Schollen E. Deficiency of dolichol-phosphate-mannose synthase-1 causes congenital disorder of glycosylation type Ie.  J Clin Invest . 2000;  105 233-239
  • 117 Kim S, Westphal V, Srikrishna G. Dolichol phosphate mannose synthase (DPM1) mutations define congenital disorder of glycosylation Ie (CDG-Ie).  J Clin Invest . 2000;  105 191-198
  • 118 Aebi M, Gassenhuber J, Domdey H. Cloning and characterization of the ALG3 gene of Saccharomyces cerevisiae Glycobiology .  1996;  6 439-444
  • 119 Maeda Y, Tanaka S, Hino J. Human dolichol-phosphate-mannose synthase consists of three subunits, DPM1, DPM2 and DPM3.  EMBO J . 2000;  19 2475-2482
  • 120 Tomita S, Inoue N, Maeda Y. A homologue of Saccharomyces cerevisiae Dpm1p is not sufficient for synthesis of dolichol-phosphate-mannose in mammalian cells.  J Biol Chem . 1998;  273 9249-9254
  • 121 Anand M, Rush J S, Ray S. Requirement of the Lec35 gene for all known classes of monosaccharide-P-dolichol-dependent glycosyltransferase reactions in mammals.  Mol Biol Cell . 2001;  12 487-501
  • 122 Schachter H, Tan J, Sarkar M. Defective glycosyltransferases are not good for your health.  Adv Exp Med Biol . 1998;  435 9-27
  • 123 Charuk J H, Tan J, Bernardini M. Carbohydrate-deficient glycoprotein syndrome type II. An autosomal recessive N-acetylglucosaminyltransferase II deficiency different from typical hereditary erythroblastic multinuclearity, with a positive acidified-serum lysis test (HEMPAS).  Eur J Biochem . 1995;  230 797-805
  • 124 Jaeken J, Schachter H, Carchon H. Carbohydrate deficient glycoprotein syndrome type II: a deficiency in Golgi localised N-acetyl-glucosaminyltransferase II.  Arch Dis Child . 1994;  71 123-127
  • 125 Michalski J-C. Normal and pathological catabolism of glycoproteins. In: Montreuil J, Vliegenthart JFG, Schachter H, eds. Glycoproteins and Disease, 30th ed Amsterdam: Elsevier Science, 1996: 55-97
  • 126 Tan J, Dunn J, Jaeken J. Mutations in the MGAT2 gene controlling complex N-glycan synthesis cause carbohydrate-deficient glycoprotein syndrome type II, an autosomal recessive disease with defective brain development.  Am J Hum Genet . 1996;  59 810-817
  • 127 Wang T, Tan J, Sutton-Smith M. Physiologic and disease-inducing activities of asparagine-linked glycans in a model of congenital disorder of glycosylation (CDG) type IIa.  Glycobiology. 2001 (in press); 
  • 128 Moore S E, Spiro R G. Demonstration that Golgi endo-a-D-mannosidase provides a glucosidase-independent pathway for the formation of complex N-linked oligosaccharides of glycoproteins.  J Biol Chem . 1990;  265 13104-13112
  • 129 Lubas W A, Spiro R G. Evaluation of the role of rat liver Golgi endo-alpha-D-mannosidase in processing N-linked oligosaccharides.  J Biol Chem . 1988;  263 3990-3998
  • 130 Becker D J, Lowe J B. Leukocyte adhesion deficiency type II.  Biochim Biophys Acta . 1999;  1455 193-204
  • 131 Lübke T, Marquardt T, von Figura K. A new type of carbohydrate-deficient glycoprotein syndrome due to a decreased import of GDP-fucose into the Golgi.  J Biol Chem . 1999;  274 25986-25989
  • 132 Etzioni A, Tonetti M. Leukocyte adhesion deficiency II-from A to almost Z.  Immunol Rev . 2000;  178 138-147
  • 133 Marquardt T, Brune T, Lühn K. Leukocyte adhesion deficiency II syndrome, a generalized defect in fucose metabolism.  J Pediatr . 1999;  134 681-688
  • 134 Sturla L, Puglielli L, Tonetti M. Impairment of the Golgi GDP-L-fucose transport and unresponsiveness to fucose replacement therapy in LAD II patients.  Pediatr Res . 2001;  49 537-542
  • 135 Vockley J, Rinaldo P, Bennett M J. Synergistic heterozygosity: disease resulting from multiple partial defects in one or more metabolic pathways.  Mol Genet Metab . 2000;  71 10-18
  • 136 Segal S. Defective galactosylation in galactosemia: is low cell UDP-galactose an explanation?.  Eur J Pediatr . 1995;  154(Suppl) S65-S71
  • 137 Ornstein K S, McGuire E J, Berry G T. Abnormal galactosylation of complex carbohydrates in cultured fibroblasts from patients with galactose-1-phosphate uridyltransferase deficiency.  Pediatr Res . 1992;  31 508-511
  • 138 Ning C, Reynolds R, Chen J. Galactose metabolism by the mouse with galactose-1-phosphate uridyltransferase deficiency.  Pediatr Res . 2000;  48 211-217
  • 139 Novelli G, Reichardt J K. Molecular basis of disorders of human galactose metabolism: past, present, and future.  Mol Genet Metab . 2000;  71 62-65
    >