J Reconstr Microsurg 2001; 17(3): 203-210
DOI: 10.1055/s-2001-14352
HISTORICAL REVIEW

Copyright © 2001 by Thieme Medical Publishers, Inc., 333 Seventh Avenue, New York, NY 10001, USA. Tel.: +1(212) 584-4662

Viability of Ischemia/Reperfused Bone Determined at the Gene Expression Level

Manabu Akahane, Hiroshi Ono, Hajime Ohgushi, Yoshinori Takakura
  • Department of Orthopedic Surgery, Nara Medical University, Japan
Further Information

Publication History

Publication Date:
31 December 2001 (online)

ABSTRACT

Rat bone viability was evaluated, using a bone viability index (BVI) that reflects mRNA degradation. To evaluate ischemic injury of the bone, 28 amputated hind limbs of Fischer rats (ischemic insult group: four subgroups, each containing seven limbs) were preserved at normothermia for 1, 3, 6 and 9 hr and the tibiae were harvested. To investigate ischemia/reperfusion injury, another 42 amputated limbs were transplanted to recipient Fischer rats after ischemia at normothermia for 1, 3 and 6 hr, respectively. The tibiae from the transplanted limbs were harvested on day 3 and day 7 after the transplantation (ischemia/reperfusion group). Seven fresh tibiae were also harvested and used as controls (control group). The total RNA isolated from the tibia of each group was fractionated by electrophoresis and hybridized with 32 P-labelled cDNA of glyceraldehyde-3-phosphate dehydrogenase (GAPDH), and the radioactivity of intact and degraded GAPDH mRNA was measured. BVI was calculated as follows: BVI = {A / (A + B) } × 100, where A and B represent the radioactivities corresponding to the intact GAPDH and degraded GAPDH mRNA band, respectively.

In the 1-hr and 3-hr ischemia groups, the BVIs of the ischemia/reperfused group were comparable to those of controls, although the indexes of the ischemic insult group were significantly lower than controls. However, in the 6-hr ischemia group, indexes of both the ischemic insult and ischemia/reperfusion groups were significantly lower than controls. These results demonstrated that bone damage was detected with ischemia at normothermia even after 1 hr; however, this tissue damage was overcome by reperfusion. There was no recovery from damage in bones that had been preserved for more than 6 hr, resulting in irreversible degeneration. Therefore, in clinical vascularized bone grafts, it appears that transplantation should be done within a 3-hr ischemic period for it to be successful.

REFERENCES

  • 1 Brunelli G, Guizzi P A, Battiston B, Vigasio A. A comparison of vascularized and nonvascularized bone transfer in rabbits: a roentgenographic, scintigraphic, and histologic evaluation.  J Reconstr Microsurg . 1987;  3 301
  • 2 Weiss A C, Moore R M, Randolph M A, Weiland A J. Preventing oxygen free-radical injury in ischemic revascularized bone grafts.  Plast Reconstr Surg . 1988;  82 486
  • 3 Berggren A, Weiland A J, Östrup L T. Bone scintigraphy in evaluating the viability of composite bone grafts revascularized by microvascular anastomoses, conventional autogenous bone grafts, and free non-revascularized periosteal grafts.  J Bone Joint Surg . 1982;  64A 799
  • 4 Bos K E. Bone scintigraphy of experimental composite bone grafts revascularized by microvascular anastomoses.  Plast Reconstr Surg . 1979;  64 353
  • 5 Winet H, Hsieh A, Bao J Y. Approaches to study of ischemia in bone.  J Biomed Mater Res . 1998;  43 410
  • 6 Tamura Y, Inoue G, Miura T. Reperfusion injury in bone: effects of cv-3611, a free radical scavenger, on ischemic revascularized bone grafts in rats.  J Reconstr Microsurg . 1992;  8 471
  • 7 Gur E, Chiodo A, Pang C Y. The vascularized pig fibula bone flap model: effects of multiple segmental osteotomies on growth and viability.  Plast Reconstr Surg . 1999;  103 1436
  • 8 Yokoyama K, Kimura M, Itoman M. Rat whole-limb viability after cold immersion using University of Wisconsin and Euro-Collins solutions.  Transplantation . 1996;  62 884
  • 9 Dell P C, Burchardt H, Glowczewskie F P. A roentgenographic, biomechanical, and histological evaluation of vascularized and non-vascularized segmental fibular canine autografts.  J Bone Joint Surg . 1985;  67A 105
  • 10 Zinberg E M, Wood M B, Brown M L. Vascularized bone transfer: evaluation of viability by postoperative bone scan.  J Reconstr Microsurg . 1985;  2 13
  • 11 Lipson R A, Dief H, Greyson N D. Bone scanning in assessing viability of vascularized skeletal tissue transplants.  Clin Orthop Rel Res . 1981;  160 279
  • 12 Cheung H S, Stewart I T, Ho K C. Vascularized iliac crest grafts: evaluation of viability status with marrow scintigraphy.  Radiology . 1993;  186 241
  • 13 Hirigoyen M B, Blackwell K E, Zhang W X. Continuous tissue oxygen tension measurement as a monitor of free-flap viability.  Plast Reconstr Surg . 1997;  99 763
  • 14 Lau R SF. Bone graft viability in vascularized bone graft transfer.  Br J Radiology . 1982;  55 325
  • 15 Weiland A J, Phillips T W, Randolph M A. Bone grafts: a radiologic, histologic, and biomechanical model comparing autografts, allografts, and free vascularized bone grafts.  Plast Reconstr Surg . 1984;  74 368
  • 16 Nakagawa Y, Ono H, Mizumoto S. Subzero nonfreezing preservation in a murine limb replantation model.  J Orthop Sci . 1998;  3 156
  • 17 Akahane M, Ohgushi H, Yoshikawa T. Osteogeneic phenotype expression of allogeneic rat marrow cells in porous hydroxyapatite ceramic.  J Bone Miner Res . 1999;  14 561
  • 18 Moore J R, Weiland A J, Daniel R K. Use of free vascularized bone grafts in the treatment of bone tumors.  Clin Orthop Rel Res . 1983;  175 37
  • 19 Tamai S, Sakamoto H, Hori Y. Vascularized fibula transplantation: a report of 8 cases in the treatment of traumatic bony defect or pseudoarthrosis of long bones.  Int J Microsurg . 1980;  2 205
  • 20 Taylor G I, Miller G DH, Ham F G. The free vascularized bone graft: a clinical extension of microvascular techniques.  Plast Reconstr Surg . 1975;  55 533
  • 21 Siegert J J, Wood M B. Thrombosed vascularized bone graft: viability compared with a conventional bone graft.  J Reconstr Microsurg . 1987;  3 99
  • 22 Moran C G, Adams M L, Wood M B. Preservation of bone graft vascularity with the University of Wisconsin cold storage solution.  J Orthop Res . 1993;  11 840
  • 23 Arcari P, Martinelli R, Salvatore F. The complete sequence of a full length cDNA for human liver glyceraldehyde-3-phosphate dehydrogenase: evidence for multiple mRNA species.  Nucleic Acids Res . 1984;  11 9179
  • 24 Liljas A, Rossman M G. X-ray studies of protein interactions.  Ann Rev Biochem . 1974;  43 475
  • 25 Tso J Y, Sun X H, Kao T H. Isolation and characterization of rat and human glyceraldehyde-3-phosphate dehydrogenase cDNAs: genomic complexity and molecular evolution of the gene.  Nucleic Acids Res . 1985;  11 2485
  • 26 Jaiswal N, Hayneworth S E, Caplan A I, Bruder S P. Osteogenic differentiation of purified, culture-expanded human mesenchymal stem cells in vitro.  J Cell Biochem . 1997;  64 295
  • 27 Bab I, Ashton B A, Gazit D. Kinetics and differentiation of marrow stromal cells in diffusion chambers in vivo.  J Cell Sci . 1986;  84 139
  • 28 Bennett J H, Joyner C J, Triffit J T, Owen M. Adipocytic cells cultured from marrow have osteogenic potential.  J Cell Sci . 1991;  99 131
  • 29 Beresford J N. Osteogenic stem cells and the stromal system of bone and marrow.  Clin Orthop Rel Res . 1989;  240 270
  • 30 Beresford J N, Bennett J H, Devlin C. Evidence for an inverse relationship between the differentiation of adipocytic and osteogenic cells in rat marrow stromal cell cultures.  J Cell Sci . 1992;  102 341
  • 31 Bruder S P, Caplan A I. Terminal differentiation of osteogenic cells in the embryonic chick tibia is revealed by a monoclonal antibody against osteocytes.  Bone . 1990;  11 189
    >