Semin Musculoskelet Radiol 2019; 23(03): 312-323
DOI: 10.1055/s-0039-1685540
Review Article
Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

Update on Whole-body MRI in Musculoskeletal Applications

Joan C. Vilanova
1   Department of Radiology, Clínica Girona, Institute of Diagnostic Imaging (IDI)-Girona, Faculty of Medicine, University of Girona, Spain
,
Roberto García-Figueiras
2   Department of Radiology, Complexo Hospitalario Universitario de Santiago de Compostela, Santiago de Compostela, A Coruña, Spain
,
Antonio Luna
3   Health Time, Clínica Las Nieves, Jaén, Spain; Department of Radiology, University Hospitals of Cleveland, Case Western Reserve University, Cleveland, Ohio
,
Sandra Baleato-González
2   Department of Radiology, Complexo Hospitalario Universitario de Santiago de Compostela, Santiago de Compostela, A Coruña, Spain
,
Xavier Tomás
4   Department of Radiology (CDIC), Hospital Clinic, Universitat de Barcelona (UB), Barcelona, Spain
,
José A. Narváez
5   Hospital Universitario de Bellvitge-IDIBELL, Barcelona, Spain
› Author Affiliations
Further Information

Publication History

Publication Date:
04 June 2019 (online)

Abstract

Whole-body magnetic resonance imaging (WB-MRI) is a powerful tool increasingly used to assess oncologic and nononcologic diseases. WB-MRI provides information about diffuse multifocal pathologies with excellent anatomical definition through high soft tissue contrast and spatial resolution as well as valuable functional information from diffusion-weighted images. In addition to its roles in establishing the diagnosis and assessing the extent and severity of disease, WB-MRI is also useful for monitoring the response to treatment for malignant and benign systemic diseases affecting the musculoskeletal system. This article reviews and updates the applications of WB-MRI in current practice, discussing the role of this helpful tool in various conditions involving the musculoskeletal system including bone metastases, hematologic cancers, inflammatory processes, infections, and multisystemic-multifocal bone, nerve, vascular, and muscle/soft tissue disorders, as well as other idiopathic conditions.

 
  • References

  • 1 Eustace S, Tello R, DeCarvalho V. , et al. A comparison of whole-body turboSTIR MR imaging and planar 99mTc-methylene diphosphonate scintigraphy in the examination of patients with suspected skeletal metastases. AJR Am J Roentgenol 1997; 169 (06) 1655-1661
  • 2 Lecouvet FE. Imaging: musculoskeletal applications. Radiology 2016; 279 (02) 345-365
  • 3 Koh D-M, Blackledge M, Padhani AR. , et al. Whole-body diffusion-weighted MRI: tips, tricks, and pitfalls. AJR Am J Roentgenol 2012; 199 (02) 252-262
  • 4 Petralia G, Padhani AR. Whole-body magnetic resonance imaging in oncology: uses and indications. Magn Reson Imaging Clin N Am 2018; 26 (04) 495-507
  • 5 Lecouvet FE, Michoux N, Nzeusseu Toukap A. , et al. The increasing spectrum of indications of whole-body MRI beyond oncology: imaging answers to clinical needs. Semin Musculoskelet Radiol 2015; 19 (04) 348-362
  • 6 Korchi AM, Hanquinet S, Anooshiravani M, Merlini L. Whole-body magnetic resonance imaging: an essential tool for diagnosis and work up of non-oncological systemic diseases in children. Minerva Pediatr 2014; 66 (03) 169-176
  • 7 Baudin P-Y, Marty B, Robert B. , et al. Qualitative and quantitative evaluation of skeletal muscle fatty degenerative changes using whole-body Dixon nuclear magnetic resonance imaging for an important reduction of the acquisition time. Neuromuscul Disord 2015; 25 (10) 758-763
  • 8 Barkhausen J, Quick HH, Lauenstein T. , et al. Whole-body MR imaging in 30 seconds with real-time true FISP and a continuously rolling table platform: feasibility study. Radiology 2001; 220 (01) 252-256
  • 9 Schmeel FC, Luetkens JA, Enkirch SJ. , et al. Proton density fat fraction (PDFF) MR imaging for differentiation of acute benign and neoplastic compression fractures of the spine. Eur Radiol 2018; 28 (12) 5001-5009
  • 10 West J, Romu T, Thorell S. , et al. Precision of MRI-based body composition measurements of postmenopausal women. PLoS One 2018; 13 (02) e0192495
  • 11 Goyen M, Herborn CU, Lauenstein TC. , et al. Optimization of contrast dosage for gadobenate dimeglumine-enhanced high-resolution whole-body 3D magnetic resonance angiography. Invest Radiol 2002; 37 (05) 263-268
  • 12 Özgen A. The value of the T2-weighted multipoint Dixon sequence in MRI of sacroiliac joints for the diagnosis of active and chronic sacroiliitis. AJR Am J Roentgenol 2017; 208 (03) 603-608
  • 13 Larbi A, Omoumi P, Pasoglou V. , et al. Whole-body MRI to assess bone involvement in prostate cancer and multiple myeloma: comparison of the diagnostic accuracies of the T1, short tau inversion recovery (STIR), and high b-values diffusion-weighted imaging (DWI) sequences. Eur Radiol 2018 ; November 9 (Epub ahead of print)
  • 14 Jambor I, Kuisma A, Ramadan S. , et al. Prospective evaluation of planar bone scintigraphy, SPECT, SPECT/CT, 18F-NaF PET/CT and whole body 1.5T MRI, including DWI, for the detection of bone metastases in high risk breast and prostate cancer patients: SKELETA clinical trial. Acta Oncol 2016; 55 (01) 59-67
  • 15 Barcelo J, Vilanova JC, Riera E. , et al. Diffusion-weighted whole-body MRI (virtual PET) in screening for osseous metastases [in Spanish]. Radiologia (Madr) 2007; 49 (06) 407-415
  • 16 Barchetti F, Stagnitti A, Megna V. , et al. Unenhanced whole-body MRI versus PET-CT for the detection of prostate cancer metastases after primary treatment. Eur Rev Med Pharmacol Sci 2016; 20 (18) 3770-3776
  • 17 Shen G, Deng H, Hu S, Jia Z. Comparison of choline-PET/CT, MRI, SPECT, and bone scintigraphy in the diagnosis of bone metastases in patients with prostate cancer: a meta-analysis. Skeletal Radiol 2014; 43 (11) 1503-1513
  • 18 David Roodman G, Silbermann R. Mechanisms of osteolytic and osteoblastic skeletal lesions. Bonekey Rep 2015; 4: 753
  • 19 Evangelista L, Bertoldo F, Boccardo F. , et al. Diagnostic imaging to detect and evaluate response to therapy in bone metastases from prostate cancer: current modalities and new horizons. Eur J Nucl Med Mol Imaging 2016; 43 (08) 1546-1562
  • 20 Padhani AR, van Ree K, Collins DJ, D'Sa S, Makris A. Assessing the relation between bone marrow signal intensity and apparent diffusion coefficient in diffusion-weighted MRI. AJR Am J Roentgenol 2013; 200 (01) 163-170
  • 21 Müller-Horvat C, Radny P, Eigentler TK. , et al. Prospective comparison of the impact on treatment decisions of whole-body magnetic resonance imaging and computed tomography in patients with metastatic malignant melanoma. Eur J Cancer 2006; 42 (03) 342-350
  • 22 Morone M, Bali MA, Tunariu N. , et al. Whole-body MRI: current applications in oncology. AJR Am J Roentgenol 2017; 209 (06) W336-W349
  • 23 Vilanova JC. Whole-body magnetic resonance imaging: why radiologists should implement this useful technique in current practice. Radiologia (Madr) 2016; 58 (06) 501-503
  • 24 Padhani AR, Lecouvet FE, Tunariu N. , et al. Metastasis Reporting and Data System for Prostate Cancer: practical guidelines for acquisition, interpretation, and reporting of whole-body magnetic resonance imaging-based evaluations of multiorgan involvement in advanced prostate cancer. Eur Urol 2017; 71 (01) 81-92
  • 25 Padhani AR, Lecouvet FE, Tunariu N. , et al. Rationale for modernising imaging in advanced prostate cancer. Eur Urol Focus 2017; 3 (2-3): 223-239
  • 26 Lecouvet FE, Oprea-Lager DE, Liu Y. , et al. Use of modern imaging methods to facilitate trials of metastasis-directed therapy for oligometastatic disease in prostate cancer: a consensus recommendation from the EORTC Imaging Group. Lancet Oncol 2018; 19 (10) e534-e545
  • 27 Dimopoulos MA, Hillengass J, Usmani S. , et al. Role of magnetic resonance imaging in the management of patients with multiple myeloma: a consensus statement. J Clin Oncol 2015; 33 (06) 657-664
  • 28 Latifoltojar A, Hall-Craggs M, Rabin N. , et al. Whole body magnetic resonance imaging in newly diagnosed multiple myeloma: early changes in lesional signal fat fraction predict disease response. Br J Haematol 2017; 176 (02) 222-233
  • 29 Messiou C, Kaiser M. Whole-body imaging in multiple myeloma. Magn Reson Imaging Clin N Am 2018; 26 (04) 509-525
  • 30 National Institute for Health and Care Excellence. Myeloma: diagnosis and management, guidance and guidelines. Available at: https://www.nice.org.uk/guidance/ng35 . Accessed October 30, 2018
  • 31 Mayerhoefer ME, Karanikas G, Kletter K. , et al. Evaluation of diffusion-weighted MRI for pretherapeutic assessment and staging of lymphoma: results of a prospective study in 140 patients. Clin Cancer Res 2014; 20 (11) 2984-2993
  • 32 Littooij AS, Kwee TC, Barber I. , et al. Whole-body MRI for initial staging of paediatric lymphoma: prospective comparison to an FDG-PET/CT-based reference standard. Eur Radiol 2014; 24 (05) 1153-1165
  • 33 Goo HW, Choi SH, Ghim T, Moon HN, Seo JJ. Whole-body MRI of paediatric malignant tumours: comparison with conventional oncological imaging methods. Pediatr Radiol 2005; 35 (08) 766-773
  • 34 Axelsen MB, Eshed I, Østergaard M. , et al. Monitoring total-body inflammation and damage in joints and entheses: the first follow-up study of whole-body magnetic resonance imaging in rheumatoid arthritis. Scand J Rheumatol 2017; 46 (04) 253-262
  • 35 Barakat E, Kirchgesner T, Triqueneaux P, Galant C, Stoenoiu M, Lecouvet FE. Whole-body magnetic resonance imaging in rheumatic and systemic diseases: from emerging to validated indications. Magn Reson Imaging Clin N Am 2018; 26 (04) 581-597
  • 36 Sepriano A, Rubio R, Ramiro S, Landewé R, van der Heijde D. Performance of the ASAS classification criteria for axial and peripheral spondyloarthritis: a systematic literature review and meta-analysis. Ann Rheum Dis 2017; 76 (05) 886-890
  • 37 Gaspersic N, Sersa I, Jevtic V, Tomsic M, Praprotnik S. Monitoring ankylosing spondylitis therapy by dynamic contrast-enhanced and diffusion-weighted magnetic resonance imaging. Skeletal Radiol 2008; 37 (02) 123-131
  • 38 Krohn M, Braum LS, Sieper J. , et al. Erosions and fatty lesions of sacroiliac joints in patients with axial spondyloarthritis: evaluation of different MRI techniques and two scoring methods. J Rheumatol 2014; 41 (03) 473-480
  • 39 Lecouvet FE, Vander Maren N, Collette L. , et al. Whole body MRI in spondyloarthritis (SpA): preliminary results suggest that DWI outperforms STIR for lesion detection. Eur Radiol 2018; 28 (10) 4163-4173
  • 40 Day J, Patel S, Limaye V. The role of magnetic resonance imaging techniques in evaluation and management of the idiopathic inflammatory myopathies. Semin Arthritis Rheum 2017; 46 (05) 642-649
  • 41 Ozsarlak O, Parizel PM, De Schepper AM, De Jonghe P, Martin JJ. Whole-body MR screening of muscles in the evaluation of neuromuscular diseases. Eur Radiol 2004; 14 (08) 1489-1493
  • 42 Tomas X, Milisenda JC, Garcia-Diez AI. , et al. Whole-body MRI and pathological findings in adult patients with myopathies. Skeletal Radiol 2018 ; October 30 (Epub ahead of print)
  • 43 Burakiewicz J, Sinclair CDJ, Fischer D, Walter GA, Kan HE, Hollingsworth KG. Quantifying fat replacement of muscle by quantitative MRI in muscular dystrophy. J Neurol 2017; 264 (10) 2053-2067
  • 44 Schanz S, Henes J, Ulmer A. , et al. Magnetic resonance imaging findings in patients with systemic scleroderma and musculoskeletal symptoms. Eur Radiol 2013; 23 (01) 212-221
  • 45 Green RA, Saifuddin A. Whole spine MRI in the assessment of acute vertebral body trauma. Skeletal Radiol 2004; 33 (03) 129-135
  • 46 Vilanova JC, Barceló J, Smirniotopoulos JG. , et al. Hemangioma from head to toe: MR imaging with pathologic correlation. Radiographics 2004; 24 (02) 367-385
  • 47 Brennan DD, Whelan PF, Robinson K. , et al. Rapid automated measurement of body fat distribution from whole-body MRI. AJR Am J Roentgenol 2005; 185 (02) 418-423
  • 48 Patriquin L, Kassarjian A, Barish M. , et al. Postmortem whole-body magnetic resonance imaging as an adjunct to autopsy: preliminary clinical experience. J Magn Reson Imaging 2001; 13 (02) 277-287
  • 49 Griffiths PD, Paley MNJ, Whitby EH. Post-mortem MRI as an adjunct to fetal or neonatal autopsy. Lancet 2005; 365 (9466): 1271-1273