Thromb Haemost 1994; 72(04): 492-502
DOI: 10.1055/s-0038-1648902
Review Article
Schattauer GmbH Stuttgart

Inherited Diseases of Platelet Glycoproteins: Considerations for Rapid Molecular Characterization

Paul F Bray
The Division of Hematology, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, MD, USA
› Author Affiliations
Further Information

Publication History

Received: 06 April 1994

Accepted after revision03 June 1994

Publication Date:
06 July 2018 (online)

Summary

The characterization of inherited diseases of platelets has provided valuable information about platelet physiology and platelet protein function. Genetic studies on patients with Glanzmann thrombasthenia, the Bemard-Soulier syndrome, and platelet-type von Willebrand disease have been confined to abnormalities of the GPIIb-IIIa and GPIb-IX receptor complexes. The primary molecular technique used in these analyses has been the polymerase chain reaction (PCR). The amplified PCR products are either directly sequenced, or used to screen for abnormal regions of the genes which are then sequenced. This review examines the known mutations in GPIIb-IIIa and GPIb-IX, focusing on those genetic issues which should dictate decisions regarding the approach to identifying molecular defects. The techniques for characterizing mutant alleles in Glanzmann thrombasthenia and Bernard-Soulier syndrome are described and a general strategy is offered. Because mutations resulting in reduced levels of transcripts can be missed when screening RNA, an argument is made for using genomic DNA as the primary material for mutation detection.

 
  • References

  • 1 Shattil SJ, Bennett JS. Platelets and their membranes in hemostasis: physiology and pathophysiology. Ann Inter Med 1980; 94: 108-118
  • 2 George JN, Nurden AT, Phillips DR. Molecular defects in interactions of platelets with the vessel wall. N Engl J Med 1984; 311: 1084-1098
  • 3 George JN, Nurden AT. Inherited disorders of the platelet membrane: Glanzmann Thrombasthenia, Bemard-Soulier Syndrome and Other Disorders. In: Hemostasis and Thrombosis. Basic Principles and Clinical Practice. Coleman RW, Hirsh J, Marder VJ, Salzman EW, eds. J. B. Lippincott Company, Philadelphia, PA 1994: 652-672
  • 4 Nieuwenhuis HK, Akkerman J-WN, Sixma JJ. Patients with a prolonged bleeding time and normal aggregation tests may have storage pool deficiency: studies on one hundred six patients. Blood 1987; 70: 620-623
  • 5 Poncz M, Eisman R, Heidenreich R, Silver SM, Vilaire G, Surrey S, Schwartz E, Bennett JS. Structure of the platelet membrane glycoprotein lib. J Biol Chem 1987; 262: 8476-8482
  • 6 Bray PF, Rosa J-P, Johnston GI, Shiu DT, Cook RG, Lau C, Kan YW, McEver RP, Shuman MA. Platelet glycoprotein lib: chromosomal location and tissue expression. J Clin Invest 1987; 80: 1812-1817
  • 7 Fitzgerald LA, Steiner B, Rail Jr SC, Lo S-S, Phillips DR. Protein sequence of endothelial glycoprotein Ilia derived from a cDNA clone. J Biol Chem 1987; 262: 3936-3939
  • 8 Rosa J-P, Bray PF, Gayet O, Johnston GI, Cook RG, Jackson KW, Shuman MA, McEver RP. Cloning of glycoprotein Ilia cDNA from human erythroleukemia cells and localization of the gene to chromosome 17. Blood 1988; 72: 593-600
  • 9 Lopez JA, Chung DW, Fujikawa K, Hagen FS, Papayannopoulou T, Roth GJ. Cloning of the a chain of human platelet glycoprotein lb: a transmembrane protein with homology to leucine-rich a2-glycoprotein. Proc Natl Acad Sci USA 1987; 84: 5615-5619
  • 10 Lopez JA, Chung DW, Fujikawa K, Hagen FS, Davie EW, Roth GJ. The a and (3 chains of human platelet glycoprotein lb are both transmembrane proteins containing a leucine-rich amino acid sequence. Proc Natl Acad Sci USA 1988; 85: 2135-2139
  • 11 Hickey MJ, Deaven LL, Roth GJ. Human platelet glycoprotein IX: charac-terizaton of “full-length” cDNA and localizaton to chromosome 3. FEBS Lett 1990; 274: 189-192
  • 12 Hickey MJ, Hagen FS, Yagi M, Roth GJ. Human platelet glycoprotein V: characterization of the polypeptide and the related Ib-V-IX receptor system of adhesive, leucine-rich glycoproteins. Proc Natl Acad Sci USA 1993; 90: 8327-8331
  • 13 Heidenreich R, Eisman R, Surrey S, Delgrosso K, Bennett JS, Schwartz E, Poncz M. Organization of the gene for platelet glycoprotein lib. Biochemistry 1990; 29: 1232-1244
  • 14 Zimrin AB, Gidwitz S, Lord S, Schwartz E, Bennett JS, White III GC, Poncz M. The genomic organization of platelet glycoprotein Ilia. J Biol Chem 1990; 265: 8590-8595
  • 15 Villa-Garcia M, Li L, Riely G, Bray PF. Isolation and characterization of a TATA-less promoter for the human (33 integrin gene. Blood 1994; 83: 668-676
  • 16 Wenger RH, Wicki AN, Kieffer N, Adolph S, Hameister H, Clemetson KJ. The 5 flanking region and chromosomal localization of the gene encoding human platelet glycoprotein Iba. Gene 1989; 85: 517-524
  • 17 Hickey MJ, Roth GJ. Characterization of the gene encoding human platelet glycoprotein IX. J Biol Chem 1993; 268: 3438-3443
  • 18 Lanza F, Moraes M, de La Salle C, Cazenave J-P, Clementson KJ, Shimo-mura T, Phillips DR. Cloning and characterization of the gene encoding the human platelet glycoprotein V. A member of the leucine-rich glycoprotein family cleaved during thrombin-induced platelet activation. J Biol Chem 1993; 268: 20801-20807
  • 19 Nurden AT, Caen JP. An abnormal platelet glycoprotein pattern in three cases of Glanzmann’s thrombasthenia. Br J Haemat 1974; 28: 253-260
  • 20 Phillips DR, Charo IF, Parise LV, Fitzgerald LA. The platelet membrane glycoprotein Ilb-IIIa complex. Blood 1988; 71: 831-843
  • 21 Hynes RO. Integrins: modulation, and signaling in cell adhesion. Cell 1992; 69: 11-25
  • 22 Nurden AT, Dupuis D, Kunicki TJ, Caen JP. Analysis of the glycoprotein and protein composition of Bemard-Soulier platelets by single and twodimensional sodium dodecyl sulfate-polyacrylamide gel electrophoresis. J Clin Invest 1981; 67: 1431-1440
  • 23 Weiss HJ, Tschopp TB, Baumgartner HR, Sussman II, Johnson MM, Eagan JJ. Decreased adhesion of giant (Bernard-Soulier) platelets to subendothelium. Am J Med 1974; 57: 920-925
  • 24 Wicki AN, Clemetson KJ. Structure and function of platelet membrane glycoproteins lb and V. Effects of leukocyte elastase and other proteases on platelets response to von Willebrand factor and thrombin. Eur J Biochem 1985; 153: 1-11
  • 25 Lopez JA. The platelet glycoprotein Ib-IX complex. Blood Coag Fibrinolysis 1994; 5: 97-119
  • 26 Roth GJ. Developing relationships: arterial platelet adhesion glycoprotein lb, and leucine-rich glycoproteins. Blood 1991; 77: 5-19
  • 27 White RA, Peters LL, Adkinson LR, Korsgren C, Cohen CM, Lux SE. The murine pallid mutation is a platelet storage pool disease associated with the protein 4.2 (pallid) gene. Nature Genetics 1992; 2: 80-83
  • 28 Lopez JA, Ludwig EH, McCarthy BJ. Polymorphism of human glycoprotein Iba results from a variable number of tandem repeats of a 13-amino acid sequence in the mucin-like macroglycopeptide region. J Biol Chem 1992; 267: 10055-10061
  • 29 George JN, Caen JP, Nurden AT. Glanzmann’s thrombasthenia: The spectrum of clinical disease. Blood 1990; 75: 1383-1395
  • 30 Rao AK. Congenital disorders of platelet function. Hematol Oncol Clin North Amer 1990; 4: 65-86
  • 31 Bray PF, Shuman MA. Identification of an abnormal gene for the GPIIIa subunit of the platelet fibrinogen receptor resulting in Glanzmann’s thrombasthenia. Blood 1990; 75: 881-888
  • 32 Li L, Bray PF. Homologous recombination among 3 intragene Alu sequences causes an inversion-deletion resulting in the hereditary bleeding disorder Glanzmann thrombasthenia. Am J Hum Genet 1993; 53: 140-149
  • 33 Burk CD, Newman PJ, Lyman S, Gill J, Coller BS, Poncz M. A deletion in the gene for glycoprotein lib associated with Glanzmann’s thrombasthenia. J Clin Invest 1991; 87: 270-276
  • 34 Newman PJ, Seligsohn U, Lyman S, Coller BS. The molecular genetic basis of Glanzmann thrombasthenia in the Iraqi-Jewish and Arab populations in Israel. Proc Natl Acad Sci 1991; 88: 3160-3164
  • 35 Simsek S, Heyboer H, de Bruihne LG, Goldschmeding R, Cuijpers HTM, von dem Borne AEG. Glanzmann’s thrombasthenia caused by homozygosity for a splice defect that leads to deletion of the first coding exon of the glycoprotein Ilia mRNA. Blood 1993; 81: 2044-2049
  • 36 Loftus JC, O’Toole TE, Plow EF, Glass A, Frelinger AL, Ginsberg MH. A (33 integrin mutation absolishes ligand binding and alters divalent cation-dependent conformation. Science 1990; 249: 915-918
  • 37 Bajt ML, Ginsberg MH, Frelinger III AL, Berndt MC, Loftus JC. A spontaneous mutation of integrin αIIbβ3 (platelet glycoprotein IIb-IIIa) helps define a ligand binding site. J Biol Chem 1992; 267: 3789-3794
  • 38 Lanza F, Stierle A, Fournier D, Morales M, Andre G, Nurden AT, Cazenave J-P. A new variant of Glanzmann’s thrombasthenia (Strasbourg I). Platelets with functionally defective glycoprotein IIb-IIIa complexes and a glycoprotein III 214Arg→214Trp mutation. J Clin Invest 1992; 89: 1995-2004
  • 39 Chen Y-P, Djaffar I, Pidard D, Steiner B, Cieutat A-M, Caen JP, Rosa J-P. Ser752→Pro mutation in the cytoplasmic domain of integrin p3 subunit and defective activation of platelet integrin αIIbβ3 (glycoprotein IIb-IIIa) in a variant of Glanzmann thrombasthenia. Proc Natl Acad Sci USA 1992; 89: 10169-10173
  • 40 Jin Y, Dietz H, Nurden AT, Bray PF. SSCP is a rapid and effective method for the identification of mutations and polymorphisms in the gene for GPIIIa. Blood 1993; 82: 2281-2289
  • 41 Jin Y, Dietz HC, Bray PF. A mutation in the GPIIIa gene results in an mRNA splicing abnormality and suggests maintenance of reading frame is a deliberate process. Blood 1993; 82: 210a
  • 42 Chen F, Coller BS, French DL. Homozygous mutation of platelet glycoprotein IIia (p3) Cys374→Tyr in a Chinese patient with Glanzmann thrombasthenia. Blood 1993; 82: 163a
  • 43 Kato A, Yamamoto K, Miyazaki S, Jung SM, Mori M, Aoki N. Molecular basis for Glanzmann’s thrombasthenia (GT) in a compound heterozygote with the GPIIb gene: a proposal for the classification of GT based on the biosynthetic pathway of glycoprotein Ilb-IIIa complex. Blood 1992; 79: 3212-3218
  • 44 Iwamoto S, Nishiumi E, Kajii E, Ikemoto S. An exon 28 mutation resulting in alternative splicing of the glycoprotein lib transcript and Glanzmann’s thrombasthenia. Blood 1994; 83: 1017-1023
  • 45 Poncz M, Rifat S, Coller BS, Newman PJ, Shattil SJ, Parrella T, Fortina P, Bennett JS. Glanzmann thrombasthenia secondary to a Gly273→Asp mutation adjacent to the first calcium-binding domain of platelet glycoprotein lib. J Clin Invest 1944; 93: 172-179
  • 46 Wilcox DA, Wautier JL, Pidard D, Newman PJ. A single amino acid substitution flanking the fourth calcium binding domain of aIIb prevents maturation of the aIIbP3 integrin complex. J Biol Chem 1994; 269: 4450-4457
  • 47 Wilcox DA, Gill J, Newman PJ. Glanzmann thrombasthenia resulting from a single amino acid substitution flanking the fibrinogen y-chain dodeca-peptide binding domain on GPIIb. Blood 1993; 82: 210a
  • 48 Russel ME, Seligsohn U, Coller BS, Ginsberg MH, Skoglund P, Querter-mous T. Structural integrity of the glycoprotein lib and Ilia genes in Glanzmann thrombasthenia patients from Israel. Blood 1988; 72: 1833-1836
  • 49 D’Souza SE, Ginsberg MH, Burke TA, Lam SC-T, Plow EF. Localization of an Arg-Gly-Asp recognition site within an integrin adhesion receptor. Science 1988; 242: 91-93
  • 50 Charo IF, Nannizzi L, Phillips DR, Hsu MA, Scarborough RM. Inhibition of fibrinogen binding to GP Ilb-IIIa by a GP Ilia peptide. J Biol Chem 1991; 266: 1415-1421
  • 51 Lopez J, Leung B, Reynolds CC, Li CQ, Fox JB. Efficient plasma membrane expression of a functional platelet glycoprotein Ib-IX complex requires the presence of its three subunits. J Biol Chem 1992; 267: 12851-12859
  • 52 Ware J, Russell SR, Vicente V, Scharf RE, Tomer A, McMillan R, Rugge-ri ZM. Nonsense mutation in the glycoprotein Iba coding sequence associated with Bemard-Soulier syndrome. Proc Natl Acad Sci USA 1990; 87: 2026-2030
  • 53 Miller JL, Lyle VA, Cunningham D. Mutation of leucine-57 to phenylalanine in a platelet glycoprotein Iba leucine tandem repeat occurring in patients with an autosomal dominant variant of Bernard-Soulier disease. Blood 1992; 79: 439-446
  • 54 Ware J, Russell SR, Marchese P, Murata M, Mazzucato M, DeMarco L, Ruggeri ZM. Point mutation in a leucine-rich repeat of platelet glycoprotein Iba resulting in the Bemard-Soulier syndrome. J Clin Invest 1993; 92: 1213-1220
  • 55 Wright SD, Michaelides K, Johnson DJ, West NC, Tuddenham EG. Double heterozygosity for mutations in the platelet glycoprotein IX gene in three siblings with Bemard-Soulier syndrome. Blood 1993; 81: 2339-2347
  • 56 Miller JL, Castella A. Platelet-type von Willebrand’s disease: characterization of a new bleeding disorder. Blood 1982; 60: 790-794
  • 57 Miller JL, Cunningham D, Lyle VA, Finch CN. Mutation in the gene encoding the a chain of platelet glycoprotein lb in platelet-type von Willebrand disease. Proc Natl Acad Sci USA 1991; 88: 4761-4765
  • 58 Russell SD, Roth GJ. Pseudo-von Willebrand disease: A mutation in the platelet glycoprotein Iba gene associated with a hyperactive surface receptor. Blood 1993; 81: 1787-1791
  • 59 Randi AM, Rabinowitz I, Mancuso DJ, Mannucci PM, Sadler JE. Molecular basis of von Willebrand disease type IIB: candidate mutations cluster in one disulfide loop between proposed platelet glycoprotein lb binding sequences. J Clin Invest 1991; 87: 1220-1226
  • 60 Nieuwenhuis HK, Akkerman JWN, Houdijk WPM, Sixma JJ. Human blood platelets showing no response to collagen fail to express surface glycoprotein la. Nature 1985; 318: 470-472
  • 61 Kehrel B, Balleisen L, Kokott R, Mesters R, Stenzinger W, Clementson KJ, van de Loo J. Deficiency of intact thrombospondin and membrane glycoprotein la in platelets with defective collagen-induced aggregation and spontaneous loss of disorder. Blood 1988; 71: 1074-1078
  • 62 Yamamoto N, Ikeda H, Tandon NN, Herman J, Tomiyama Y, Mitani T, Sekiguchi S, Lipsky R, Kralisz U, Jamieson GA. A platelet membrane glycoprotein (GP) deficiency in healthy blood donors: Naka platelets lack detectable GPIV (CD36). Blood 1990; 76: 1698-1703
  • 63 Ikeda H, Mitani T, Ohnuma M, Haga H, Ohtzuka S, Kato T, Nakase T, Sekiguchi S. A new platelet-specific antigen, Naka, involved in the refractoriness of HLA-matched platelet transfusion. Vox Sang 1989; 57: 213-217
  • 64 White JG. Structural defects in inherited and giant platelet disorders. Adv Hum Genetics 1990; 19: 133-234
  • 65 Israels SJ, McNicol A, Robertson C, Gerrard JM. Platelet storage pool deficiency: diagnosis in patients with prolonged bleeding times and normal platelet aggregation. Br J Haematol 1990; 75: 118-121
  • 66 Gu J-M, Yu W-F, Wang X-D, Wu Q-Y, Chi C-W, Ruan C-G. Identification of a nonsense mutation at amino acid 584-arginine of platelet glycoprotein lib in patients with type I Glanzmann thrombasthenia. Br J Haematol 1993; 83: 442-449
  • 67 O’Toole TE, Loftus JC, Plow EF, Glass AA, Harper JR, Ginsber MH. Efficient surface expression of platelet GPIIb-IIIa requires both subunits. Blood 1989; 74: 14-18
  • 68 Myers RM, Larin Z, Maniatis T. Detection of single base substitutions by ribonuclease cleavage at mismatches in RNA:DNA duplexes. Science 1985; 230: 1242-1246
  • 69 Cotton RGH, Rodrigues NR, Campbell RD. Reactivity of cytosine and thymine in single-base-pair mismatches with hydroxylamine and osmium tetroxide and its application to the study of mutations. Proc Natl Acad Sci USA 1988; 85: 4397-4401
  • 70 Myers RM, Fischer SG, Lerman LS, Maniatis T. Nearly all single base substitutions in DNA fragments joined to a GC-clamp can be detected by denaturing gradient electrophoresis. Nucl Acids Res 1985; 13: 3131-3145
  • 71 Conner BJ, Reyes AA, Morin C, Itakura K, Teplitz RL, Wallace RB. Detection of sickle cell s-globin allele by hybridization with synthetic oligonucleotides. Proc Natl Acad Sci USA 1983; 80: 278-282
  • 72 Orita M, Iwahana H, Kanazawa H, Hayashi K, Sekiya T. Detection of polymorphisms of human DNA by gel electrophoresis as single-strand conformation polymorphisms. Proc Natl Acad Sci USA 1989; 86: 2766-2770
  • 73 Orita M, Suzuki Y, Sekiya T, Hayashi K. Rapid and sensitive detection of point mutations and DNA polymorphisms using the polymerase chain reaction. Genomics 1989; 5: 874-879
  • 74 Hayashi K. Manipulation of DNA by PCR. In: The Polymerase Chain Reaction Mullis KB, Ferre F, Gibbs RA. eds Birkhauser Boston; Cambridge, MA: 1994: 3-13
  • 75 Djaffar I, Vilette D, Bray PF, Rosa J-P. Quantitative isolation of RNA from human platelets. Thromb Res 1991; 62: 127-135
  • 76 Newman PJ, Gorski J, White II GC, Gidwitz S, Cretney CJ, Aster RH. Enzymatic amplification of platelet-specific messenger RNA using the polymerase chain reaction. J Clin Invest 1988; 82: 739-743
  • 77 Dietz HC, Valle D, Francomano CA, Kendzior RJ, Pyeritz RE, Cutting GR. The skipping of constitutive exons in vivo induced by nonsense mutations. Science 1993; 259: 680-683
  • 78 Peyruchaud O, Nurden AT, Bray P, Bourre F. PCR-SSCP appliquee a la detection de mutations portees par les genes codant pour la GPIIb et la GPIIIa impliquees dans les polymorphismes alloantigeniques et dans la thrombasthenie de Glanzmann. Nouvelle Revue Fraaise d’Hematologie 1994; 36: 25-26
  • 79 Highsmith WE. Carrier screening for cystic fibrosis. Clin Chem 1993; 39: 706-707
  • 80 Prior TW, Papp AC, Snyder PJ, Sedra MS, Western LM, Bartolo C, Moxley RT, Mendell JR. Heteroduplex analysis of the dystrophin gene: application to point mutation and carrier detection. Am J Med Genet 1994; 50: 68-73
  • 81 Nurden AT, Didry D, Kieffer N, McEver RP. Residual amounts of glycoproteins lib and Ilia may be present in the platelets of most patients with Glanzmann’s thrombasthenia. Blood 1985; 65: 1021-1024
  • 82 Coller BS, Cheresh DA, Asch E, Seligsohn U. Platelet vitronectin receptor expression differentiates Iraqi-Jewish from Arab patients with Glanzmann thrombasthenia in Israel. Blood 1991; 77: 75-83
  • 83 Davies J, Warwick J, Totty N, Philp R, Helfrich M, Horton M. The osteoclast functional antigen, implicated in the regulation of bone resorption, is biochemically related to the vitronectin receptor. J Cell Bio 1989; 109: 1817-1826
  • 84 Vanderpuye OA, Labarrere CA, McIntyre JA. A vitronectin-receptor-related molecule in human placental brush border membranes. Biochem J 1991; 280: 9-17
  • 85 Faraday N, Goldschmidt-Clermont P, Dise K, Bray PF. Quantitation of soluble fibrinogen binding to platelets by fluorescence activated flow cytometry. J Lab Clin Med 1994; 123: 728-740
  • 86 Cheng J, Fogel-Petrovic M, Maquat LE. Translation to near the distal end of the penultimate exon is required for normal levels of spliced triosephos-phate isomerase mRNA. Mol Cell Biol 1990; 10: 5215-5225
  • 87 Cheng J, Maquat LE. Nonsense codons can reduce the abundance of nuclear mRNA without affecting the abundance of pre-mRNA or the half-life of cytoplasmic mRNA. Mol Cell Biol 1993; 13: 1892-1902
  • 88 Michaud J, Brody LC, Steel G, Fontaine G, Martin LS, Valle D, Mitchell G. Strand-separating conformation polymorphism analysis: efficacy of detection of point mutations in the ornithine 8-aminotransferase gene. Genomics 1992; 13: 389-394