Nervenheilkunde 2014; 33(11): 797-804
DOI: 10.1055/s-0038-1627748
Mikroglia
Schattauer GmbH

Mikroglia bei Alzheimer-Demenz

Bedeutung für Krankheitsprogression und innovative TherapieansätzeMicroglia in Alzheimer’s dementia
J. Wiltfang
1   Klinik für Psychiatrie und Psychotherapie, Universitätsmedizin Göttingen (UMG)
› Author Affiliations
Further Information

Publication History

eingegangen am: 08 September 2014

angenommen am: 17 September 2014

Publication Date:
24 January 2018 (online)

Zusammenfassung

Die Rolle der Mikroglia innerhalb der Pathophysiologie der Alzheimer-Demenz wurde deutlich unterschätzt. Das wird durch zahlreiche In-vitro- und In-vivo-Befunde belegt. Maßgebliche neue Impulse hat dieses Forschungsfeld besonders von neueren methodischen Entwicklungen, wie der Multiphoton- in-vivo-Bildgebung und Fortschritten in neuronal-mikroglialen Modellen der Cokultur erhalten. Gleichzeitig zeichnet sich ab, dass die Mikroglia eher entscheidend die Dynamik der Krankheitsprogression steuert, als dass sie primär ätiopathogenetische Bedeutung hat. Dabei zeichnet sich zunehmend ab, dass der komplexe Beitrag der Mikroglia eher einer umgekehrten U-Funktion entspricht, wie bereits für Zytokine gut belegt: Unterfunktion mit reduzierter „Clearance” von aggregierten beta-Amyloidpeptiden und verminderter Synthese neurotropher Faktoren könnte vergleichbar schädlich sein wie Überstimulation mit erhöhter Freisetzung pro-inflammatorischer Zytokine, endoplasmatischer Stressfaktoren und reaktiver Sauerstoffradikale. Mit Blick auf potenzielle therapeutische Ansatzpunkte erscheint die pharmakologische Modulation mikroglialer Rezeptoren, wie FcgammaRIIb, Scara-1, CD33, CD36, RAGE, BECLIN- 1 und TREM2, sowie der NLRP-3-abhängigen inflammatorischen Signalkaskade besonders erfolgversprechend. In diesem Zusammenhang zeichnen sich auch attraktive Kombinationstherapien ab, einerseits in der Modulation synergistisch wirkender mikroglialer Rezeptoren, andererseits in der Kombination mit den bisher eher enttäuschenden beta-Amyloid- Immunisierungsstrategien. Im Zusammenhang mit Befunden zur altersabhängig eingeschränkten protektiven Funktion residenter Mikroglia bei AD (microglial senescence) wird auch der Einsatz von Strategien der Knochenmarktransplantation mit Invasion knochenmarkstämmiger Mikrogliazellen (BMDM, bone marrow-derived microglia) in das ZNS diskutiert. Diese Therapieansätze sind zurzeit voraussichtlich therapeutisch weniger gut steuerbar und bei Alzheimerdemenz deutlich weiter von ersten klinischen Studien entfernt.

Summary

The role of microglia in the pathophysiology of Alzheimer’s disease has been significantly underestimated. This is supported by numerous in vitro and in vivo findings. Significant new impulses received this research field especially of newer methodological developments, such as the multi-photon in vivo imaging and advances in neuronal – microglial co-culture models. It is only now becoming apparent that the microglia rather influences the dynamics of disease progression than being of primarily etiopathogenic significance. We begin to understand that the complex contribution of microglia is more like an inverted U – function, as has been well documented for cytokines: Subfunction with reduced clearance of aggregated beta – amyloid peptides and reduced synthesis of neurotrophic factors could be comparable harmful as hyperstimulation with increased release of pro-inflammatory cytokines, endoplasmatic stress factors and reactive oxygen radicals. With regard to potential therapeutic targets currently the pharmacological modulation of microglial receptors, such as Fcgammma RIIb, Scara-1, CD33, CD36, RAGE, Beclin-1, TREM2, and NLR-3 dependent inflammatory signalling cascade appears particularly promising. In this context, also attractive combination therapies are emerging, e.g. the modulation of synergistic microglial receptors, or, in combination with the previously rather disappointing beta – amyloid immunization strategies. Due to new results on age-dependent limited protective function of resident microglia in AD (microglial senescence) the use of strategies for bone marrow transplantation with invasion of bone marrow-derived microglia into the CNS is being discussed. Currently all these therapeutic approaches seem to be not suitable for therapy and therefore not qualified for first clinical trials in Alzheimer’s disease.

 
  • Literatur

  • 1 Bickel H. Stand der Epidemiologie. In: Hallauer J, Kurz A. (Hrsg.). Weißbuch Demenz. Versorgungssituation relevanter Demenzerkrankungen in Deutschland. Stuttgart. Thieme; 2002
  • 2 Alzheimer’s Association Report. Alzheimer’s disease facts and figures Alzheimer’s & Dementia 2014; 10: e47-e92.
  • 3 Mott RT, Hulette CM. Neuropathology of Alzheimer’s disease. Neuroimaging Clin North Am 2005; 15: 755-765.
  • 4 Lyness S. et al. Neuron loss in key cholinergic and aminergic nuclei in Alzheimer disease: a metaanalysis. Neurobiol Aging 2003; 24: 1-23.
  • 5 Rutten BP, Steinbusch H. Current concepts in Alzheimer’s Disease: molecules, models and translational perspectives. Mol Neurodegener 2013; 08: 33.
  • 6 Alzheimer A. Über eine eigenartige Erkankung der Hirnrinde. Allgemeine Zeitschr Psychisch-Gerichtliche Medizin 1907; 64: 146-148.
  • 7 Rubio-Perez JM, Morillas-Ruiz JM. A review: inflammatory process in Alzheimer’s disease, role of cytokines. Scientific World Journal 2012; 756357: 1-15.
  • 8 Derecki N. et al. Microglia as a critical player in both developmental and late-life CNS pathologies. Acta Neuropathol 2014; 128: 333-345.
  • 9 Lawson LJ, Perry VH, Gordon S. Turnover of resident microglia in the normal adult mouse brain. Neuroscience 1992; 48: 405-415.
  • 10 Lawson LJ, Perry VH, Dri P, Gordon S. Heterogeneity in the distribution and morphology of microglia in the normal adult mouse brain. Neuroscience 1990; 39: 151-170.
  • 11 del Rio-Hortega P. Microglia. In: Penfield W. (ed.). Cytology and cellular pathology of the nervous system. New York: Harper; 1932
  • 12 Cartier N. et al. The role of microglia in human disease: therapeutic tool or target?. Acta Neuropathol 2014; 128: 363-380.
  • 13 Davalos D. et al. ATP mediates rapid microglial response to local brain injury in vivo. Nat Neurosci 2005; 08: 752-758.
  • 14 Nimmerjahn A, Kirchhoff F, Helmchen F. Resting microglial cells are highly dynamic surveillants of brain parenchyma in vivo. Science 2005; 308: 1314-1318.
  • 15 Schwartz M, Butovsky O, Bruck W, Hanisch UK. Microglial phenotype: is the commitment reversible?. Trends Neurosci 2006; 09: 68-74.
  • 16 Aloisi F, Ria F, Adorini L. Regulation of T-cell responses by CNS antigen-presenting cells: different roles for microglia and astrocytes. Immunol Today 2000; 21: 141-147.
  • 17 Butovsky O. et al. Glatiramer acetate fights against Alzheimer’s disease by inducing dendritic-like microglia expressing insulin-like growth factor 1. Proc Natl Acad Sci USA 2006; 103: 11784-11789.
  • 18 Gowing G. et al. Ablation of proliferating microglia does not affect motor neuron degeneration in amyotrophic lateral sclerosis caused by mutant superoxide dismutase. J Neurosci Off J Soc Neurosci 2008; 28: 10234-10244.
  • 19 Kreutzberg GW. Microglia: a sensor for pathological events in the CNS. Trends Neurosci 1996; 19: 312-318.
  • 20 Hanisch UK, Kettenmann H. Microglia: active sensor and versatile effector cells in the normal and pathologic brain. Nat Neurosci 2007; 10: 1387-1394.
  • 21 Ravichandran KS. Find-me and eat-me signals in apoptotic cell clearance: progress and conundrums. J Exp Med 2010; 207: 1807-1817.
  • 22 Schafer DP. et al. Microglia sculpt postnatal neural circuits in an activity and complement-dependent manner. Neuron 2012; 74: 691-705.
  • 23 Tremblay ME, Lowery RL, Majewska AK. Microglial interactions with synapses are modulated by visual experience. PLoS Biol 2010; 08: e1000527.
  • 24 Cardona AE. et al. Control of microglial neurotoxicity by the fractalkine receptor. Nat Neurosci 2006; 09: 917-924.
  • 25 Hoek RM. et al. Down-regulation of the macrophage lineage through interaction with OX2 (CD200). Science 2000; 290: 1768-1771.
  • 26 Cardona AE. et al. Control of microglial neurotoxicity by the fractalkine receptor. Nat Neurosci 2006; 09: 917-924.
  • 27 Lee S. et al. CX3CR1 deficiency alters microglial activation and reduces beta-amyloid deposition in two Alzheimer’s disease mouse models. Am J Pathol 2010; 177: 2549-2562.
  • 28 Brionne TC, Tesseur I, Masliah E, Wyss-Coray T. Loss of TGF-beta 1 leads to increased neuronal cell death and microgliosis in mouse brain. Neuron 2003; 40: 1133-1145.
  • 29 Butovsky O. et al. Identification of a unique TGFbeta-dependent molecular and functional signature in microglia. Nat Neurosci 2014; 17: 131-143.
  • 30 Chiu IM. et al. A neurodegeneration-specific geneexpression signature of acutely isolated microglia from an amyotrophic lateral sclerosis mouse model. Cell Rep 2013; 04: 385-401.
  • 31 Ginhoux F. et al. Fate mapping analysis reveals that adult microglia derive from primitive macrophages. Science 2010; 330: 841-845.
  • 32 Itagaki S. et al. Relationship of microglia and astrocytes to amyloid deposits of Alzheimer disease. J Neuroimmunol 1989; 24: 173-182.
  • 33 McGeer PL. et al. Reactive microglia in patients with senile dementia of the Alzheimer type are positive for the histocompatibility glycoprotein HLA-DR. Neurosci Lett 1987; 79: 195-200.
  • 34 Busche MA. et al. Clusters of hyperactive neurons near amyloid plaques in a mouse model of Alzheimer’s disease. Science 2008; 321: 1686-1689.
  • 35 Kuchibhotla KV. et al. Abeta plaques lead to aberrant regulation of calcium homeostasis in vivo resulting in structural and functional disruption of neuronal networks. Neuron 2008; 59: 214-225.
  • 36 Meyer-Luehmann M. et al. A reporter of local dendritic translocation shows plaque- related loss of neural system function in APP-transgenic mice. J Neurosci 2009; 29: 12636-12640.
  • 37 Meyer-Luehmann M. et al. Rapid appearance and local toxicity of amyloid-beta plaques in a mouse model of Alzheimer’s disease. Nature 2008; 451: 720-724.
  • 38 Spires TL. et al. Dendritic spine abnormalities in amyloid precursor protein transgenic mice demonstrated by gene transfer and intravital multiphoton microscopy. J Neurosci 2005; 25: 7278-7287.
  • 39 Rogers J. et al. Complement activation by betaamyloid in Alzheimer disease. Proc Natl Acad Sci USA 1992; 89: 10016-10020.
  • 40 El Khoury J. et al. Scavenger receptor-mediated adhesion of microglia to beta-amyloid fibrils. Nature 1996; 382: 716-719.
  • 41 Yan SD. et al. RAGE and amyloid-beta peptide neurotoxicity in Alzheimer’s disease. Nature 1996; 382: 685-691.
  • 42 El Khoury JB. et al. CD36 mediates the innate host response to beta-amyloid. J Exp Med 2003; 197: 1657-1666.
  • 43 Frenkel D. et al. Scara1 deficiency impairs clearance of soluble amyloid-beta by mononuclear phagocytes and accelerates Alzheimer’s-like disease progression. Nat Commun 2013; 04: 2030.
  • 44 Giulian D. et al. Specific domains of beta-amyloid from Alzheimer plaque elicit neuron killing in human microglia. J Neurosci Off J Soc Neurosci 1996; 16: 6021-6037.
  • 45 Shaftel SS. et al. Sustained hippocampal IL-1 beta overexpression mediates chronic neuroinflammation and ameliorates Alzheimer plaque pathology. J Clin Investig 2007; 117: 1595-1604.
  • 46 Jonsson T. et al. Variant of TREM2 associated with the risk of Alzheimer’s disease. N Engl J Med 2013; 368: 107-116.
  • 47 Neumann H, Takahashi K. Essential role of the microglial triggering receptor expressed on myeloid cells-2 (TREM2) for central nervous tissue immune homeostasis. J Neuroimmunol 2007; 184: 92-99.
  • 48 Takahashi K, Rochford CD, Neumann H. Clearance of apoptotic neurons without inflammation by microglial triggering receptor expressed on myeloid cells-2. J Exp Med 2005; 201: 647-657.
  • 49 Hickman SE, Khoury El. TREM2 and the neuroimmunology of Alzheimer’s disease. Biochem Pharmacol 2014; 88: 495-498.
  • 50 Bertram L. et al. Genome-wide association analysis reveals putative Alzheimer’s disease susceptibility loci in addition to APOE. Am J Hum Genet 2008; 83: 623-632.
  • 51 Hollingworth P. et al. Common variants at ABCA7, MS4A6A/MS4A4E, EPHA1, CD33 and CD2AP are associated with Alzheimer’s disease. Nat Genet 2011; 43: 429-435.
  • 52 Jonsson T. et al. Variant of TREM2 associated with the risk of Alzheimer’s disease. N Engl J Med 2013; 368: 107-116.
  • 53 Crocker PR, Paulson JC, Varki A. Siglecs and their roles in the immune system. Nat Rev Immunol 2007; 07: 255-266.
  • 54 Bradshaw EM. et al. CD33 Alzheimer’s disease locus: altered monocyte function and amyloid biology. Nat Neurosci 2013; 16: 848-850.
  • 55 Griciuc A. et al. Alzheimer’s disease risk gene CD33 inhibits microglial uptake of amyloid beta. Neuron 2013; 78: 631-643.
  • 56 Zhang B. et al. Integrated systems approach identifies genetic nodes and networks in late-onset Alzheimer’s disease. Cell 2013; 153: 707-720.
  • 57 Parkhurst CN. et al. Microglia promote learningdependent synapse formation through brain-derived neurotrophic factor. Cell 2013; 155: 1596-1609.
  • 58 Marosi K, Mattson MP. BDNF mediates adaptive brain and body responses to energetic challenges. Trends Endocrinol Metab 2014; 25: 89-98.
  • 59 Riederer P. et al. Diabetes type II: a risk factor for depression-Parkinson-Alzheimer?. Neurotox Res 2011; 19: 253-265.
  • 60 McGeer PL. et al. Reactive microglia in patients with senile dementia of the Alzheimer type are positive for the histocompatibility glycoprotein HLA-DR. Neurosci Lett 1987; 79: 195-200.
  • 61 Prokop S, Miller KR, Heppner FL. Microglia actions in Alzheimer’s disease. Acta Neuropathol 2013; 126: 461-477.
  • 62 Okun E, Mattson MP, Arumugam TV. Involvement of Fc receptors in disorders of the central nervous system. Neuromolecular Med 2010; 12: 164-178.
  • 63 Peress NS. et al. Identification of Fc gamma RI, II and III on normal human brain ramified microglia and on microglia in senile plaques in Alzheimer’s disease. J Neuroimmunol 1993; 48: 71-79.
  • 64 Kam TI. et al. FcgammaRIIb mediates amyloidbeta neurotoxicity and memory impairment in Alzheimer’s disease. J Clin Invest 2013; 123: 2791-2802.
  • 65 Bacskai BJ. et al. Non-Fc-mediated mechanisms are involved in clearance of amyloid-beta in vivo by immunotherapy. J Neurosci 2002; 22: 7873-7878.
  • 66 Bard F. et al. Peripherally administered antibodies against amyloid beta-peptide enter the central nervous system and reduce pathology in a mouse model of Alzheimer disease. Nat Med 2000; 06: 916-919.
  • 67 Morkuniene R. et al. Antibodies bound to Abeta oligomers potentiate the neurotoxicity of Abeta by activating microglia. J Neurochem 2013; 126: 604-615.
  • 68 Bornemann KD. et al. Abeta-induced inflammatory processes in microglia cells of APP23 transgenic mice. Am J Pathol 2001; 158: 63-73.
  • 69 Chung H. et al. Uptake of fibrillar beta-amyloid by microglia isolated from MSR-A (type I and type II) knockout mice. Neuroreport 2001; 12: 1151-1154.
  • 70 El Khoury J. et al. Scavenger receptor-mediated adhesion of microglia to beta-amyloid fibrils. Nature 1996; 382: 716-719.
  • 71 Frenkel D. et al. Scara1 deficiency impairs clearance of soluble amyloid-beta by mononuclear phagocytes and accelerates Alzheimer’s-like disease progression. Nat Commun 2013; 04: 2030.
  • 72 Husemann J, Silverstein SC. Expression of scavenger receptor class B, type I, by astrocytes and vascular smooth muscle cells in normal adult mouse and human brain and in Alzheimer’s disease brain. Am J Pathol 2001; 158: 825-832.
  • 73 Coraci IS. et al. CD36, a class B scavenger receptor, is expressed on microglia in Alzheimer’s disease brains and can mediate production of reactive oxygen species in response to beta-amyloid fibrils. Am J Pathol 2002; 160: 101-112.
  • 74 El Khoury JB. et al. CD36 mediates the innate host response to beta-amyloid. J Exp Med 2003; 197: 1657-1666.
  • 75 Yamanaka M. et al. PPARgamma/RXRalpha-induced and CD36-mediated microglial amyloidbeta phagocytosis results in cognitive improvement in amyloid precursor protein/presenilin 1 mice. J Neurosci 2012; 32: 17321-17331.
  • 76 Stewart CR. et al. CD36 ligands promote sterile inflammation through assembly of a Toll-like receptor 4 and 6 heterodimer. Nat Immunol 2010; 11: 155-161.
  • 77 Yan SD. et al. RAGE and amyloid-beta peptide neurotoxicity in Alzheimer’s disease. Nature 1996; 382: 685-691.
  • 78 Origlia N. et al. Microglial receptor for advanced glycation end product-dependent signal pathway drives beta-amyloid-induced synaptic depression and long-term depression impairment in entorhinal cortex. J Neurosci 2010; 30: 11414-11425.
  • 79 Lue LF, Yan SD, Stern DM, Walker DG. Preventing activation of receptor for advanced glycation endproducts in Alzheimer’s disease. Curr Drug Targets CNS Neurol Disord 2005; 04: 249-266.
  • 80 Galasko D. et al. Clinical trial of an inhibitor of RAGE-Abeta interactions in Alzheimer disease. Neurology 2014; 82: 1536-1542.
  • 81 Sabbagh MN. et al. PF-04494700, an oral inhibitor of receptor for advanced glycation end products (RAGE), in Alzheimer disease. Alzheimer Dis Assoc Disord 2011; 25: 206-212.
  • 82 Pickford F. et al. The autophagy-related protein beclin 1 shows reduced expression in early Alzheimer disease and regulates amyloid beta accumulation in mice. J Clin Invest 2008; 118: 2190-2199.
  • 83 Jaeger PA. et al. Regulation of amyloid precursor protein processing by the Beclin 1 complex. PLoS 2010; PLoS ONE 2010; 05: e11102.
  • 84 Brawek B. et al. Impairment of in vivo calcium signaling in amyloid plaque-associated microglia. Acta Neuropathol 2014; 127: 495-505.
  • 85 Miller KR, Streit WJ. The effects of aging, injury and disease on microglial function: a case for cellular senescence. Neuron Glia Biol 2007; 03: 245-253.
  • 86 Tremblay ME. et al. Effects of aging and sensory loss on glial cells in mouse visual and auditory cortices. Glia 2012; 60: 541-558.
  • 87 Wong WT. Microglial aging in the healthy CNS: phenotypes, drivers, and rejuvenation. Front Cell Neurosci 2013; 07: 22.
  • 88 Hefendehl JK. et al. Homeostatic and injury-induced microglia behavior in the aging brain. Aging Cell 2014; 13: 60-69.
  • 89 Hickman SE, Allison EK, El Khoury J. Microglial dysfunction and defective beta-amyloid clearance pathways in aging Alzheimer’s disease mice. J Neurosci Off J Soc Neurosci 2008; 28: 8354-8360.
  • 90 Njie EG. et al. Ex vivo cultures of microglia from young and aged rodent brain reveal age-related changes in microglial function. Neurobiol Aging 2012; 33: 195.e1-195.12.
  • 91 Yamamoto M. et al. Interferon-gamma and tumor necrosis factor-alpha regulate amyloid-beta plaque deposition and beta-secretase expression in Swedish mutant APP transgenic mice. Am J Pathol 2007; 170: 680-692.
  • 92 Webb R. et al. Variants within MECP2, a key transcription regulator, are associated with increased susceptibility to lupus and differential gene expression in patients with systemic lupus erythematosus. Arthritis Rheum 2009; 60: 1076-1084.
  • 93 Fuhrmann M. et al. Microglial Cx3cr1 knockout prevents neuron loss in a mouse model of Alzheimer’s disease. Nat Neurosci 2010; 13: 411-413.
  • 94 Liu Z. et al. CX3CR1 in microglia regulates brain amyloid deposition through selective protofibrillar amyloid-beta phagocytosis. J Neurosci 2010; 30: 17091-17101.
  • 95 Cho SH. et al. CX3CR1 protein signaling modulates microglial activation and protects against plaqueindependent cognitive deficits in a mouse model of Alzheimer disease. J Biol Chem 2011; 286: 32713-32722.
  • 96 Halle A. et al. The NALP3 inflammasome is involved in the innate immune response to amyloidbeta. Nat Immunol 2008; 09: 857-865.
  • 97 Sheedy FJ. et al. CD36 coordinates NLRP3 inflammasome activation by facilitating intracellular nucleation of soluble ligands into particulate ligands in sterile inflammation. Nat Immunol 2013; 14: 812-820.
  • 98 Heneka MT. et al. NLRP3 is activated in Alzheimer’s disease and contributes to pathology in APP/PS1 mice. Nature 2013; 493: 674-678.
  • 99 Butovsky O. Induction and blockage of oligodendrogenesis by differently activated microglia in an animal model of multiple sclerosis. J Clin Invest 2006; 116: 905-915.
  • 100 Mildner A. et al. Microglia in the adult brain arise from Ly-6ChiCCR2 = monocytes only under defined host conditions. Nat Neurosci 2007; 10: 1544-1553.
  • 101 Priller J. et al. Targeting gene-modified hematopoietic cells to the central nervous system: use of green fluorescent protein uncovers microglial engraftment. Nat Med 2001; 07: 1356-1361.
  • 102 Hoogerbrugge PM. et al. Donor-derived cells in the central nervous system of twitcher mice after bone marrow transplantation. Science 2008; 239: 1035-1038.
  • 103 Krivit W, Peters C, Shapiro EG. Bone marrow transplantation as effective treatment of central nervous system disease in globoid cell leukodystrophy, metachromatic leukodystrophy, adrenoleukodystrophy, mannosidosis, fucosidosis, aspartylglucosaminuria, Hurler, Maroteaux-Lamy, and Sly syndromes, and Gaucher disease type III. Curr Opin Neurol 1999; 12: 167-176.
  • 104 Ajami B. et al. Local self-renewal can sustain CNS microglia maintenance and function throughout adult life. Nat Neurosci 2007; 10: 1538-1543.
  • 105 Ginhoux F. et al. Fate mapping analysis reveals that adult microglia derive from primitive macrophages. Science 2010; 330: 841-845.
  • 106 Mildner A. et al. Microglia in the adult brain arise from Ly-6ChiCCR2= monocytes only under defined host conditions. Nat Neurosci 2007; 10: 1544-1553.
  • 107 Proia RL, Wu YP. Blood to brain to the rescue. J Clin Invest 2003; 113: 1108-1110.
  • 108 Simard AR, Rivest S. Bone marrow stem cells have the ability to populate the entire central nervous system into fully differentiated parenchymal microglia. FASEB J 2004; 18: 998-1000.
  • 109 Flugel A. et al. Transformation of donor-derived bone marrow precursors into host microglia during autoimmune CNS inflammation and during the retrograde response to axotomy. J Neurosci Res 2001; 66: 74-82.
  • 110 Simard AR, Rivest S. Neuroprotective properties of the innate immune system and bone marrow stem cells in Alzheimer’s disease. Mol Psychiatry 2006; 11: 327-335.
  • 111 Beers DR. et al. Wild-type microglia extend survival in PU.1 knockout mice with familial amyotrophic lateral sclerosis. Proc Natl Acad Sci USA 2006; 103: 16021-16026.
  • 112 Kang J, Rivest S. MyD88-deficient bone marrow cells accelerate onset and reduce survival in a mouse model of amyotrophic lateral sclerosis. J Cell Biol 2007; 179: 1219-1230.
  • 113 Lewis CAB. et al. Myelosuppressive conditioning using busulfan enables bone marrow cell accumulation in the spinal cord of a mouse model of amyotrophic lateral sclerosis. PLoS ONE 2013; 08: e60661.
  • 114 Solomon JN. et al. Origin and distribution of bone marrow-derived cells in the central nervous system in a mouse model of amyotrophic lateral sclerosis. Glia 2006; 53: 744-753.
  • 115 Rodriguez M. et al. Bone-marrow-derived cell differentiation into microglia: a study in a progressive mouse model of Parkinson’s disease. Neurobiol Dis 2007; 28: 316-325.
  • 116 Peters C, Steward CG. Hematopoietic cell transplantation for inherited metabolic diseases: an overview of outcomes and practice guidelines. Bone Marrow Transpl 2003; 31: 229-239.
  • 117 Sano R. et al. Chemokine-induced recruitment of genetically modified bone marrow cells into the CNS of GM1-gangliosidosis mice corrects neuronal pathology. Blood 2005; 106: 2259-2268.
  • 118 Wirenfeldt M. et al. Population control of resident and immigrant microglia by mitosis and apoptosis. Am J Pathol 2007; 171: 617-631.
  • 119 Simard AR. et al. Bone marrow-derived microglia play a critical role in restricting senile plaque formation in Alzheimer’s disease. Neuron 2006; 49: 489-502.