Nervenheilkunde 2014; 33(11): 805-810
DOI: 10.1055/s-0038-1627744
Mikroglia
Schattauer GmbH

Mikroglia im Kontext der Multiplen Sklerose

Microglia in the context of multiple sclerosis
S. Faissner
1   Klinik für Neurologie, St. Josef-Hospital, Ruhr-Universität Bochum
,
R. Hoepner
1   Klinik für Neurologie, St. Josef-Hospital, Ruhr-Universität Bochum
,
R. Gold
1   Klinik für Neurologie, St. Josef-Hospital, Ruhr-Universität Bochum
› Author Affiliations
Further Information

Publication History

eingegangen am: 30 June 2014

angenommen am: 02 June 2014

Publication Date:
24 January 2018 (online)

Zusammenfassung

Gegenstand und Ziel

Mikroglia sind die residenten Makrophagen des zentralen Nervensystems (ZNS). Sie haben einen wichtigen Anteil an der Aufrechterhaltung von Abwehrmechanismen des ZNS wie der Phagozytose von apoptotischen Zellen und Zelldetritus. Es gibt wachsende Evidenz, die Mikroglia einen Einfluss für die Pathogenese der Multiplen Sklerose (MS) zuschreibt, vor allem in den progredienten Phasen der Erkrankung. Der Einfluss von Mikroglia auf die Pathogenese der MS soll in diesem Übersichtsartikel beleuchtet werden.

Material und Methoden

Es wurde eine PubMed Datenbankanalyse durchgeführt und relevante Artikel bezüglich der Thematik berücksichtigt.

Ergebnisse

MS ist gekennzeichnet durch eine Schädigung der Myelinscheide mit konsekutiver Demyelinisierung und auch axonalem Schaden. Dies wird durch inflammatorische Vorgänge mit Beteiligung von Mikroglia durch Freisetzung tion, Glia reaktiver Sauerstoff- und Stickstoffmetabolite und proinflammatorischer Zytokine wie IL-1beta und TNF-alpha vermittelt. Mikroglia können unterschiedliche Aktivierungszustände einnehmen; den klassischen Aktivierungszustand mit einem inflammatorischen Zytokinmuster (M1) sowie den alternativen Aktivierungszustand (M2), in welchem ein neuroprotektives Zytokinmuster dominiert. Mittlerweile gibt es therapeutische Ansätze, die auf eine mikrogliale Modulation abzielen, z. B. der Nrf2-Signalweg, der durch Dimethylfumarat beeinflusst wird oder die Verringerung von reaktiven Sauerstoffmetaboliten durch Interferone.

Schlussfolgerung

Die Bedeutung mikroglialer Aktivierung sowie die therapeutische Beeinflussung von Mikroglia mit dem Ziel der Neuroprotektion sind zuletzt immer mehr in den Fokus gerückt und sollen in diesem Übersichtsartikel genauer beleuchtet werden.

Summary

Objective

Microglia are the resident macrophages of the CNS and important for the maintenance of defence mechanisms in the CNS and the phagocytosis of apoptotic cells and cell debris. There is increasing evidence pointing towards a crucial influence of microglia for the pathogenesis of multiple sclerosis (MS).

Materials and Methods

We performed a PubMed data base search to include relevant articles.

Results

MS is characterized by a damage of the myelin sheath with consecutive demyelination and often axonal destruction. This is mediated by inflammatory processes with microglial involvement by release of reactive oxygen and nitrogen species as well as pro-inflammatory cytokines such as IL-1beta and TNF-alpha. Microglia can present different states of activation, such as a state of classical activation, characterized by an inflammatory cytokine pattern (M1) and a state of alternative activation, characterized by a neuroprotective pattern (M2). Therapeutically different mechanisms exist which can be modulated such as the Nrf2 pathway with dimethylfumarate or the decreased microglial release of reactive oxygen species by interferon.

Conclusions

The importance of microglial activation and the therapeutic modulation of MG to a neuroprotective state get further into focus of MStherapy and will be elucidated in this review.

 
  • Literatur

  • 1 Hanisch UK, Kettenmann H. Microglia: active sensor and versatile effector cells in the normal and pathologic brain. Nat Neurosci 2007; 10 (11) 1387-94.
  • 2 Giunti D, Parodi B, Cordano C, Uccelli A, Kerlero de Rosbo N. Can we switch microglia’s phenotype to foster neuroprotection? Focus on multiple sclerosis. Immunology 2014; 141 (03) 328-39.
  • 3 Nimmerjahn A, Kirchhoff F, Helmchen F. Resting microglial cells are highly dynamic surveillants of brain parenchyma in vivo. Science 2005; 308 (5726): 1314-8.
  • 4 Martinez FO, Sica A, Mantovani A, Locati M. Macrophage activation and polarization. Front Biosci 2008; 13: 453-61.
  • 5 Gold R, Linington C, Lassmann H. Understanding pathogenesis and therapy of multiple sclerosis via animal models: 70 years of merits and culprits in experimental autoimmune encephalomyelitis research. Brain 2006; 129 (Pt 8): 1953-71.
  • 6 Heppner FL. et al. Experimental autoimmune encephalomyelitis repressed by microglial paralysis. Nat Med 2005; 11 (02) 146-52.
  • 7 Ponomarev ED, Shriver LP, Maresz K, Dittel BN. Microglial cell activation and proliferation precedes the onset of CNS autoimmunity. J Neurosci Res. 2005; 81 (03) 374-89.
  • 8 Marik C, Felts PA, Bauer J, Lassmann H, Smith KJ. Lesion genesis in a subset of patients with multiple sclerosis: a role for innate immunity?. Brain 2007; 130 (Pt 11): 2800-15.
  • 9 Ponomarev ED, Shriver LP, Dittel BN. CD40 expression by microglial cells is required for their completion of a two-step activation process during central nervous system autoimmune inflammation. J Immunol 2006; 176 (03) 1402-10.
  • 10 van Horssen J. et al. Clusters of activated microglia in normal-appearing white matter show signs of innate immune activation. J Neuroinflammation 2012; 09: 156.
  • 11 Rasmussen S. et al. Persistent activation of microglia is associated with neuronal dysfunction of callosal projecting pathways and multiple sclerosislike lesions in relapsing – remitting experimental autoimmune encephalomyelitis. Brain 2007; 130 (Pt 11): 2816-29.
  • 12 Davalos D. et al. Fibrinogen-induced perivascular microglial clustering is required for the development of axonal damage in neuroinflammation. Nat Commun 2012; 03: 1227.
  • 13 Zhang Z, Zhang Z, Schittenhelm J, Wu Y, Meyermann R, Schluesener HJ. Parenchymal accumulation of CD163+ macrophages/microglia in multiple sclerosis brains. J Neuroimmunol 2011; 237 (1–2): 73-9.
  • 14 van Horssen J, Witte ME, Schreibelt G, Vries de HE. Radical changes in multiple sclerosis pathogenesis. Biochim Biophys Acta 2011; 1812 (02) 141-50.
  • 15 Nikiæ I. et al. A reversible form of axon damage in experimental autoimmune encephalomyelitis and multiple sclerosis. Nat Med 2011; 17 (04) 495-9.
  • 16 Gray E. et al. Increased microglial catalase activity in multiple sclerosis grey matter. Brain Res 2014; 1559: 55-64.
  • 17 Chaudhary P, Marracci GH, Bourdette DN. Lipoic acid inhibits expression of ICAM-1 and VCAM-1 by CNS endothelial cells and T cell migration into the spinal cord in experimental autoimmune encephalomyelitis. J Neuroimmunol 2006; 175 (1–2): 87-96.
  • 18 Calabrese M. et al. Cortical lesions and atrophy associated with cognitive impairment in relapsingremitting multiple sclerosis. Arch Neurol 2009; 66 (09) 1144-50.
  • 19 Bø L, Vedeler CA, Nyland HI, Trapp BD, Mørk SJ. Subpial demyelination in the cerebral cortex of multiple sclerosis patients. J Neuropathol Exp Neurol 2003; 62 (07) 723-32.
  • 20 Haider L. et al. Multiple sclerosis deep grey matter: the relation between demyelination, neurodegeneration, inflammation and iron. J Neurol Neurosurg Psychiatr. 2014 E-pub ahead
  • 21 Schiefer J, Kampe K, Dodt HU, Zieglgänsberger W, Kreutzberg GW. Microglial motility in the rat facial nucleus following peripheral axotomy. J Neurocytol 1999; 28 (06) 439-53.
  • 22 Butovsky O. et al. Microglia activated by IL-4 or IFN-gamma differentially induce neurogenesis and oligodendrogenesis from adult stem/progenitor cells. Mol Cell Neurosci 2006; 31 (01) 149-60.
  • 23 Arnett HA, Mason J, Marino M, Suzuki K, Matsushima GK, Ting JP. TNF alpha promotes proliferation of oligodendrocyte progenitors and remyelination. Nat Neurosci 2001; 04 (11) 1116-22.
  • 24 Saha RN, Liu X, Pahan K. Up-regulation of BDNF in astrocytes by TNF-alpha: a case for the neuroprotective role of cytokine. J Neuroimmune Pharmacol 2006; 01 (03) 212-22.
  • 25 Kotter MR, Li W, Zhao C, Franklin RJM. Myelin impairs CNS remyelination by inhibiting oligodendrocyte precursor cell differentiation. J Neurosci 2006; 26 (01) 328-32.
  • 26 Franklin RJM, Kotter MR. The biology of CNS remyelination: the key to therapeutic advances. J Neurol 2008; 255 Suppl (Suppl. 01) 19-25.
  • 27 Takahashi K, Prinz M, Stagi M, Chechneva O, Neumann H. TREM2-transduced myeloid precursors mediate nervous tissue debris clearance and facilitate recovery in an animal model of multiple sclerosis. PLoS Med 2007; 04 (04) e124.
  • 28 Kigerl KA, Gensel JC, Ankeny DP, Alexander JK, Donnelly DJ, Popovich PG. Identification of two distinct macrophage subsets with divergent effects causing either neurotoxicity or regeneration in the injured mouse spinal cord. J Neurosci 2009; 29 (43) 13435-44.
  • 29 Linker RA. et al. Fumaric acid esters exert neuroprotective effects in neuroinflammation via activation of the Nrf2 antioxidant pathway. Brain 2011; 134 (Pt 3): 678-92.
  • 30 Wilms H, Sievers J, Rickert U, Rostami-Yazdi M, Mrowietz U, Lucius R. Dimethylfumarate inhibits microglial and astrocytic inflammation by suppressing the synthesis of nitric oxide, IL-1beta, TNF-alpha and IL-6 in an in-vitro model of brain inflammation. J Neuroinflammation 2010; 07: 30.
  • 31 Jin S. et al. Interferon-beta is neuroprotective against the toxicity induced by activated microglia. Brain Res 2007; 1179: 140-6.
  • 32 Nayak D. et al. Sphingosine kinase 1 regulates the expression of proinflammatory cytokines and nitric oxide in activated microglia. Neuroscience 2010; 166 (01) 132-44.
  • 33 Jackson SJ, Giovannoni G, Baker D. Fingolimod modulates microglial activation to augment markers of remyelination. J Neuroinflammation 2011; 08: 76.
  • 34 Ponomarev ED, Veremeyko T, Barteneva N, Krichevsky AM, Weiner HL. MicroRNA-124 promotes microglia quiescence and suppresses EAE by deactivating macrophages via the C/EBP-alphaPU.1 pathway. Nat Med 2011; 17 (01) 64-70.
  • 35 O’Connell RM. et al. MicroRNA-155 promotes autoimmune inflammation by enhancing inflammatory T cell development. Immunity 2010; 33 (04) 607-19.