Arthritis und Rheuma 2006; 26(04): 239-247
DOI: 10.1055/s-0037-1620067
Knochen und Muskeln
Schattauer GmbH

Bewegungsprogramm zur Prävention von Stürzen und Frakturen

Activity programme for the prevention of falls and fractures
Martin Runge
1   Aerpah-Kliniken Esslingen und Ilshofen
,
Dieter Felsenberg
2   Charité – Campus Benjamin Franklin
› Author Affiliations
Further Information

Publication History

Publication Date:
23 December 2017 (online)

Zusammenfassung

Körperliche Aktivität hat bekanntlich viele positive Wirkungen auf den Bewegungsapparat und den gesamten Gesundheitsstatus. Die für eine ärztliche Beurteilung und Verordnung notwendigen Einzelheiten eines Bewegungsprogramms sind in der Praxis oft unklar und in der Theorie strittig. Der Artikel stellt ein wissenschaftlich begründetes Bewegungsprogramm zur Verbesserung von Knochenfestigkeit und Sturzrisiko vor. Diese beiden Zielgrößen werden als Kausalfaktoren für die altersassoziierten Frakturen an Wirbelsäule, proximalem Femur, Humerus, Radius und Becken angesehen. Diese Frakturtypen sind gleichermaßen durch osteoporotisch verminderte Knochenfestigkeit und erhöhte Sturzgefahr bedingt. Beide Vorgänge sind abhängig von körperlicher Aktivität und dem Alterungsprozess. Eine erfolgreiche Verbesserung durch geeignete Bewegungsprogramme ist von hoher Wichtigkeit für die Betroffenen und das gesamte Gesundheitssystem. Der Nachweis, dass Frakturen durch Bewegungsprogramme verhindert werden können, steht noch aus. Die Datenlage zur Verbesserung von Knochenfestigkeit durch Bewegung ist kontrovers. Allerdings häufen sich die Hinweise, dass Bewegungen mit hoher Krafteinleitung erforderlich und geeignet sind, Knochenfestigkeit zu erhalten oder zu erhöhen. Die vorgelegten Übungen zur Verbesserung des Knochenfestigkeit wurden auf der Basis des gegenwärtigen Kenntnisstandes zur Muskel- Knochen-Einheit entwickelt (Utah-Paradigma, Mechanostat nach H. Frost). Die Datenlage zur Sturzprävention weist viele positive Belege dafür auf, dass durch multifaktorielle Interventionen, die Übungen zur Steigerung von Muskelkraft, Muskelleistung und Balance enthalten, die Sturzhäufigkeit signifikant gesenkt werden kann. Bewegungsübungen zur Reduzierung des Sturzrisikos müssen also die neuromuskulären Sturzrisikofaktoren verbessern, d. h. Muskelfunktionen der hüftumgebenden Muskulatur und Balance. Das vorgelegte Übungsprogramm ist dazu in der Lage, wie eine eigene kontrollierte Studie zeigen konnte.

Summary

Physical activity is vital for maintaining mobility, bone strength and general health during the aging process. This prevalent opinion is brought into question when details suchastype, degree, duration, or speed of exercises are discussed. This information is necessary for a rational prescription of exercise. A program which has been designed to reduce age-related fractures has to target both bone strength and fall risk because the combination of these two factors is responsible for the steep age-related increase in fracture incidence. It has not yet been proven that fracture incidence can be reduced by exercise programs, but exercise has been shown to be able to improve DXA BMD as surrogate of bone strength and to reduce fall risk. Data concerning bone strength is, in part, controversial, but there is emerging evidence that high-impact exercise like resistance training, vibration therapy or jumping, i.e. high loading of bone, are able to prevent bone loss or even enhance bone mass. The literature is more convincing with regard to fall risk. Multi-factorial interventions comprising muscle and balance training could reduce fall incidence. The article introduces an exercise program which is aimed at both bone strength and fall risk. It comprises exercises with high force loading especially on to the hip surrounding muscles, jumping exercises which represent high power, and balance exercises. The program has been found effective in improving the chair rise test and tandem manoeuvres.

 
  • Literatur

  • 1 Fried LP., Tangen CM., Walston J.. et al. Cardiovascular Health Study Collaborative Research Group. Frailty in older adults: evidence for a phenotype. J Gerontol A Biol Sci Med Sci 2001; 56 (03) M146-56.
  • 2 Brown M., Sinacore DR., Binder EF., Kohrt WM.. Physical and performance measures for the identification of mild to moderate frailty. J Gerontol A Biol Sci Med Sci 2000; 55: M350-5.
  • 3 Frost HM.. Defining osteopenias and osteoporoses: another view (with insights from a new paradigm). Bone 1997; 20: 385-91.
  • 4 Schiessl H.. et al. Estrogen and Bone-Muscle Strength and Mass Relationships. Bone 1998; 22: 1-6.
  • 5 Rubenstein LZ., Josephson KR.. Causes and prevention of falls in elderly people. In Vellas B., Toupet M., Rubenstein L.. et al. Hrsg. Falls, balance and gait disorders in the elderly. Paris: Elsevier 1992; 21: 38.
  • 6 Tinetti ME.. Falls. In Cassel CK., Cohen HJ., Larson EB.. et al. Hrsg. Geriatric Medicine, 3. Aufl. New York: Springer; 1996: 787-99.
  • 7 Cummings SR., Nevitt MC., Browner WS.. et al. for the Study of Osteoporotic Fractures Research Group. Risk factors for hip fracture in white women. N Engl J Med 1995; 332: 767-73.
  • 8 Wainwright SA., Marshall LM., Ensrud KE.. et al. Hip Fracture in Women Without Osteoporosis. J Clin Endocrinol Metab 2005; Feb 22 90: 2787-93.
  • 9 Runge M.. Die multifaktorielle Pathogenese von Gehstörungen, Stürzen und Hüftfrakturen im Alter. Z Gerontol Geriatr 1997; 30 (04) 267-75.
  • 10 Chang JT.. et al. Interventions for the prevention of falls in older adults: systematic review and meta-analysis of randomised clinical trials. BMJ 2004; Mar 20 328 7441 680.
  • 11 Gillespie LD.. et al. Interventions for preventing falls in elderly people. Cochrane Database Syst Rev 2003; (04) CD000340.
  • 12 Tinetti ME., Baker DI., McAvay G.. et al. A multifactorial intervention to reduce the risk of falling among elderly people living in the community. N Engl J Med 1994; 331: 821-7.
  • 13 Close J., Ellis M., Hooper R.. et al. Prevention of falls in the elderly trial (PROFET): a randomised controlled trial. Lancet 1999; 353: 93-7.
  • 14 Campbell AJ., Robertson MC., Gardner MM.. et al. Randomised controlled trial of a general practice programme of home based exercise to prevent falls in elderly women. BMJ 1997; 315: 1065-9.
  • 15 Wolf SL., Barnhart HX., Kutner NG.. et al. Reducing frailty and falls in older persons: an investigation of Tai Chi and computerized balance training. Atlanta FICSIT Group. Frailty and Injuries: Cooperative Studies of Intervention Techniques. J Am Geriatr Soc 1996; 44: 489-97.
  • 16 Warburton D.. et al. Health benefits of physical activity: the evidence. CMAJ 2006; 174: 6.
  • 17 Bean JF., Vora A., Frontera WR.. Benefits of exercise for community-dwelling older adults. Arch Phys Med Rehabil 2004; 85 (Suppl. 03) Suppl S31-42.
  • 18 Runge M., Schießl H., Rittweger J.. Klinische Diagnostik des Regelkreises Muskel-Knochen am Unterschenkel. Osteologie 2002; 11: 25-37.
  • 19 Frost HM.. Why do Marathon Runners Have Less Bone Than Weightlifters? A Vital-Biomechanical View and Explanation. Bone 1997; b 20: 183-9.
  • 20 Hetland ML.. et al. Low bone mass and high bone turnover in male long distance runners. J Clin Endocrinol Metab 1993; Sep 77 (03) 770-5.
  • 21 Braam LA.. et al. Factors affecting bone loss in female endurance athletes: a two-year follow-up study. Am J Sports Med 2003; 31 (06) 889-95.
  • 22 Burrows M., Nevill AM., Bird S., Simpson D.. Physiological factors associated with low bone mineral density in female endurance runners. Br J Sports Med 2003; 37 (01) 67-71.
  • 23 Cassell C.. et al. Bone mineral density in elite 7- to 9-yr-old female gymnasts and swimmers. Med Sci Sports Exerc 1996; 28 (10) 1243-6.
  • 24 Courteix D., Lespessailles E., Peres SL.. et al. Effect of physical training on bone mineral density in prepubertal girls: a comparative study between impact-loading and non-impact-loading sports. Osteoporos Int 1998; 8 (02) 152-8.
  • 25 Creighton DL.. et al. Weight-bearing exercise and markers of bone turnover in female athletes. J Appl Physiol 2001; 90 (02) 565-70.
  • 26 Bennell KL., Malcolm SA., Khan KM.. et al. Bone mass and bone turnover in power athletes, endurance athletes, and controls: a 12-month longitudinal study. Bone 1997; 20 (05) 477-84.
  • 27 Alfredson H., Nordstrom P., Lorentzon R.. Bone mass in female volleyball players: a comparison of total and regional bone mass in female volleyball players and nonactive females. Calcif Tissue Int 1997; 60 (04) 338-42.
  • 28 Haapasalo H., Kontulainen S., Sievänen H.. et al. Exercise induced Bone Gain is due to Enlargement in Bone Size without a Change in Volumteric Bone Density: A Peripheral Quantitative Computed Tomography Study of the Upper Arms of Male Tennis Players. Bone 2000; 27: 351-7.
  • 29 Takahashi HE.. Hrsg. Mechanical Loading of Bones and Joints. Tokyo 1999
  • 30 Sabo D., Reiter A., Pfeil J.. et al. Modification of bone quality by extreme physical stress. Bone density measurements in high-performance athletes using dual-energy x-ray absorptiometry. Z Orthop Ihre Grenzgeb 1996; 134: 1-6.
  • 31 Kemmler W.. et al. Benefits of 2 years of intense exercise on bone density, physical fitness, and blood lipids in early postmenopausal osteopenic women: results of the Erlangen Fitness Osteoporosis Prevention Study (EFOPS). Arch Intern Med. 2004; 164 (10) 1084-91.
  • 32 Kemmler W., von Stengel S., Weineck J.. et al. Exercise effects on menopausal risk factors of early postmenopausal women: 3-yr Erlangen fitness osteoporosis prevention study results. Med Sci Sports Exerc 2005; 37 (02) 194-203.
  • 33 Kontulainen S.. et al. Former exercisers of an 18-month intervention display residual a BMD benefits compared with control women 3.5 years post-intervention: a follow-up of a randomized controlled high-impact trial. Osteoporos Int 2004; 15 (03) 248-51 Epub 2003 Dec 12.
  • 34 Kerr D., Ackland T., Maslen B.. et al. Resistance training over 2 years increases bone mass in calciumreplete postmenopausal women. J Bone Miner Res 2001; 16 (01) 175-81.
  • 35 Lohman T.. et al. Effects of resistance training on regional and total bone mineral density in premenopausal women: a randomized prospective study. J Bone Miner Res 1995; 10 (07) 1015-24.
  • 36 Torvinen S.. et al. Effect of 8-month vertical whole body vibration on bone, muscle performance, and body balance: a randomized controlled study. J Bone Miner Res 2003; 18 (05) 876-84.
  • 37 Pruitt LA.. et al. Effects of a one-year high-intensity versus low-intensity resistance training program on bone mineral density in older women. J Bone Miner Res 1995; 10 (11) 1788-95.
  • 38 Huuskonen J., Vaisanen SB., Kroger H.. et al. Regular physical exercise and bone mineral density: a four-year controlled randomized trial in middleaged men. The DNASCO study. Osteoporos Int 2001; 12 (05) 349-55.
  • 39 Kerr D., Morton A., Dick I., Prince R.. Exercise effects on bone mass in postmenopausal women are site-specific and load-dependent. J Bone Miner Res 1996; 11 (02) 218-25.
  • 40 Honda A.. et al. Effect of high-impact and low-repetition training on bones in ovariectomized rats. J Bone Miner Res 2001; 16 (09) 1688-93.
  • 41 Yao W.. et al. Making rats rise to erect bipedal stance for feeding partially prevented orchidectomy-induced bone loss and added bone to intact rats. J Bone Miner Res 2000; 15 (06) 1158-68.
  • 42 Umemura Y.. et al. Five jumps per day increase bone mass and breaking force in rats. J Bone Miner Res 1997; 12 (09) 1480-5.
  • 43 Jamsa T., Vainionpaa A., Korpelainen R.. et al. Effect of daily physical activity on proximal femur. Clin Biomech (Bristol, Avon) 2006; Jan 21 (01) 1-7.
  • 44 Stengel SV.. et al. Power training is more effective than strength training for maintaining bone mineral density in postmenopausal women. J Appl Physiol 2005; 99: 181-8.
  • 45 Runge M., Felsenberg D.. Gaggenau-Studie, eigene unveröffentlichte Daten.
  • 46 Kalapotharakos VI., Tokmakidis SP., Smilios I.. et al. Resistance training in older women: effect on vertical jump and functional performance. J Sports Med Phys Fitness 2005; Dec 45 (04) 570-5.
  • 47 Alexander NB., Galecki AT., Grenier ML.. et al. Task-specific resistance training to improve the ability of activities of daily living-impaired older adults to rise from a bed and from a chair. J Am Geriatr Soc 2001; Nov 49 (11) 1418-27.
  • 48 Bruyere O., Wuidart MA., Di Palma E.. et al. Controlled whole body vibration to decrease fall risk and improve health-related quality of life of nursing home residents. Arch Phys Med Rehabil 2005; 86 (02) 303-7.
  • 49 Hess JA., Woollacott M.. Effect of high-intensity strength-training on functional measures of balance ability in balance-impaired older adults. J Manipulative Physiol Ther 2005; 28 (08) 582-90.
  • 50 Ballard JE.. et al. The effect of 15 weeks of exercise on balance, leg strength, and reduction in falls in 40 women aged 65 to 89 years. J Am Med Womens Assoc 2004; 59 (04) 255-61.
  • 51 Orr R., de Vos NJ., Singh NA.. et al. Power training improves balance in healthy older adults. J Gerontol A Biol Sci Med Sci 2006; 61 (01) 78-85.
  • 52 Liu-Ambrose T., Khan KM., Eng JJ.. et al. Resistance and agility training reduce fall risk in women aged 75 to 85 with low bone mass: a 6-month randomized, controlled trial. J Am Geriatr Soc 2004; 52 (05) 657-65.