Thromb Haemost 2002; 88(01): 104-110
DOI: 10.1055/s-0037-1613161
Review Article
Schattauer GmbH

Two Different β3 Cysteine Substitutions Alter αIIbβ3 Maturation and Result in Glanzmann Thrombasthenia

S. Milet-Marsal
1   UMR 5533 CNRS, Hôpital Cardiologique, Pessac, France
,
C. Breillat
1   UMR 5533 CNRS, Hôpital Cardiologique, Pessac, France
,
O. Peyruchaud
1   UMR 5533 CNRS, Hôpital Cardiologique, Pessac, France
,
P. Nurden
1   UMR 5533 CNRS, Hôpital Cardiologique, Pessac, France
,
R. Combrié
1   UMR 5533 CNRS, Hôpital Cardiologique, Pessac, France
,
A. Nurden
1   UMR 5533 CNRS, Hôpital Cardiologique, Pessac, France
,
F. Bourre
1   UMR 5533 CNRS, Hôpital Cardiologique, Pessac, France
› Author Affiliations
This work was supported by the Ligue Régionale d’Aquitaine contre le Cancer. S. Milet has a grant from the Ligue Nationale Française contre le Cancer.
Further Information

Publication History

Received 15 October 2001

Accepted after resubmission 25 March 2002

Publication Date:
09 December 2017 (online)

Summary

We report the defects responsible for Glanzmann thrombasthenia in two patients showing traces of abnormally migrating platelet β3 in immunoblotting. Using PCR-SSCP and direct sequencing, we identified a novel homozygous mutation in exon 10 of the β3 gene of patient 1 which gave a C457 to Y amino acid substitution. A C542 to R substitution in β3 of patient 2 was previously reported by us. These cysteines are present in EGF-domains 1 and 3 respectively of β3. We therefore constructed mutants carrying substitutions on cysteine residues in each of the first three EGF domains of β3, C457, C495 and C542 respectively. Transient expression of these mutants in COS-7 cells, including the C542 and C547 double mutant, proved that disulfide disruption directly affects cell surface expression of the integrin. We then showed by metabolic (35S) labeling and Endo-H glycosidase treatment that these substitutions strongly affected complex maturation within the cell.

 
  • References

  • 1 Hynes RH. Integrins: versatility, modulation and signaling in cell adhesion. Cell 1992; 69: 11-25.
  • 2 Plow EF, Cierniewski CS, Xiao Z, Haas TA, Byzova TV. αIIbβ3 and its antagonism at the new millenium. Thromb Haemost 2001; 86: 34-40.
  • 3 George JN, Caen JP, Nurden AT. Glanzmann’s thrombasthenia: the spectrum of clinical disease. Blood 1990; 75: 1383-95.
  • 4 Nurden AT, George JN. Inherited abnormalities of the platelet membrane: Glanzmann thrombasthenia, Bernard-Soulier syndrome, and other disorders. In: Hemostasis and Thrombosis, Basic Principles and Clinical Practice. Colman RW, Hirsh J, Marder VJ, Clowes AW, George JN. Philadelphia: Lippincott, Williams & Wilkins; 2000: 921-43.
  • 5 French DL. The molecular genetics of Glanzmann's thrombasthenia. Platelets 1998; 09: 5-20.
  • 6 Loftus JC, O’Toole TE, Plow EF, Glass A, Frelinger III AL, Ginsberg MH. A β3 integrin mutation abolishes ligand binding and alters divalent cationdependent conformation. Science 1990; 249: 915-8.
  • 7 Basani RB, Brown DL, Vilaire G, Bennet JS, Poncz M. A Leu117 to Trp mutation within the RGD-peptide cross-linking region of β3 results in Glanzmann thrombasthenia by preventing αIIβ3 export to the platelet surface. Blood 1997; 90: 3082-8.
  • 8 Lanza F, Stierle A, Fournier D, Morales M, André G, Nurden AT, Cazenave JP. A new variant of Glanzmann thrombasthenia (Strasbourg I). Platelets with functionally defective glycoprotein IIb-IIIa complexes and a glycoprotein IIIa 214Arg 214Trp mutation. J Clin Invest 1992; 89: 1995-2004.
  • 9 Tozer EC, Liddington RC, Sutcliffe MJ, Smeeton AH, Loftus JC. Ligand binding to integrin αIIbβ3 is dependent on a MIDAS-like domain in the β3 subunit. J Biol Chem 1996; 271: 21978-84.
  • 10 Ward CM, Kestin AS, Newman PJ. A Leu262Pro mutation in the integrin beta(3) subunit results in an αIIbβ3 complex that binds fibrin but not fibrinogen. Blood 2000; 96: 161-9.
  • 11 Chen YP, Djaffar I, Pidard D, Steiner B, Cieutat AM, Caen JP, Rosa JP. Ser752 to Pro mutation in the cytoplasmic domain of integrin β3 subunit and defective activation of platelet integrin αIIbβ3 (glycoprotein IIb-IIIa) in a variant of Glanzmann thrombasthenia. Proc Natl Acad Sci USA 1992; 89: 10169-73.
  • 12 Wang R, Shattil SJ, Ambruso DR, Newman PJ. Truncation of the cytoplasmic domain of β3 in a variant form of Glanzmann thrombasthenia abrogates signaling through the integrin αIIbβ3 complex. J Clin Invest 1997; 100: 2393-403.
  • 13 Calvete JJ, Henschen A, Gonzalez-Rodriguez J. Assignment of disulphide bonds in human platelet GPIIIa. A disulfide pattern for the β-subunits of the integrin family. Biochem J 1991; 274: 63-71.
  • 14 Xiong JP, Stehle T, Diefenbach B, Zhang R, Dunker R, Scott DL, Joachimiak A, Goodman SL, Arnaout MA. Crystal structure of the extracellular segment of integrin αvβ3. Science 2001; 294: 339-45.
  • 15 Grimaldi CM, Chen F, Scudder LE, Coller BS, French DL. A Cys374Tyr homozygous mutation of platelet glycoprotein IIIa (β3) in a Chinese patient with Glanzmann’s thrombasthenia. Blood 1996; 88: 1666-75.
  • 16 Ruan J, Schmugge M, Clemetson KJ, Cazes E, Combrie R, Bourre F, Nurden AT. Homozygous Cys542 to Arg substitution in GPIIIa in a Swiss patient with type I Glanzmann’s thrombasthenia. Br J Haematol 1999; 105: 523-31.
  • 17 Hourdille P, Fialon P, Belloc F, Namur M, Boisseau R, Nurden AT. Megacaryocytes from the marrow of a patient with Glanzmann’s thrombasthenia lacked GPIIb-IIIa complexes. Thromb Haemost 1986; 56: 66-70.
  • 18 Nurden AT, Didry D, Kieffer N, McEver RP. Residual amounts of glycoproteins IIb and IIIa may be present in the platelets of most patients with Glanzmann’s thrombasthenia. Blood 1985; 65: 1021-4.
  • 19 Peyruchaud O, Nurden A, Milet S, Macchi L, Pannochia A, Bray PF, Kieffer N, Bourre F. R to Q amino acid substitution in the GFFKR sequence of the cytoplasmic domain of the integrin αIIb subunit in a patient with a Glanzmann’s thrombasthenia-like syndrome. Blood 1998; 92: 4178-87.
  • 20 Peyruchaud O, Bourre F, Morel-Kopp M-C, Reviron D, Mercier P, Nurden A, Kaplan C. HPA-10wa (Laa): Genetic determination of a new plateletspecific alloantigen on glycoprotein IIIa and its expression in COS-7 cells. Blood 1997; 89: 2422-8.
  • 21 Rosa JP, McEver RP. Processing and assembly of the integrin, glycoprotein IIb-IIIa, in HEL cells. J Biol Chem 1989; 264: 12596-603.
  • 22 Yan B, Smith JW. Mechanism of integrin activation by disulfide bond reduction. Biochemistry 2001; 40: 8861-7.
  • 23 Kouns W, Newman PJ, Puckett KJ, Miller AA, Wall C, Fox CF, Seyer JM, Jennings LK. Further characterization of the loop structure of platelet glycoprotein IIIa: partial mapping of functionally significant glycoprotein IIIa epitopes. Blood 1991; 78: 3215-23.
  • 24 Wippler J, Kouns WC, Schlaeger E-J, Kuhn H, Hadvary P, Steiner B. The integrin αIbβ3, platelet glycoprotein IIb-IIIa, can form a functionally active heterodimer complex without the cysteine-rich repeats of the β3 subunit. J Biol Chem 1994; 269: 8754-61.
  • 25 Wang R, Peterson J, Aster RH, Newman PJ. Disruption of a long-range disulfide bond between residues Cys406 and Cys655 in glycoprotein IIIa does not affect the function of platelet glycoprotein IIb-IIIa. Blood 1997; 90: 1718-9.
  • 26 Santoso S, Kalb R, Kroll H, Walka M, Kiefel V, Mueller-Eckhardt C, Newman PJ. A point mutation leads to an unpaired cysteine residue and a molecular weight polymorphism of a functional platelet β3 integrin subunit. J Biol Chem 1994; 269: 8439-44.
  • 27 Kashiwagi H, Tomiyama Y, Tadokoro S, Honda S, Shiraga M, Mizutani H, Handa M, Kurata Y, Matsuzawa Y, Shattil SJ. A mutation in the extracellular cysteine-rich repeat region of the β3 subunit activates integrins αIIbβ3 and αvβ3. Blood 1999; 93: 2559-68.
  • 28 Ruiz C, Liu CY, Sun WH, Sigaud-Fiks M, Fressinaud E, Muller JY, Nurden P, Nurden AT, Newman PJ, Valentin N. A point mutation in the cysteine-rich domain of glycoprotein (GP) IIIa results in the expression of a GPIIb-IIIa (αIIbβ3) integrin receptor locked in a high affinity state and a Glanzmann thrombasthenia-like phenotype. Blood 2001; 98: 2432-41.
  • 29 Chen P, Melchior C, Brons NHC, Schlegel N, Caen J, Kieffer N. Probing conformational changes in the I-like domain and the cysteine-rich repeat of human β3 integrins following disulfide bond disruption by cysteine mutations: identification of cysteine 598 involved in αIIbβ3 activation. J Biol Chem 2001; 276: 38628-35.
  • 30 Liu CY, Sun QH, Wang R, Paddock CM, Newman PJ. Disruption of the long-range GPIIIa Cys5-Cys435 disulfide bond results in the production of a constitutively active GPIIb-IIIa integrin complex. Blood 1997; 90: 573a.
  • 31 Troesch A, Duperray A, Polack B, Marguerie G. Comparative study of the glycosylation of platelet glycoprotein GPIIb/IIIa and the vitronectin receptor. Biochem J 1990; 268: 129-33.
  • 32 Yan B, Hu DD, Knowles SK, Smith JW. Probing chemical and conformational differences in the resting and active conformers of platelet integrin αIIbβ3. J Biol Chem 2000; 275: 7249-60.
  • 33 Yan B, Smith JW. A redox site involved in integrin activation. J Biol Chem 2000; 275: 39964-72.
  • 34 O'Neill S, Robinson A, Deering A, Ryan M, Fitzgerald DJ, Moran N. The platelet integrin αIIbβ3 has an endogenous thiol isomerase activity. J Biol Chem 2000; 275: 36984-90.