Horm Metab Res 2015; 47(01): 31-35
DOI: 10.1055/s-0034-1395518
Review
© Georg Thieme Verlag KG Stuttgart · New York

Xenotransplantation of Porcine Islet Cells as a Potential Option for the Treatment of Type 1 Diabetes in the Future

B. Reichart
1   Institute for Surgical Research at the Walter-Brendel-Centre for Experimental Medicine, Ludwig-Maximilians-University, Munich, Germany
,
H. Niemann
2   Friedrich-Loeffler-Institute Mariensee, Federal Research Institute for Animal Health, Neustadt, Germany
,
T. Chavakis
3   Department of Medicine III, University Hospital Carl Gustav Carus, Dresden, Germany
4   Centre for Diabetes Research, Paul Langerhans Institute Dresden, Dresden, Germany
5   Department of Clinical Pathobiochemistry, Technische Universität Dresden, Dresden, Germany
6   Institute for Clinical Chemistry and Laboratory Medicine, Technische Universität Dresden, Dresden, Germany
,
J. Denner
7   Robert-Koch-Institute, Berlin, Germany
,
E. Jaeckel
8   Medical School of Hannover, Department Gastroenterology, Hepatology, Endocrinology, Diabetology, Hannover, Germany
,
B. Ludwig
3   Department of Medicine III, University Hospital Carl Gustav Carus, Dresden, Germany
4   Centre for Diabetes Research, Paul Langerhans Institute Dresden, Dresden, Germany
9   Center for Regenerative Therapies Dresden, Technische Universität Dresden, Dresden, Germany
,
G. Marckmann
10   Institute for Ethics, History and Theory of Medicine, Ludwig-Maximilians-University, Munich, Germany
,
A. Schnieke
11   Chair of Livestock Biotechnology, Technical University of Munich, Freising, Germany
,
R. Schwinzer
12   Transplant Laboratory, Clinic for General,- Visceral-, and Transplantation Surgery, Hannover Medical School, Hannover, Germany
,
J. Seissler
13   Medizinische Klinik und Poliklinik IV, Diabetes Zentrum, Ludwig-Maximilians-University, Munich, Germany
,
R. R. Tönjes
14   Paul-Ehrlich-Institute, Federal Institute for Vaccines and Biomedicines, Langen, Germany
,
N. Klymiuk
15   Gene Center, Molecular Animal Breeding and Biotechnology, Ludwig-Maximilians-University, Munich, Germany
,
E. Wolf
15   Gene Center, Molecular Animal Breeding and Biotechnology, Ludwig-Maximilians-University, Munich, Germany
,
S. R. Bornstein
3   Department of Medicine III, University Hospital Carl Gustav Carus, Dresden, Germany
4   Centre for Diabetes Research, Paul Langerhans Institute Dresden, Dresden, Germany
9   Center for Regenerative Therapies Dresden, Technische Universität Dresden, Dresden, Germany
16   Department of Endocrinology and Diabetes, King’s College, London, England
› Author Affiliations
Further Information

Publication History

received 23 September 2014

accepted 20 October 2014

Publication Date:
15 December 2014 (online)

Abstract

Solid organ and cell transplantation, including pancreatic islets constitute the treatment of choice for chronic terminal diseases. However, the clinical use of allogeneic transplantation is limited by the growing shortage of human organs. This has prompted us to initiate a unique multi-center and multi-team effort to promote translational research in xenotransplantation to bring xenotransplantation to the clinical setting. Supported by the German Research Foundation, an interdisciplinary group of surgeons, internal medicine doctors, diabetologists, material sciences experts, immunologists, cell biologists, virologists, veterinarians, and geneticists have established a collaborative research center (CRC) focusing on the biology of xenogeneic cell, tissue, and organ transplantation. A major strength of this consortium is the inclusion of members of the regulatory bodies, including the Paul-Ehrlich Institute (PEI), infection specialists from the Robert Koch Institute and PEI, veterinarians from the German Primate Center, and representatives of influential ethical and religious institutions. A major goal of this consortium is to promote islet xenotransplantation, based on the extensive expertise and experience of the existing clinical islet transplantation program. Besides comprehensive approaches to understand and prevent inflammation-mediated islet xenotransplant dysfunction [immediate blood-mediated inflammatory reaction (IBMIR)], we also take advantage of the availability of and experience with islet macroencapsulation, with the goal to improve graft survival and function. This consortium harbors a unique group of scientists with complementary expertise under a cohesive program aiming at developing new therapeutic approaches for islet replacement and solid organ xenotransplantation.

 
  • References

  • 1 Ludwig B, Barthel A, Reichel A, Block NL, Ludwig S, Schally AV, Bornstein SR. Modulation of the pancreatic islet-stress axis as a novel potential therapeutic target in diabetes mellitus. Vitam Horm 2014; 95: 195-222
  • 2 Achenbach P, Bonifacio E, Koczwara K, Ziegler AG. Natural history of type 1 diabetes. Diabetes 2005; 54 (Suppl. 02) S25-S31
  • 3 Meier JJ. Beta cell mass in diabetes: A realistic therapeutic target?. Diabetologia 2008; 51: 703-713
  • 4 Ludwig B, Reichel A, Kruppa A, Ludwig S, Steffen A, Weitz J, Bornstein SR. Islet transplantation at the Dresden Diabetes Center: five years’ experience. Horm Metab Res 2015; 47: 4-8
  • 5 Collaborative Islet Transplant Registry (CITR). www.citregistry.org
  • 6 Zimmerhackl LB, Jungraithmayr TC, Tibell A. Marginal donors in pediatric solid organ transplantation. Pediatric transplantation 2010; 14: 154-155
  • 7 Morris MI, Fischer SA, Ison MG. Infections transmitted by transplantation. Infect Dis Clin North Am 2010; 24: 497-514
  • 8 Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 2006; 126: 663-676
  • 9 Laflamme MA, Murry CE. Heart regeneration. Nature 2011; 473: 326-335
  • 10 Weissman IL, Shizuru JA. The origins of the identification and isolation of hematopoietic stem cells, and their capability to induce donor-specific transplantation tolerance and treat autoimmune diseases. Blood 2008; 112: 3543-3553
  • 11 Huang P, He Z, Ji S, Sun H, Xiang D, Liu C, Hu Y, Wang X, Hui L. Induction of functional hepatocyte-like cells from mouse fibroblasts by defined factors. Nature 2011; 475: 386-389
  • 12 Vierbuchen T, Ostermeier A, Pang ZP, Kokubu Y, Sudhof TC, Wernig M. Direct conversion of fibroblasts to functional neurons by defined factors. Nature 2010; 463: 1035-1041
  • 13 van der Windt DJ, Bottino R, Casu A, Campanile N, Smetanka C, He J, Murase N, Hara H, Ball S, Loveland BE, Ayares D, Lakkis FG, Cooper DKC, Trucco M. Long-term controlled normoglycemia in diabetic non-human primates after transplantation with hCD46 transgenic porcine islets. Am J Transplant 2009; 9: 2716-2726
  • 14 Dufrane D, Goebbels RM, Gianello P. Alginate macroencapsulation of pig islets allows correction of streptozotocin-induced diabetes in primates up to 6 months without immunosuppression. Transplantation 2010; 90: 1054-1062
  • 15 Cardona K, Korbutt GS, Milas Z, Lyon J, Cano J, Jiang W, Bello-Laborn H, Hacquoil B, Strobert E, Gangappa S, Weber CJ, Pearson TC, Rajotte RV, Larsen CP. Long-term survival of neonatal porcine islets in nonhuman primates by targeting costimulation pathways. Nat Med 2006; 12: 304-306
  • 16 Hering BJ, Wijkstrom M, Graham ML, Hardstedt M, Aasheim TC, Jie T, Ansite JD, Nakano M, Cheng J, Li W, Moran K, Christians U, Finnegan C, Mils CD, Sutherland DE, Bansal-Pakala P, Murtaugh MP, Kirchof N, Schurman H-J. Prolonged diabetes reversal after intraportal xenotransplantation of wild-type porcine islets in immunosuppressed nonhuman primates. Nat Med 2006; 12: 301-303
  • 17 Elliott RB. Towards xenotransplantation of pig islets in the clinic. Curr Opin Organ Transplant 2011; 16: 195-200
  • 18 Elliott RB, Escobar L, Garkavenko O, Croxson MC, Schroeder BA, McGregor M, Ferguson G, Beckman N, Ferguson S. No evidence of infection with porcine endogenous retrovirus in recipients of encapsulated porcine islet xenografts. Cell Transplant 2000; 9: 895-901
  • 19 Garkavenko O, Croxson MC, Irgang M, Karlas A, Denner J, Elliott RB. Monitoring for presence of potentially xenotic viruses in recipients of pig islet xenotransplantation. J Clin Microbiol 2004; 42: 5353-5356
  • 20 Valdés-González RA, Dorantes LM, Garibay GN, Bracho-Blanchet E, Mendez AJ, Dávila-Pérez R, Elliott RB, Terán L, White DJ. Xenotransplantation of porcine neonatal islets of Langerhans and Sertoli cells: a 4-year study. Eur J Endocrinol 2005; 153: 419-427
  • 21 Tuch BE, Keogh GW, Williams LJ, Wu W, Foster JL, Vaithilingam V, Philips R. Safety and viability of microencapsulated human islets transplanted into diabetic humans. Diabetes Care 2009; 32: 1887-1889
  • 22 Basta G, Montanucci P, Luca G, Boselli C, Noya G, Barbaro B, Qi M, Kinzer KP, Oberholzer J, Calafiore R. Long-term metabolic and immunological follow-up of nonimmunosuppressed patients with type 1 diabetes treated with microencapsulated islet allografts: four cases. Diabetes Care 2011; 34: 2406-2409
  • 23 Wynyard S, Nathu D, Garkavenko O, Denner J, Elliott R. Microbiological safety of the first clinical pig islet xenotransplantation trial in New Zealand. Xenotransplantation 2014; 21: 309-323
  • 24 Elliott RB, Escobar L, Tan PL, Muzina M, Zwain S, Buchanan C. Live encapsulated porcine islets from a type 1 diabetic patient 9.5 yr after xenotransplantation. Xenotransplantation 2007; 14: 157-161
  • 25 Ekser B, Ezzelarab M, Hara H, van der Windt DJ, Wijkstrom M, Bottino R, Trucco M, Cooper DK. Clinical xenotransplantation: the next medical revolution?. Lancet 2012; 379: 672-683
  • 26 Cooper DK, Satyananda V, Ekser B, van der Windt DJ, Hara H, Ezzelarab MB, Schuurman HJ. Progress in pig-to-non-human primate transplantation models (1998–2013): a comprehensive review of the literature. Xenotransplantation 2014; 21: 397-419
  • 27 Nagaraju S, Bottino R, Wijkstrom M, Trucco M, Cooper DK. Islet xenotransplantation: what is the optimal age of the islet-source pig?. Xenotransplantation 2014; Aug 11 DOI: 10.1111/xen.12130. [Epub ahead of print]
  • 28 Mohiuddin MM, Singh AK, Corcoran PC, Hoyt RF, Thomas 3rd ML, Lewis BG, Eckhaus M, Reimann KA, Klymiuk N, Wolf E, Ayares D, Horvath KA. One-year heterotopic cardiac xenograft survival in a pig to baboon model. Am J Transplant 2014; 14: 488-489
  • 29 Cozzi E, Tallacchini M, Flanagan EB, Pierson 3rd RN, Sykes M, Vanderpool HY. The International Xenotransplantation Association consensus statement on conditions for undertaking clinical trials of porcine islet products in type 1 diabetes – chapter 1: Key ethical requirements and progress toward the definition of an international regulatory framework. Xenotransplantation 2009; 16: 203-214
  • 30 Katholische Akademie Bayern. www.kath-akademie-bayern.de Zur Debatte, Heft 63/2014
  • 31 Mueller NJ, Takeuchi Y, Mattiuzzo G, Scobie L. Microbial safety in xenotransplantation. Curr Opin Organ Transplant 2011; 16: 201-206
  • 32 Scobie L, Takeuchi Y. Porcine endogenous retrovirus and other viruses in xenotransplantation. Curr Opin Organ Transplant 2009; 14: 175-179
  • 33 Semaan M, Rotem A, Barkai U, Bornstein S, Denner J. Screening pigs for xenotransplantation: prevalence and expression of porcine endogenous retroviruses in Göttingen minipigs. Xenotransplantation 2013; 20: 148-156
  • 34 Denner J, Tönjes RR. Infection barriers to successful xenotransplantation focusing on porcine endogenous retroviruses. Clin Microbiol Rev 2012; 25: 318-343
  • 35 Denner J, Schuurman HJ, Patience C. The International Xenotransplantation Association consensus statement on conditions for undertaking clinical trials of porcine islet products in type 1 diabetes–chapter 5: Strategies to prevent transmission of porcine endogenous retroviruses. Xenotransplantation 2009; 16: 239-248
  • 36 Denner J, Tönjes R, Takeuchi Y, Fishman J, Linda Scobie L. The International Xenotransplantation Association consensus statement on conditions for undertaking clinical trials of porcine islet products in type 1 diabetes – Chapter 5: Recipient monitoring and response plan for preventing disease transmission. Xenotransplantation in preparation
  • 37 Yamada K, Yazawa K, Shimizu A, Iwanaga T, Hisashi Y, Nuhn M, O’Malley P, Nobori S, Vagefi PA, Patience C, Fishman J, Cooper DK, Hawley RJ, Greenstein J, Schuurman HJ, Awwad M, Sykes M, Sachs DH. Marked prolongation of porcine renal xenograft survival in baboons through the use of alpha1,3-galactosyltransferase gene-knockout donors and the cotransplantation of vascularized thymic tissue. Nat Med 2005; 11: 32-34
  • 38 Kuwaki K, Tseng YL, Dor FJ, Shimizu A, Houser SL, Sanderson TM, Lancos CJ, Prabharasuth DD, Cheng J, Moran K, Hisashi Y, Mueller N, Yamada K, Greenstein JL, Hawley RJ, Patience C, Awwad M, Fishman JA, Robson SC, Schuurman HJ, Sachs DH, Cooper DK. Heart transplantation in baboons using alpha1,3-galactosyltransferase gene-knockout pigs as donors: initial experience. Nat Med 2005; 11: 29-31
  • 39 Ekser B, Kumar G, Veroux M, Cooper DK. Therapeutic issues in the treatment of vascularized xenotransplants using gal-knockout donors in nonhuman primates. Curr Opin Organ Transplant 2011; 16: 222-230
  • 40 Mohiuddin MM, Singh AK, Corcoran PC, Hoyt RF, Thomas 3rd ML, Ayares D, Horvath KA. Genetically engineered pigs and target-specific immunomodulation provide significant graft survival and hope for clinical cardiac xenotransplantation. J Thorac Cardiovasc Surg 2014; 148: 1106-1113
  • 41 Petersen B, Ramackers W, Lucas-Hahn A, Lemme E, Hassel P, Queisser AL, Herrmann D, Barg-Kues B, Carnwath JW, Klose J, Tiede A, Friedrich L, Baars W, Schwinzer R, Winkler M, Niemann H. Transgenic expression of human heme oxygenase-1 in pigs confers resistance against xenograft rejection during ex vivo perfusion of porcine kidneys. Xenotransplantation 2011; 18: 355-368
  • 42 Oropeza M, Petersen B, Carnwath JW, Lucas-Hahn A, Lemme E, Hassel P, Herrmann D, Barg-Kues B, Holler S, Queisser AL, Schwinzer R, Hinkel R, Kupatt C, Niemann H. Transgenic expression of the human A20 gene in cloned pigs provides protection against apoptotic and inflammatory stimuli. Xenotransplantation 2009; 16: 522-534
  • 43 Petersen B, Ramackers W, Tiede A, Lucas-Hahn A, Herrmann D, Barg-Kues B, Schuettler W, Friedrich L, Schwinzer R, Winkler M, Niemann H. Pigs transgenic for human thrombomodulin have elevated production of activated protein C. Xenotransplantation 2009; 16: 486-495
  • 44 Ezzelarab M, Garcia B, Azimzadeh A, Sun H, Lin CC, Hara H, Kelishadi S, Zhang T, Lin YJ, Tai HC, Long C, Wagner R, Thacker J, Murase N, McCurry K, Barth RN, Ayares D, Pierson 3rd RN, Cooper DKC. The innate immune response and activation of coagulation in alpha1,3-galactosyltransferase gene-knockout xenograft recipients. Transplantation 2009; 87: 805-812
  • 45 Poirier N, Azimzadeh AM, Zhang T, Dilek N, Mary C, Nguyen B, Tillou X, Wu G, Reneaudin K, Hervouet J, Martinet B, Coulon F, Allain-Launay E, Karam G, Soulillou JP, Pierson 3rd RN, Blancho G, Vanhove B. Inducing CTLA-4-dependent immune regulation by selective CD28 blockade promotes regulatory T cells in organ transplantation. Sci Translat Med 2010; 2 17ra10
  • 46 Klymiuk N, van Buerck L, Bähr A, Offers M, Kessler B, Wuensch A, Kurome M, Thormann M, Lochner K, Nagashima H, Herbach N, Wanke R, Seissler J, Wolf E. Xenografted islet cell clusters from INSLEA29Y transgenic pigs rescue diabetes and prevent immune rejection in humanized mice. Diabetes 2012; 61: 1527-1532
  • 47 Del Rio ML, Seebach JD, Fernandez-Renedo C, Rodriguez-Barbosa JI. ITIM-dependent negative signaling pathways for the control of cell-mediated xenogeneic immune responses. Xenotransplantation 2013; 20: 397-406
  • 48 Ding Q, Lu L, Zhou X, Zhou Y, Chou KY. Human PD-L1-overexpressing porcine vascular endothelial cells induce functionally suppressive human CD4+CD25hiFoxp3+ Treg cells. J Leukoc Biol 2011; 90: 77-86
  • 49 Plege-Fleck A, Lieke T, Römermann D, Düvel H, Hundrieser J, Buermann A, Kraus L, Klempnauer J, Schwinzer R. Pig to rat cell transplantation: reduced cellular and antibody responses to xenografts overexpressing PD-L1. Xenotransplantation 2014; Jul 9 DOI: 10.1111/xen.12121. [Epub ahead of print]
  • 50 Waldmann H, Adams E, Fairchild P, Cobbold S. Regulation and privilege in transplantation tolerance. J Clin Immunol 2008; 28: 716-725
  • 51 Muller YD, Golshayan D, Ehirchiou D, Wekerle T, Seebach JD, Buhler LH. T regulatory cells in xenotransplantation. Xenotransplantation 2009; 16: 121-128
  • 52 Inverardi L, Pardi R. Early events in cell-mediated recognition of vascularized xenografts: cooperative interactions between selected lymphocyte subsets and natural antibodies. Immunol Rev 1994; 141: 71-93
  • 53 Schneider MK, Seebach JD. Current cellular innate immune hurdles in pig-to-primate xenotransplantation. Curr Opin Organ Transplant 2008; 13: 171-177
  • 54 Li S, Waer M, Billiau AD. Xenotransplantation: role of natural immunity. Transplant Immunol 2009; 21: 70-74
  • 55 Weiss EH, Lilienfeld BG, Muller S, Muller E, Herbach N, Kessler B, Wanke R, Schwinzer R, Seebach JD, Wolf E, Brem G. HLA-E/human beta2-microglobulin transgenic pigs: protection against xenogeneic human anti-pig natural killer cell cytotoxicity. Transplantation 2009; 87: 35-43
  • 56 Marigliano M, Bertera S, Grupillo M, Trucco M, Bottino R. Pig-to-nonhuman primates pancreatic islet xenotransplantation: an overview. Curr Diab Rep 2011; 11: 402-412
  • 57 Goto M, Tjernberg J, Dufrane D, Elgue G, Brandhorst D, Ekdahl KN, Brandhorst H, Wennberg L, Kurokawa Y, Satomi S, Lambris JD, Gianello P, Korsgren O, Nilsson B. Dissecting the instant blood-mediated inflammatory reaction in islet xenotransplantation. Xenotransplantation 2008; 15: 225-234
  • 58 Vaithilingam V, Tuch BE. Islet transplantation and encapsulation: an update on recent developments. Rev Diabetic Studies 2011; 8: 51-67
  • 59 Ludwig B, Zimerman B, Steffen A, Yavriants K, Azarov D, Reichel A, Vardi P, German T, Shabtay N, Rotem A, Evron Y, Neufeld T, Mimon S, Ludwig S, Brendel MD, Bornstein SR, Barkai U. A novel device for islet transplantation providing immune protection and oxygen supply. Horm Metab Res 2010; 42: 918-922
  • 60 Ludwig B, Rotem A, Schmid J, Weir GC, Colton CK, Brendel MD, Neufeld T, Block NL, Yavriyants K, Steffen A, Ludwig S, Chavakis T, Reichel A, Azarov D, Zimermann B, Maimon S, Balyura M, Rozenshtein T, Shabtay N, Vardi P, Bloch K, de Vos P, Schally AV, Bornstein SR, Barkai U. Improvement of islet function in a bioartificial pancreas by enhanced oxygen supply and growth hormone releasing hormone agonist. Proc Natl Acad Sci USA 2012; 109: 5022-5027
  • 61 Barkai U, Weir GC, Colton CK, Ludwig B, Bornstein SR, Brendel MD, Neufeld T, Bremer C, Leon A, Evron Y, Yavriyants K, Azarov D, Zimermann B, Maimon S, Shabtay N, Balyura M, Rozenshtein T, Vardi P, Bloch K, de Vos P, Rotem A. Enhanced oxygen supply improves islet viability in a new bioartificial pancreas. Cell Transplant 2013; 22: 1463-1476
  • 62 Neufeld T, Ludwig B, Barkai U, Weir GC, Colton CK, Evron Y, Balyura M, Yavriyants K, Zimermann B, Azarov D, Maimon S, Shabtay N, Rozenshtein T, Lorber D, Steffen A, Willenz U, Bloch K, Vardi P, Taube R, de Vos P, Lewis EC, Bornstein SR, Rotem A. The efficacy of an immunoisolating membrane system for islet xenotransplantation in minipigs. PLoS One 2013; 8: e70150
  • 63 Ludwig B, Reichel A, Steffen A, Zimerman B, Schally AV, Block NL, Colton CK, Ludwig S, Kersting S, Bonifacio E, Solimena M, Gendler Z, Rotem A, Barkai U, Bornstein SR. Transplantation of human islets without immunosuppression. Proc Natl Acad Sci USA 2013; 110: 19054-19058