Horm Metab Res 2015; 47(01): 84-87
DOI: 10.1055/s-0034-1394374
Mini Review
© Georg Thieme Verlag KG Stuttgart · New York

Incretins or Anti-Incretins? A New Model for the “Entero-Pancreatic Axis”

V. Kamvissi
1   King’s College London, Department of Endocrinology, Diabetes and Nutritional Sciences London, UK
2   University Hospital Dresden CGC, Medical Clinic 3, Department of Endocrinology, Diabetes and Metabolic Diseases, Dresden, Germany
,
A. Salerno
3   King’s College Hospital, Bariatric and Metabolic Surgery, London, UK
,
S. R. Bornstein
1   King’s College London, Department of Endocrinology, Diabetes and Nutritional Sciences London, UK
2   University Hospital Dresden CGC, Medical Clinic 3, Department of Endocrinology, Diabetes and Metabolic Diseases, Dresden, Germany
,
G. Mingrone
4   Catholic University of Rome, Department of Internal Medicine, Rome, Italy
,
F. Rubino
1   King’s College London, Department of Endocrinology, Diabetes and Nutritional Sciences London, UK
3   King’s College Hospital, Bariatric and Metabolic Surgery, London, UK
4   Catholic University of Rome, Department of Internal Medicine, Rome, Italy
› Author Affiliations
Further Information

Publication History

received 01 August 2014

accepted 29 September 2014

Publication Date:
11 November 2014 (online)

Abstract

The role of incretins in glucose homeostasis is well known. Yet, in recent years, the sustained weight loss and rapid glycemic control following bariatric surgery has challenged our understanding of the intestinal-pancreatic interaction. This in turn led to the introduction of metabolic surgery, an innovative medical discipline in which a surgical manipulation of the gastrointestinal tract (e. g., through a Roux-en-Y gastric bypass, RYGB, or Bilio-Pancreatic-Diversion, BPD) yields a sustained remission of diabetes mellitus. The pathophysiological background of this metabolic effect is, amongst other things, based on the anti-incretin theory. This theory postulates that in addition to the well-known incretin effect, nutrient passage through the GI-tract could also activate negative feedback mechanisms (anti-incretins) to balance the effects of incretins and other postprandial glucose-lowering mechanisms (i. e., suppression of ghrelin, glucagon, and hepatic glucose production via activation of nutrient sensing). This in turn prevents postprandial hyperinsulinemic hypoglycemia. The bypass of the duodenum, the entire jejunum and the first portion of the ileum by BPD induce normalization of peripheral insulin sensitivity, while the bypass of a shorter intestinal tract by RYGB mainly improves the hepatic insulin sensitivity. In addition, RYGB greatly increases insulin secretion. Therefore, metabolic surgery highlights the important role of the small intestine in glucose homeostasis, while until few years ago, it was only the pancreas and the liver that were thought to represent the regulatory organs for glucose disposal.

 
  • References

  • 1 Bayliss WM, Starling EH. The mechanism of pancreatic secretion. J Physiol 1902; 28: 325-353
  • 2 Unger RH, Eisentraut AM. Entero-insular axis. Arch Intern Med 1969; 123: 261-266
  • 3 Goke B, Fehmann HC, Schirra J, Hareter A, Goke A. The intestinal hormone glucagon-like peptide 1 (GLP-1): from experiment to the clinic. Z Gastroenterol 1997; 35: 285-294
  • 4 Dupre J, Ross SA, Watson D, Brown JC. Stimulation of insulin secretion by gastric inhibitory polypeptide in man. J Clin Endocrinol Metab 1973; 37: 826-828
  • 5 Kreymann B, Ghatei MA, Williams G, Bloom SR. Glucagon-like peptide-1 7–36: a physiological incretin in man. Lancet 1987; 2: 1300-1304
  • 6 Musso G, Gambino R, Cassader M. Obesity, diabetes, and gut microbiota: the hygiene hypothesis expanded?. Diabetes Care 2010; 33: 2277-2284
  • 7 Graessler J, Qin Y, Zhong H, Zhang J, Licinio J, Wong MOL, Xu A, Chavakis T, Bornstein AB, Erhart-Bornstein M, Lamounier-Zepter V, Lohmann T, Wolf T, Bornstein SR. Metagenomic sequencing of the human gut microbiome before and after bariatric surgery in obese patients with type 2 diabetes: correlation with inflammatory and metabolic parameters. Pharmacogenomics J 2013; 13: 514-522
  • 8 Hansen M, Sonne DP, Knop FK. Bile acid sequestrants: glucose-lowering mechanisms and efficacy in type 2 diabetes. Curr Diabetes Rep 2014; 14: 482
  • 9 Katsuma S, Hirasawa A, Tsujimoto G. Bile acids promote glucagon-like peptide-1 secretion through TGR5 in a murine enteroendocrine cell line STC-1. Biochem Biophys Res Commun 2005; 329: 386-390
  • 10 Thomas C, Gioiello A, Noriega L, SStrehle A, Oury J, Rizzo G, Macchiarulo A, Yamamoto H, Mataki C, Pruzanski M, Pellicciari M, Auwerx J, Schoonjans K. TGR5-mediated bile acid sensing controls glucose homeostasis. Cell Metab 2009; 10: 167-177
  • 11 Rubino F. From bariatric to metabolic surgery: definition of a new discipline and implications for clinical practice. Curr Atherosclerosis Rep 2013; 15: 369
  • 12 Mingrone G, Panunzi S, De Gaetano A, Guidone C, Iaconelli A, Leccesi L, Nanni G, Pomp A, Castagneto M, Ghirlanda G, Rubino F. Bariatric surgery versus conventional medical therapy for type 2 diabetes. N Engl J Med 2012; 366: 1577-1585
  • 13 Schauer PR, Kashyap SR, Wolski K, Brethaner SA, Kirwan JP, Pothier CE, Thomas S, Abood B, Nissen SE, Bhatt DL. Bariatric surgery versus intensive medical therapy in obese patients with diabetes. N Engl J Med 2012; 366: 1567-1576
  • 14 Pories WJ, Swanson MS, MacDonald KG, Long SB, Morris PG, Brown BM, Barakat HA, de Ramon RA, Israel G, Dolezal JM, Dohm L. Who would have thought it? An operation proves to be the most effective therapy for adult-onset diabetes mellitus. Ann Surg 1995; 222: 339-350 Discussion 332–350
  • 15 Ikramuddin S, Korner J, Lee WJ, Connenett JE, Inabnet WB, Billington CJ, Thomas AJ, Leslie DB, Chong K, Jeffery RW, Ahmed L, vella A, Chuang L-M, Bessler M, Sarr MG, Swain JM, laqua P, Jensen MD, Bantle JP. Roux-en-Y gastric bypass vs. intensive medical management for the control of type 2 diabetes, hypertension, and hyperlipidemia: the Diabetes Surgery Study randomized clinical trial. JAMA 2013; 309: 2240-2249
  • 16 Scopinaro N, Gianetta E, Civalleri D, Bonalumi U, Bachi V. Bilio-pancreatic bypass for obesity: II. Initial experience in man. Br J Surg 1979; 66: 618-620
  • 17 Lee WJ, Lin YH. Single-Anastomosis Gastric Bypass (SAGB): Appraisal of Clinical Evidence. Obes Surg 2014; 24: 1749-1756
  • 18 Schauer PR, Bhatt DL, Kirwan JP, Wolski K, Brethauer SA, Navaneethan SD, Aminian A, Pothier CE, Kim ESH, Nissen SE, Kashyap SR. for the Stampede Investigatores. Bariatric surgery versus intensive medical therapy for diabetes – 3-year outcomes. N Engl J Med 2014; 370: 2002-2013
  • 19 Sjostrom L. Review of the key results from the Swedish Obese Subjects (SOS) trial – a prospective controlled intervention study of bariatric surgery. J Intern Med 2013; 273: 219-234
  • 20 Sjostrom L, Peltonen M, Jacobson P, Ahlin S, Andersson-Assarsson J, Anveden A, Bouchard C, Carlsson C, Karason K, Lönroth H, Näslund I, Sjöström E, Taube M, Wedel H, Svensson P-A, Sjöholm K, Carlsson LMS. Association of bariatric surgery with long-term remission of type 2 diabetes and with microvascular and macrovascular complications. JAMA 2014; 311: 2297-2304
  • 21 Bourdages H, Goldenberg F, Nguyen P, Buchwald H. Improvement in Obesity-associated Medical Conditions following Vertical Banded Gastroplasty and Gastrointestinal Bypass. Obes Surg 1994; 4: 227-231
  • 22 Halverson JD, Kramer J, Cave A, Permutt A, Santiago J. Altered glucose tolerance, insulin response, and insulin sensitivity after massive weight reduction subsequent to gastric bypass. Surgery 1982; 92: 235-240
  • 23 Salehi M, Prigeon RL, D’Alessio DA. Gastric bypass surgery enhances glucagon-like peptide 1-stimulated postprandial insulin secretion in humans. Diabetes 2011; 60: 2308-2314
  • 24 Malin SK, Samat A, Wolski K, Abood B, Pothier CE, Bhatt DL, Nissen S, Brethauer SA, Schauer PR, Kirwan JP, Kashyap SR. Improved acylated ghrelin suppression at 2 years in obese patients with type 2 diabetes: effects of bariatric surgery vs. standard medical therapy. Int J Obes 2014; 38: 364-370
  • 25 Madsbad S, Dirksen C, Holst JJ. Mechanisms of changes in glucose metabolism and bodyweight after bariatric surgery. Lancet Diabetes Endocrinol 2014; 2: 152-164
  • 26 Rubino F, Schauer PR, Kaplan LM, Cummings DE. Metabolic surgery to treat type 2 diabetes: clinical outcomes and mechanisms of action. Ann Rev Med 2010; 61: 393-411
  • 27 Laferrere B. Effect of gastric bypass surgery on the incretins. Diabetes Metab 2009; 35: 513-517
  • 28 Lindqvist A, Spegel P, Ekelund M, Vaz EG, Pierzynowski S, Gomez MF, Mulder H, Hedenbro J, Groop L, Wierup N. Gastric bypass improves beta-cell function and increases beta-cell mass in a porcine model. Diabetes 2014; 63: 1665-1671
  • 29 Mokadem M, Zechner JF, Margolskee RF, Drucker DJ, Aguirre V. Effects of Roux-en-Y gastric bypass on energy and glucose homeostasis are preserved in two mouse models of functional glucagon-like peptide-1 deficiency. Mol Metab 2014; 3: 191-201
  • 30 Shah M, Law JH, Micheletto F, Sathananthan M, Man CD, Cobelli C, Rizza RA, Camilleri M, Zinsmeister AR, Vella A. Contribution of endogenous glucagon-like peptide 1 to glucose metabolism after Roux-en-Y gastric bypass. Diabetes 2014; 63: 483-493
  • 31 Schauer PR, Burguera B, Ikramuddin S, Cottam D, Gourash W, Hamad G, Eid GM, Mattar S, Ramanathan R, Barinas-Mitchel E, Rao RH, Kuller L, Kelley D. Effect of laparoscopic Roux-en Y gastric bypass on type 2 diabetes mellitus. Ann Surgery. 2003; 238: 84-85 Discussion 465–484
  • 32 Pories WJ. Diabetes: the evolution of a new paradigm. Ann Surg 2004; 239: 12-13
  • 33 Briatore L, Salani B, Andraghetti G, Sferrazzo E, Scopinaro N, Adami GF, Maggi D, Cordera R. Restoration of acute insulin response in T2DM subjects 1 month after biliopancreatic diversion. Obesity (Silver Spring, Md) 2008; 16: 77-81
  • 34 Guidone C, Manco M, Valera-Mora E, Iaconelli A, Gniuli D, Mari A, Nanni G, Castagneto M, Calvani M, Migrone G. Mechanisms of recovery from type 2 diabetes after malabsorptive bariatric surgery. Diabetes 2006; 55: 2025-2031
  • 35 Bikman BT, Zheng D, Pories WJ, Chapman W, Pender JR, Bowden RC, Reed MA, Cortright RN, Tapscott EB, Houmard JA, Tanner CJ, Lee J, Dohm GL. Mechanism for improved insulin sensitivity after gastric bypass surgery. J Clin Endocrinol Metab 2008; 93: 4656-4663
  • 36 Rubino F. Is type 2 diabetes an operable intestinal disease? A provocative yet reasonable hypothesis. Diabetes Care 2008; 31 (Suppl. 02) S290-S296
  • 37 Rubino F, Gagner M. Potential of surgery for curing type 2 diabetes mellitus. Ann Surg 2002; 236: 554-559
  • 38 Rubino F, Moo TA, Rosen DJ, Dakin GF, Pomp A. Diabetes surgery: a new approach to an old disease. Diabetes Care 2009; 32 (Suppl. 02) S368-S372
  • 39 Rubino F, R’Bibo SL, del Genio F, Mazumdar M, McGraw TE. Metabolic surgery: the role of the gastrointestinal tract in diabetes mellitus. Nat Rev Endocrinol 2010; 6: 102-109
  • 40 Rubino F, Amiel SA. Is the gut the “sweet spot” for the treatment of diabetes?. Diabetes 2014; 63: 2225-2228
  • 41 Salinari S, le Roux CW, Bertuzzi A, Rubino F, Mingrone G. Duodenal-jejunal bypass and jejunectomy improve insulin sensitivity in Goto-Kakizaki diabetic rats without changes in incretins or insulin secretion. Diabetes 2014; 63: 1069-1078
  • 42 Rubino F, Marescaux J. Effect of duodenal-jejunal exclusion in a non-obese animal model of type 2 diabetes: a new perspective for an old disease. Ann Surg 2004; 239: 1-11
  • 43 Rubino F, Forgione A, Cummings DE, Vix M, Gnuli D, Mingrone G, Castagneto M, Marescaux J. The mechanism of diabetes control after gastrointestinal bypass surgery reveals a role of the proximal small intestine in the pathophysiology of type 2 diabetes. Ann Surg 2006; 244: 741-749
  • 44 Salinari S, Debard C, Bertuzzi A, Durand C, Zimmet P, Vidal H, Mingrone G. Jejunal proteins secreted by db/db mice or insulin-resistant humans impair the insulin signaling and determine insulin resistance. PloS One 2013; 8: e56258