Semin Reprod Med 2013; 31(06): 393-398
DOI: 10.1055/s-0033-1356475
Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

Oocyte Development and Loss

Roger G. Gosden
1   Center for Reproductive Medicine and Infertility, Weill Cornell Medical College, New York, New York
› Author Affiliations
Further Information

Publication History

Publication Date:
07 October 2013 (online)

Abstract

Soon after implantation, cell lineages bifurcate into future somatic and germ cells. Canonical expression of germ cell–specific genes continues during and after their migration to the gonadal ridge, where, after further cell cycles, they enter meiosis, form syncytial clusters, and arrest at diplotene for folliculogenesis. The balance between cell survival and death leaves an ovarian follicular reserve as a legacy.

 
  • References

  • 1 Lawson KA, Hage WJ. Clonal analysis of the origin of primordial germ cells in the mouse. Ciba Found Symp 1994; 182: 68-84 , discussion 84–91
  • 2 Lawson KA, Dunn NR, Roelen BA , et al. Bmp4 is required for the generation of primordial germ cells in the mouse embryo. Genes Dev 1999; 13 (4) 424-436
  • 3 Johnson AD, Richardson E, Bachvarova RF, Crother BI. Evolution of the germ line-soma relationship in vertebrate embryos. Reproduction 2011; 141 (3) 291-300
  • 4 Hayashi K, Ogushi S, Kurimoto K, Shimamoto S, Ohta H, Saitou M. Offspring from oocytes derived from in vitro primordial germ cell-like cells in mice. Science 2012; 338 (6109) 971-975
  • 5 Saitou M, Barton SC, Surani MA. A molecular programme for the specification of germ cell fate in mice. Nature 2002; 418 (6895) 293-300
  • 6 Saitou M, Payer B, O'Carroll D, Ohinata Y, Surani MA. Blimp1 and the emergence of the germ line during development in the mouse. Cell Cycle 2005; 4 (12) 1736-1740
  • 7 Surani MA, Hayashi K, Hajkova P. Genetic and epigenetic regulators of pluripotency. Cell 2007; 128 (4) 747-762
  • 8 Johnson J, Bagley J, Skaznik-Wikiel M , et al. Oocyte generation in adult mammalian ovaries by putative germ cells in bone marrow and peripheral blood. Cell 2005; 122 (2) 303-315
  • 9 Eggan K, Jurga S, Gosden R, Min IM, Wagers AJ. Ovulated oocytes in adult mice derive from non-circulating germ cells. Nature 2006; 441 (7097) 1109-1114
  • 10 Hara K, Kanai-Azuma M, Uemura M , et al. Evidence for crucial role of hindgut expansion in directing proper migration of primordial germ cells in mouse early embryogenesis. Dev Biol 2009; 330 (2) 427-439
  • 11 Freeman B. The active migration of germ cells in the embryos of mice and men is a myth. Reproduction 2003; 125 (5) 635-643
  • 12 Møllgård K, Jespersen A, Lutterodt MC, Yding Andersen C, Høyer PE, Byskov AG. Human primordial germ cells migrate along nerve fibers and Schwann cells from the dorsal hind gut mesentery to the gonadal ridge. Mol Hum Reprod 2010; 16 (9) 621-631
  • 13 Gondos B, Zamboni L. Ovarian development: the functional importance of germ cell interconnections. Fertil Steril 1969; 20 (1) 176-189
  • 14 Byskov AG, Andersen CY. Ontogeny of the mammalian ovary. In: Trounson AL, Gosden RG, Eichenlaub-Ritter U, , eds. Biology and Pathology of the Oocyte. Cambridge: Cambridge University Press; 2013. : (in press)
  • 15 Childs AJ, Cowan G, Kinnell HL, Anderson RA, Saunders PT. Retinoic Acid signalling and the control of meiotic entry in the human fetal gonad. PLoS ONE 2011; 6 (6) e20249 Epub2011Jun3.
  • 16 Baltus AE, Menke DB, Hu YC , et al. In germ cells of mouse embryonic ovaries, the decision to enter meiosis precedes premeiotic DNA replication. Nat Genet 2006; 38 (12) 1430-1434
  • 17 Trautmann E, Guerquin MJ, Duquenne C, Lahaye JB, Habert R, Livera G. Retinoic acid prevents germ cell mitotic arrest in mouse fetal testes. Cell Cycle 2008; 7 (5) 656-664
  • 18 Baker TG. A quantitative and cytological study of germ cells in human ovaries. Proc R Soc Lond B Biol Sci 1963; 158: 417-433
  • 19 Zou K, Yuan Z, Yang Z , et al. Production of offspring from a germline stem cell line derived from neonatal ovaries. Nat Cell Biol 2009; 11 (5) 631-636
  • 20 White YA, Woods DC, Takai Y, Ishihara O, Seki H, Tilly JL. Oocyte formation by mitotically active germ cells purified from ovaries of reproductive-age women. Nat Med 2012; 18 (3) 413-421
  • 21 Zuckerman S. The number of oocytes in the mature ovary. Recent Prog Horm Res 1951; 6: 63-109
  • 22 John GB, Shirley LJ, Gallardo TD, Castrillon DH. Specificity of the requirement for Foxo3 in primordial follicle activation. Reproduction 2007; 133 (5) 855-863
  • 23 Reddy P, Liu L, Adhikari D , et al. Oocyte-specific deletion of Pten causes premature activation of the primordial follicle pool. Science 2008; 319 (5863) 611-613
  • 24 Gosden RG. Programmes and prospects for ovotechnology. Reprod Biomed Online 2013; ; 10.1016/j.rbmo.2013.04.019
  • 25 Burns RK. Role of hormones in the differentiation of sex. In: Young WC, , ed. Sex and Internal Secretions. 3rd ed. Baltimore, MD: The Williams and Wilkins Co; 1961: 76-158
  • 26 Mork L, Maatouk DM, McMahon JA , et al. Temporal differences in granulosa cell specification in the ovary reflect distinct follicle fates in mice. Biol Reprod 2012; 86 (2) 37
  • 27 Zhang H, Zheng W, Shen Y, Adhikari D, Ueno H, Liu K. Experimental evidence showing that no mitotically active female germline progenitors exist in postnatal mouse ovaries. Proc Natl Acad Sci U S A 2012; 109 (31) 12580-12585
  • 28 Henderson SA, Edwards RG. Chiasma frequency and maternal age in mammals. Nature 1968; 218 (5136) 22-28
  • 29 Pangas SA, Rajkovic A. Transcriptional regulation of early oogenesis: in search of masters. Hum Reprod Update 2006; 12 (1) 65-76
  • 30 Gosden R, Lee B. Portrait of an oocyte: our obscure origin. J Clin Invest 2010; 120 (4) 973-983
  • 31 Telfer E, Gosden RG. A quantitative cytological study of polyovular follicles in mammalian ovaries with particular reference to the domestic bitch (Canis familiaris). J Reprod Fertil 1987; 81 (1) 137-147
  • 32 Greenbaum MP, Yan W, Wu MH , et al. TEX14 is essential for intercellular bridges and fertility in male mice. Proc Natl Acad Sci U S A 2006; 103 (13) 4982-4987
  • 33 Mamsen LS, Lutterodt MC, Andersen EW, Byskov AG, Andersen CY. Germ cell numbers in human embryonic and fetal gonads during the first two trimesters of pregnancy: analysis of six published studies. Hum Reprod 2011; 26 (8) 2140-2145
  • 34 Kan R, Sun X, Kolas NK , et al. Comparative analysis of meiotic progression in female mice bearing mutations in genes of the DNA mismatch repair pathway. Biol Reprod 2008; 78 (3) 462-471
  • 35 Høyer PE, Byskov AG, Møllgård K. Stem cell factor and c-Kit in human primordial germ cells and fetal ovaries. Mol Cell Endocrinol 2005; 234 (1–2) 1-10
  • 36 Coucouvanis EC, Sherwood SW, Carswell-Crumpton C, Spack EG, Jones PP. Evidence that the mechanism of prenatal germ cell death in the mouse is apoptosis. Exp Cell Res 1993; 209 (2) 238-247
  • 37 Bergeron L, Perez GI, Macdonald G , et al. Defects in regulation of apoptosis in caspase-2-deficient mice. Genes Dev 1998; 12 (9) 1304-1314
  • 38 Ratts VS, Flaws JA, Kolp R, Sorenson CM, Tilly JL. Ablation of bcl-2 gene expression decreases the numbers of oocytes and primordial follicles established in the post-natal female mouse gonad. Endocrinology 1995; 136 (8) 3665-3668
  • 39 Zinn AR, Ross JL. Molecular analysis of genes on Xp controlling Turner syndrome and premature ovarian failure (POF). Semin Reprod Med 2001; 19 (2) 141-146
  • 40 Faddy MJ, Telfer E, Gosden RG. The kinetics of pre-antral follicle development in ovaries of CBA/Ca mice during the first 14 weeks of life. Cell Tissue Kinet 1987; 20 (6) 551-560
  • 41 Skinner MK. Regulation of primordial follicle assembly and development. Hum Reprod Update 2005; 11 (5) 461-471
  • 42 Méduri G, Bachelot A, Duflos C , et al. FOXL2 mutations lead to different ovarian phenotypes in BPES patients: Case Report. Hum Reprod 2010; 25 (1) 235-243
  • 43 Gruijters MJ, Visser JA, Durlinger AL, Themmen AP. Anti-Müllerian hormone and its role in ovarian function. Mol Cell Endocrinol 2003; 211 (1–2) 85-90
  • 44 Li J, Kawamura K, Cheng Y , et al. Activation of dormant ovarian follicles to generate mature eggs. Proc Natl Acad Sci U S A 2010; 107 (22) 10280-10284
  • 45 Oktay K, Briggs D, Gosden RG. Ontogeny of follicle-stimulating hormone receptor gene expression in isolated human ovarian follicles. J Clin Endocrinol Metab 1997; 82 (11) 3748-3751
  • 46 Faddy MJ, Gosden RG, Gougeon A, Richardson SJ, Nelson JF. Accelerated disappearance of ovarian follicles in mid-life: implications for forecasting menopause. Hum Reprod 1992; 7 (10) 1342-1346
  • 47 Jensen F, Willis MA, Albamonte MS, Espinosa MB, Vitullo AD. Naturally suppressed apoptosis prevents follicular atresia and oocyte reserve decline in the adult ovary of Lagostomus maximus (Rodentia, Caviomorpha). Reproduction 2006; 132 (2) 301-308
  • 48 Schuh-Huerta SM, Johnson NA, Rosen MP, Sternfeld B, Cedars MI, Reijo Pera RA. Genetic markers of ovarian follicle number and menopause in women of multiple ethnicities. Hum Genet 2012; 131 (11) 1709-1724
  • 49 Perry JR, Corre T, Esko T , et al; ReproGen Consortium. A genome-wide association study of early menopause and the combined impact of identified variants. Hum Mol Genet 2013; 22 (7) 1465-1472