Planta Med 2010; 76(4): 402-405
DOI: 10.1055/s-0029-1186164
Biochemistry, Molecular Biology and Biotechnology
Letters
© Georg Thieme Verlag KG Stuttgart · New York

Anisodamine Production from Natural Sources: Seedlings and Hairy Root Cultures of Argentinean and Colombian Brugmansia candida Plants

Alejandra Beatriz Cardillo1 [*] , Ángela María Otalvaro Alvarez2 [*] , Ariel Calabró Lopez1 , Mario Enrique Velásquez Lozano2 , Julián Rodríguez Talou1 , Ana María Giulietti1
  • 1Cátedra de Microbiología Industrial y Biotecnología, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
  • 2Departamento de Ingeniería Química y Ambiental, Universidad Nacional de Colombia, Sede Bogotá, Colombia
Further Information

Publication History

received March 5, 2009 revised August 26, 2009

accepted September 1, 2009

Publication Date:
29 September 2009 (online)

Abstract

The tropane alkaloid anisodamine (2) is obtained by 6β-hydroxylation of hyoscyamine (1). The application of this alkaloid in medicine is gaining attention due to the wide range of therapeutic applications described in addition to its anticholinergic activity. In this work, the production of anisodamine (2) by in vitro cultures of Brugmansia candida (Argentinean and Colombian samples) was studied. This alkaloid was estimated in different organs of in vitro-germinated seedlings as well as in hairy roots obtained from seedlings from both sources. Colombian roots exhibited the highest content of tropane alkaloids, with anisodamine (2) being the main alkaloid measured. In the leaves, the main alkaloid was scopolamine (3) and no significant differences were observed between Argentinean and Colombian leaves. The tropane alkaloid content in Argentinean hairy roots was significantly higher than in Colombian ones. Also, in the Argentinean samples the main alkaloid detected was anisodamine (2). Argentinean and Colombian B. candida seedlings and hairy roots appear to be a promising system for the production of anisodamine (2).

References

  • 1 Roses O E, Miño J, Villamil E C. Acción farmacodinámica de las flores de Brugmansia candida.  Fitoterapia. 1988;  59 120-127
  • 2 Giulietti A M, Parr A J, Rhodes M J. Tropane alkaloid production in transformed root cultures of Brugmansia candida.  Planta Med. 1993;  59 428-431
  • 3 Palazón J, Moyano E, Cusidó R M, Bonfill M, Oksman-Caldentey K-M, Pinol M T. Alkaloid production in Duboisia hybrid hairy roots and plants overexpressing the h6h gene.  Plant Sci. 2003;  165 1289-1295
  • 4 Hashimoto T, Yamada Y. Hyoscyamine 6beta-hydroxylase, a 2-oxoglutarate-dependent dioxygenase, in alkaloid-producing root cultures.  Plant Physiol. 1986;  81 619-625
  • 5 Zhang L, Ding R, Chai Y, Bonfill M, Moyano E, Oksman-Caldentey K M, Xu T, Pi Y, Wang Z, Zhang H, Kai G, Liao Z, Sun X, Tang K. Engineering tropane biosynthetic pathway in Hyoscyamus niger hairy root cultures.  Proc Natl Acad Sci USA. 2004;  101 6786-6791
  • 6 Poupko J M, Baskin S I, Moore E. The pharmacological properties of anisodamine.  J Appl Toxicol. 2006;  27 116-121
  • 7 Wang T N, Yang H J, Gu-Ling L, Li J Y, Zheng X X. Advanced measurement and quantitative appraise of anisodamine on calcium triggered in cardiac myocyte. Engineering in Medicine and Biology 27th Annual Conference, Shanghai, China; 2005. 
  • 8 Wang P Y, Chen J W, Hwang F. Anisodamine causes acyl chain interdigitation in phosphatidylglycerol.  FEBS Lett. 1993;  332 193-196
  • 9 Wang H, Lu Y, Chen H Z. Differentiating effects of anisodamine on cognitive amelioration and peripheral muscarinic side effects induced by pilocarpine in mice.  Neurosci Lett. 2003;  344 173-176
  • 10 Sheng C Y, Gao W Y, Guo Z R, He L X. Anisodamine restores bowel circulation in burn shock.  Burns. 1997;  23 142-146
  • 11 Norby F L, Ren J. Anisodamine inhibits cardiac contraction and intracellular Ca(2+) transients in isolated adult rat ventricular myocytes.  Eur J Pharmacol. 2002;  439 21-25
  • 12 Wu Y F, Lü W, Lu Q, Zhang W S. Asymmetric synthesis of anisodine.  Chin Chem Lett. 2005;  16 1287-1289
  • 13 Yang L M, Xie Y F, Chen H Z, Lu Y. Diastereomeric and enantiomeric high-performance liquid chromatographic separation of synthetic anisodamine.  J Pharm Biomed Anal. 2007;  43 905-909
  • 14 Lee K T, Yamakawa T, Kodama T, Shimomura K. Effects of chemicals on alkaloid production by transformed roots of Belladonna.  Phytochemistry. 1998;  49 2343-2347
  • 15 Li J, Chun Y, Jua H. Simultaneous electrochemiluminiscence detection of anisodamine, atropine and scopolamine in Flos daturae by capillary electrophoresis using b-cyclodextrin as additive.  Electroanalysis. 2007;  19 1569-1574
  • 16 Diwan R, Malpathak N. Novel technique for scaling up of micropropagated Ruta graveolens shoots using liquid culture systems: a step towards commercialization.  New Biotechnol. 2008;  25 85-91
  • 17 Liu C. Novel plant reactors for pharmaceutical production. World Congress on In Vitro Biology, Arkansas State University. 2008
  • 18 Guillon S, Tremouillaux-Guiller J, Pati P K, Rideau M, Gantet P. Hairy root research: recent scenario and exciting prospects.  Curr Opin Plant Biol. 2006;  9 341-346
  • 19 Hashimoto T, Hayashi A, Amano Y, Kohno J, Iwanari H, Usuda S, Yamada Y. Hyoscyamine 6beta-hydroxylase, an enzyme involved in tropane alkaloid biosynthesis, is localized at the pericycle of the root.  J Biol Chem. 1991;  266 4648-4653
  • 20 Zarate R, el Jaber-Vazdekis N, Medina B, Ravelo A G. Tailoring tropane alkaloid accumulation in transgenic hairy roots of Atropa baetica by over-expressing the gene encoding hyoscyamine 6beta-hydroxylase.  Biotechnol Lett. 2006;  28 1271-1277
  • 21 Hamill J D, Parr A J, Rhodes M J C, Robins R J, Walton N J. New routes to plant secondary products.  Biotechnology. 1987;  5 800-804
  • 22 Cardillo A B, Giulietti A M, Marconi P L. Analysis and sequencing of h6hmRNA, last enzyme in the tropane alkaloids pathway from anthers and hairy root cultures of Brugmansia candida (Solanaceae).  Electronic J Biotechnol. 2006;  9 195-198
  • 23 Cardillo A B, Rodriguez Talou J, Giulietti A M. Expression of Brugmansia candida hyoscyamine 6beta-hydroxylase gene in Saccharomyces cerevisiae and its potential use as biocatalyst.  Microb Cell Fact. 2008;  7 17
  • 24 Kursinszki L, Hank H, Laszlo I, Szoke E. Simultaneous analysis of hyoscyamine, scopolamine, 6beta-hydroxyhyoscyamine and apoatropine in Solanaceous hairy roots by reversed-phase high-performance liquid chromatography.  J Chromatogr A. 2005;  1091 32-39
  • 25 Cheng K D, Zhu W H, Li X L, Meng C, Sun Z M, Yang D H. Biotransformation of hyoscyamine by suspension cultures of Anisodus tanguticus.  Planta Med. 1987;  53 211-213
  • 26 Zhang H M, Ou Z L, Yamamoto T. Anisodamine inhibits shiga toxin type 2-mediated tumor necrosis factor-alpha production in vitro and in vivo.  Exp Biol Med (Maywood). 2001;  226 597-604
  • 27 Pitta-Alvarez S I, Spollansky T C, Giulietti A M. The influence of different biotic and abiotic elicitors on the production and profile of tropane alkaloids in hairy root cultures of Brugmansia candida.  Enzyme Microb Technol. 2000;  26 252-258
  • 28 Gamborg O L, Miller R A, Ojima K. Nutrient requirements of suspension cultures of soybean root cells.  Exp Cell Res. 1968;  50 151-158
  • 29 Hamill J D, Rounsley S, Spencer A, Todd G, Rhodes J C. The use of the polymerase chain reaction in plant transformation studies.  Plant Cell Rep. 1991;  10 221-224
  • 30 Payne J, Hamill J D, Robins R J, Rhodes M J. Production of hyoscyamine by ‘Hairy Root cultures of Datura stramonium.  Planta Med. 1987;  53 474-478

1 These authors contributed equally to this work.

Prof. Dr. Ana María Giulietti

Cátedra de Microbiología Industrial y Biotecnología
Facultad de Farmacia y Bioquímica
Universidad de Buenos Aires

Junín 956 (CP 1113)

Buenos Aires

Argentina

Phone: + 54 11 49 64 82 69

Fax: + 54 11 49 64 82 69 ext. 30

Email: agiule@ffyb.uba.ar

>