Rofo 2023; 195(03): 224-233
DOI: 10.1055/a-1976-910
Abdomen

Volumetric Evaluation of 3D Multi-Gradient-Echo MRI Data to Assess Whole Liver Iron Distribution by Segmental R2* Analysis: First Experience

Volumetrische Auswertung von 3D-Multigradientenecho-MRT-Daten zur Beurteilung der Eisenverteilung in der gesamten Leber durch segmentale R2*-Analyse: erste Erfahrungen
Arthur P Wunderlich
1   Diagnostic and Interventional Radiology, University Ulm Medical Centre, Ulm, Germany
2   Section for Experimental Radiology, University Ulm Medical Centre, Ulm, Germany
,
Holger Cario
3   Department of Pediatrics and Adolescent Medicine, University Ulm Medical Centre, Ulm, Germany
,
Stephan Kannengießer
4   Magnetic Resonance Development, Siemens Healthcare AG, Erlangen, Germany
,
Veronika Grunau
1   Diagnostic and Interventional Radiology, University Ulm Medical Centre, Ulm, Germany
,
Lena Hering
1   Diagnostic and Interventional Radiology, University Ulm Medical Centre, Ulm, Germany
,
Michael Götz
2   Section for Experimental Radiology, University Ulm Medical Centre, Ulm, Germany
,
Meinrad Beer
1   Diagnostic and Interventional Radiology, University Ulm Medical Centre, Ulm, Germany
,
Stefan Andreas Schmidt
1   Diagnostic and Interventional Radiology, University Ulm Medical Centre, Ulm, Germany
› Author Affiliations
Supported by: Siemens Healthineers, Master Research Agreement

Abstract

Purpose MR transverse relaxation rate R2* has been shown to be useful for monitoring liver iron overload. A sequence enabling acquisition of the whole liver in a single breath hold is now available, thus allowing volumetric hepatic R2* distribution studies. We evaluated the feasibility of computer-assisted whole liver segmentation of 3 D multi-gradient-echo MRI data, and compared whole liver R2* determination to analyzing only a single slice. Also, segmental R2* differences were studied.

Materials and Methods The liver of 44 patients, investigated by multi-gradient echo MRI at 1.5 T, was segmented and divided into nine segments. Segmental R2* values were examined for all patients together and with respect to two criteria: average R2* values, and reason for iron overload. Correlation of single-slice and volumetric data was tested with Spearman’s rank test, segmental and group differences were evaluated by analysis of variance.

Results Whole-liver R2* values correlated excellent to single slice data (p < 0.001). The lowest R2* occurred in segment 1 (S1), differences of S1 with regard to other segments were significant in five cases and highly significant in two cases. Patients with high average R2* showed significant differences between S1 and segments 2, 6, and 7. Disease-related differences with respect to S1 were significant in segments 3 to 5 and 7.

Conclusion Our results suggest inhomogeneous hepatic iron distribution. Low R2* in S1 may be explained by its special vascularization.

Key Points

  • Hepatic R2* distribution is not as homogeneous as previously thought.

  • Liver segments might have a functional relevance.

  • Segmental and total liver R2* values coincide best in segment 8.

Citation Format

  • Wunderlich AP, Cario H, Kannengießer S et al. Volumetric Evaluation of 3D Multi-Gradient-Echo MRI Data to Assess Whole Liver Iron Distribution by Segmental R2* Analysis: First Experience. Fortschr Röntgenstr 2023; 195: 224 – 233

Zusammenfassung

Ziel Die transversale MR-Relaxationsrate R2* hat sich als nützlich für die Überwachung der Eisenüberladung der Leber erwiesen. Mittlerweile steht eine Sequenz zur Verfügung, die die Erfassung der gesamten Leber in einem einzigen Atemzug ermöglicht. Das erlaubt volumetrische Studien der hepatischen R2*-Verteilung. Unser Ziel war es, die Machbarkeit einer computergestützten Segmentierung der gesamten Leber aus 3D-Multigradientenecho-MRT-Daten zu untersuchen. Darüber hinaus haben wir untersucht, ob die Bestimmung des R2*-Wertes der gesamten Leber mit der Analyse einer einzelnen Schicht vergleichbar ist. Schließlich wurden die segmentalen R2*-Unterschiede bewertet.

Methoden 44 Patienten wurden mittels Multi-Gradientenecho-MRT bei 1,5 T untersucht. Die Leber wurde segmentiert und in neun Segmente unterteilt. Die segmentalen R2*-Werte wurden für alle Patienten zusammen und unterteilt nach zwei Kriterien analysiert: durchschnittliche R2*-Werte und vorherrschender Grund für die Eisenüberladung. Die Korrelation von Einzelschicht- und volumetrischen Daten wurde mit dem Spearman-Rangtest geprüft, während Segment- und Gruppenunterschiede durch Varianzanalyse bewertet wurden.

Ergebnisse Die R2*-Werte der Gesamtleber korrelierten hervorragend mit den Einzelschichtdaten (p < 0,001). Die niedrigsten R2*-Werte traten in Segment 1 (S1) auf, die Unterschiede zwischen S1 und anderen Segmenten waren in fünf Fällen signifikant und in zwei Fällen hochsignifikant. Patienten mit niedrigem R2* wiesen keine signifikanten Unterschiede auf, Patienten mit hohem R2* zeigten signifikante Unterschiede zwischen S1 und den Segmenten 2, 6 und 7. Krankheitsbedingte Unterschiede zu S1 waren in den Segmenten 3 bis 5 und 7 signifikant.

Schlussfolgerungen Die Ergebnisse dieser Studie deuten auf eine Inhomogenität der hepatischen Eisenverteilung hin. Während der niedrige R2*-Wert in S1 durch seine besondere Gefäßversorgung erklärt werden kann, sollte die Ursache für segmentale Unterschiede, möglicherweise bedingt durch spezifische Krankheitsbilder, weiter untersucht werden.

Kernaussagen:

  • Die R2*-Verteilung in der Leber ist nicht so homogen wie bisher angenommen.

  • Dies deutet darauf, dass die Lebersegmente nicht nur eine anatomische, sondern auch eine funktionelle Bedeutung haben.

  • Die beste Übereinstimmung des R2*-Werts eines einzelnen Segments mit dem der gesamten Leber fanden wir in Segment 8.



Publication History

Received: 13 July 2022

Accepted: 21 October 2022

Article published online:
28 December 2022

© 2023. Thieme. All rights reserved.

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Kang BK, Kim M, Song SY. et al. Feasibility of modified Dixon MRI techniques for hepatic fat quantification in hepatic disorders: validation with MRS and histology. Br J Radiol 2018; 91: 20170378
  • 2 Wood JC, Enriquez C, Ghugre N. et al. MRI R2 and R2* mapping accurately estimates hepatic iron concentration in transfusion-dependent thalassemia and sickle cell disease patients. Blood 2005; 106: 1460-1465
  • 3 Hankins JS, McCarville MB, Loeffler RB. et al. R2* magnetic resonance imaging of the liver in patients with iron overload. Blood 2009; 113: 4853-4855
  • 4 Breuer FA, Blaimer M, Mueller MF. et al. Controlled aliasing in volumetric parallel imaging (2D CAIPIRINHA). Magn Reson Med 2006; 55: 549-556
  • 5 Wunderlich AP, Schmidt SA, Mauro V. et al. Liver Iron Content Determination Using a Volumetric Breath-Hold Gradient-Echo Sequence With In-Line R(2) * Calculation. J Magn Reson Imaging 2020; 52: 1550-1556
  • 6 Mory B, Somphone O, Prevost R. et al. Real-time 3D image segmentation by user-constrained template deformation. Med Image Comput Comput Assist Interv 2012; 15: 561-568
  • 7 Sahu S, Schernthaner R, Ardon R. et al. Imaging Biomarkers of Tumor Response in Neuroendocrine Liver Metastases Treated with Transarterial Chemoembolization: Can Enhancing Tumor Burden of the Whole Liver Help Predict Patient Survival?. Radiology 2017; 283: 883-894
  • 8 Zhong X, Nickel MD, Kannengiesser SA. et al. Liver fat quantification using a multi-step adaptive fitting approach with multi-echo GRE imaging. Magn Reson Med 2014; 72: 1353-1365
  • 9 Bismuth H. Surgical anatomy and anatomical surgery of the liver. World J Surg 1982; 6: 3-9
  • 10 Cario H, Grosse R, Janssen G. et al. Guidelines for diagnosis and treatment of secondary iron overload in patients with congenital anemia. Klin Padiatr 2010; 222: 399-406
  • 11 Alustiza JM, Artetxe J, Castiella A. et al. MR quantification of hepatic iron concentration. Radiology 2004; 230: 479-484
  • 12 Andersen PB, Birgegard G, Nyman R. et al. Magnetic resonance imaging in idiopathic hemochromatosis. Eur J Haematol 1991; 47: 174-178
  • 13 Christoforidis A, Perifanis V, Spanos G. et al. MRI assessment of liver iron content in thalassamic patients with three different protocols: comparisons and correlations. Eur J Haematol 2009; 82: 388-392
  • 14 Gandon Y, Olivie D, Guyader D. et al. Non-invasive assessment of hepatic iron stores by MRI. Lancet 2004; 363: 357-362
  • 15 Garbowski MW, Carpenter JP, Smith G. et al. Biopsy-based calibration of T2* magnetic resonance for estimation of liver iron concentration and comparison with R2 Ferriscan. J Cardiovasc Magn Reson 2014; 16: 40
  • 16 Henninger B, Zoller H, Rauch S. et al. R2* relaxometry for the quantification of hepatic iron overload: biopsy-based calibration and comparison with the literature. Fortschr Röntgenstr 2015; 187: 472-479
  • 17 St Pierre TG, Clark PR, Chua-anusorn W. et al. Noninvasive measurement and imaging of liver iron concentrations using proton magnetic resonance. Blood 2005; 105: 855-861
  • 18 St Pierre TG, El-Beshlawy A, Elalfy M. et al. Multicenter validation of spin-density projection-assisted R2-MRI for the noninvasive measurement of liver iron concentration. Magn Reson Med 2014; 71: 2215-2223
  • 19 Wood JC, Pressel S, Rogers ZR. et al. Liver iron concentration measurements by MRI in chronically transfused children with sickle cell anemia: baseline results from the TWiTCH trial. Am J Hematol 2015; 90: 806-810
  • 20 Meloni A, Luciani A, Positano V. et al. Single region of interest versus multislice T2* MRI approach for the quantification of hepatic iron overload. J Magn Reson Imaging 2011; 33: 348-355
  • 21 Benkö T, Sgourakis G, Molmenti EP. et al. Portal Supply and Venous Drainage of the Caudate Lobe in the Healthy Human Liver: Virtual Three-Dimensional Computed Tomography Volume Study. World J Surg 2017; 41: 817-824
  • 22 Matsui O, Kadoya M, Takahashi S. et al. Focal sparing of segment IV in fatty livers shown by sonography and CT: correlation with aberrant gastric venous drainage. Am J Roentgenol 1995; 164: 1137-1140
  • 23 Hernando D, Cook RJ, Qazi N. et al. Complex confounder-corrected R2* mapping for liver iron quantification with MRI. Eur Radiol 2021; 31: 264-275
  • 24 Ghugre NR, Coates TD, Nelson MD. et al. Mechanisms of tissue-iron relaxivity: nuclear magnetic resonance studies of human liver biopsy specimens. Magn Reson Med 2005; 54: 1185-1193
  • 25 Jensen JH, Tang H, Tosti CL. et al. Separate MRI quantification of dispersed (ferritin-like) and aggregated (hemosiderin-like) storage iron. Magn Reson Med 2010; 63: 1201-1209
  • 26 Dietrich O, Levin J, Ahmadi SA. et al. MR imaging differentiation of Fe(2+) and Fe(3+) based on relaxation and magnetic susceptibility properties. Neuroradiology 2017; 59: 403-409
  • 27 Xu Z, Gabin G, Grimm R. et al A Deep Learning Approach for Robust Segmentation of Livers with High Iron Content from MR Images of Pediatric Patients. 2021 Proc ISMRM:1871
  • 28 Jimenez-Pastor A, Alberich-Bayarri A, Lopez-Gonzalez R. et al. Precise whole liver automatic segmentation and quantification of PDFF and R2* on MR images. Eur Radiol 2021; 31: 7876-7887
  • 29 Henninger B, Plaikner M, Zoller H. et al. Performance of different Dixon-based methods for MR liver iron assessment in comparison to a biopsy-validated R2* relaxometry method. Eur Radiol 2021; 31: 2252-2262