Skip to main content
main-content

Tipp

Weitere Artikel dieser Ausgabe durch Wischen aufrufen

Erschienen in: neuropsychiatrie 3/2021

Open Access 23.06.2021 | review

Practitioner’s review: medication for children and adolescents with autism spectrum disorder (ASD) and comorbid conditions

verfasst von: Christian Popow, Susanne Ohmann, Paul Plener

Erschienen in: neuropsychiatrie | Ausgabe 3/2021

Abstract

Alleviating the multiple problems of children with autism spectrum disorder (ASD) and its comorbid conditions presents major challenges for the affected children, parents, and therapists. Because of a complex psychopathology, structured therapy and parent training are not always sufficient, especially for those patients with intellectual disability (ID) and multiple comorbidities. Moreover, structured therapy is not available for a large number of patients, and pharmacological support is often needed, especially in those children with additional attention deficit/hyperactivity and oppositional defiant, conduct, and sleep disorders.
Hinweise

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Introduction

Autism spectrum disorder (ASD) is a common [73], complex, genetically based, disabling disorder [15] that needs specific knowledge and parenting skills [165] and burdensome, costly treatment. The complex clinical picture is characterized in ICD-11 6A02 [320] by
  • Persistent deficits in the ability to initiate and sustain reciprocal social interaction and social communication,
  • A range of restricted, repetitive, and inflexible patterns of behavior and interests, and
  • A high prevalence of intellectual disability, language impairments, and other comorbid disorders
and a number of comorbid conditions such as attention deficit/hyperactivity disorder (ADHD), sleep disorders, convulsions, oppositional defiant disorder (ODD), anxieties, obsessions and compulsions (OCD), depression, and numerous other symptoms and conditions that are discussed as to whether they represent “core” or comorbid problems [281]. These conditions differ in symptomatology, prevalence, and treatability from those of normally developing children. These differences, partly related to the reduced flexibility (for change), partly to genetic and social conditions, may render therapy and its prognosis difficult, and will increase the impairments of self-worth/self-efficacy and the tendency for depression in the children on the spectrum. Comorbid conditions also seem to contribute to the increased mortality of children with ASD [304].
Table 1
Abbreviations
Abbrev.
Definition
Abbrev.
Definition
ABA
Applied behavioral analysis
IQ
Intelligence (Quotient)
ACTH
Adrenocorticotropic hormone, corticotropin
LGS
Lennox–Gastaut syndrome
AD
Antidepressant
LKS
Landau–Kleffner syndrome
AD
 
MAOI
Monoamino oxidase inhibitor
ADHD
Attention deficit/hyperactivity syndrome
MPEP
2‑methyl-6- (phenylethynyl)pyridine
BD
Bipolar disorder
MT1
Melatonin 1 (receptor)
ASD
Autism spectrum disorder
NDRI
Norepinephrine-dopamine reuptake inhibitor
BPD
Borderline personality disorder
NMDA
N‑methyl-D-aspartate
CBT
Cognitive behavioral therapy
OCD
Obsessive compulsive disorder
CSWS
Continuous spike waves during slow-wave sleep
ODD/CD
Oppositional defiant disorder/conduct disorder
DSM‑5
Diagnostic and Statistic Manual for Mental Disorders, 5th edition
PE
Partial epilepsy
DRESS
Drug rash with eosinophilia and systemic symptoms
PECS
Picture exchange communication system
EF
Executive functions (functioning)
REM sleep
Rapid eye movement sleep
ESES
Electrical status epilepticus during slow-wave sleep
RLS
Restless legs syndrome
FDA
Food and Drug Administration
SGA
Second generation antipsychotic
FGA
First generation antipsychotic
SSRI
Selective serotonin reuptake inhibitor
FXS
Fragile X syndrome
SNRI
Selective serotonin and norepinephrine reuptake inhibitor
GABA
Gamma-amino-butyric acid
SE
Side effects
GAD
Generalized anxiety disorder
\(t\)\(1/2\)
Half life
CBT
Cognitive behavioral therapy
TCA
Tricyclic antidepressant
ICD
International Classification of Diseases
TCM
Traditional Chinese medicine
ID
Intellectual disability
TEACCH
Treatment and education of autistic and related communication handicapped children
IGF‑1
Insulin-like growth factor – 1
VPS
Valproic acid
ASD comprises persons with a very low functional level up to a normal or even supranormal level with relatively low impairment. The disorder may not be cured but largely ameliorated by therapy and guided intrafamilial support [36, 165]. Especially in children with a low functional level, structured behavioral therapies [178] such as ABA1 and its variants, TEACCH2 or PECS3 have been proven to be beneficial. Therapeutic success will depend on the level of impairment, the intrafamilial and peer relation support, the availability, quality and quantity of therapeutic support [183, 192], the age at diagnosis [86, 119, 229, 263, 299], the types and number of comorbid conditions, and the financial support provided by the state or the social insurance, because an individual family will usually not dispose of the necessary means. Less affected children will present with flexibility problems and may easily be overburdened with social problems [166]. Additional challenges may be caused by comorbid conditions like ADHD, dysexecutive problems, depression, anxiety disorders, or seizures [10, 18, 24, 38, 105, 106, 187, 201, 281] (Table 2 [187, 223, 281]). Therapy should aim at attaining autonomy, flexibility, social competence, an educational level that is appropriate to the individual intellectual capacity of the child, and provide the basis for a self-determined and socially integrated life.
Table 2
ASD: relevant comorbid disorders
Disorders
Normotypic Children %
ASD Children %
References
Anxiety disorders
20–40
11–84
[281]
Sensory integration/EF
7.5–15
\(> 75\)
[126, 198]
Sleep disorder
22–32
40–80
[175]
ADHD
5–7
30–75
[10, 58, 266]
ODD/CD
 
30–90
[264]
Intellectual disability
2–3
25–70
[163]
OCD
2.5
8–37
[187]
Epilepsy
1–3
20–34
[24, 105, 261]
Depression/BPD
2–3
11–20
[161, 201]
Tic disorder
1–2
9–20
[260]
Central auditory processing disorder
2–5
?
[16]
“Conventional” pharmacotherapy is targeted to reduce inappropriate behavior and the associated burden for family, school, and the social environment, to limit inattention, impulsivity, and hyperactivity associated with ADHD, and to reduce the risk of seizures. Up to two-thirds of children with ASD are treated with psychotropics, and a third with multiple drugs [92, 156, 288]. Newer trends aim at improving social communication [21] or at transferring experimental therapies into real life [81, 171]. Examples include improving the imbalance between excitatory (glutamatergic) and inhibitory (GABA-ergic) neurotransmission [180, 216] or synaptic plasticity [34]. Among the most promising candidate substances are [171], NMDA4 antagonists [33], memantine [139], and d‑Cycloserine [68, 214], the GABA agonists, baclofen or arbaclofen [77, 130], oxytocin [17, 21, 47, 113, 313], vasopressin [235] or balovaptan [27], and insulin-like growth factors (IGF-I) [44, 301]. Among these, only the binding hormone oxytocin has gained widespread attention, stimulating a considerable number of clinical studies, although with inconsistent results [228].
In order to improve the multiple medical, social, behavioral, learning, or sleep-related problems, a number of drugs have been recommended and studied in clinical trials [241]. In addition, a number of experimental therapies, such as diets and brain extracts, were tried, most of them without any clinical evidence. Because the individual reaction to pharmacotherapy varies considerably [28], individualized treatment is mandatory [218]. We, therefore, performed a systematic review of the current literature, aiming at providing an overview on recommended pharmacotherapy for ASD and its most important comorbid disorders. The review is divided into three sections:
1.
Pharmacologic agents
 
2.
Therapy for common problems of ASD and comorbid disorders
 
3.
Other substances, supplementary and alternative therapies.
 

Methods

We searched the database PubMed/Medline for the following terms: autism AND pharmacotherapy OR medication, and retrieved 4.248 citations. Restricting the period covered to the years 2000–2019 and the language to English OR French OR German; 3.607 citations remained, including 1120 reviews. Selecting relevant titles, primarily taking into account the contents and quality of the papers, and secondarily the authors, publication media (impact factor), and date (selecting newer references), 223 remained. These were carefully studied in detail and supplemented by 742 additional relevant articles retrieved by specific topic searches that were considered important for understanding during the writing process. This added to 965 references of which 325 were cited in this article, depending on their subjectively estimated significance5, and aiming at not overloading the chapter with citations (see Fig. 1). The relationship between reviews and meta-analyses and original papers in the cited references was \(1:3\).

Pharmacotherapy of ASD

In the following, we will discuss the various groups of pharmaceuticals used in children and adolescents with ASD, namely antipsychotics, antidepressants, and anticonvulsants.

Antipsychotics

Antipsychotics influence dopamine neurotransmission, act sedating in lower, antipsychotic in medium, and narcotic in high doses. First generation antipsychotics (FGA), especially haloperidol, have been shown to influence stereotypic and hyperactive behavior, to reduce temper tantrums and social isolation [9]. FGAs should no longer be used because of an inappropriate risk–benefit ratio related to cognitive as well as early and late (e.g., dyskinetic) side effects. As an alternative, second generation antipsychotics (SGAs), especially risperidone, aripiprazole, and quetiapine, are substances of choice for treating aggression, self-injuring behavior, temper tantrums, withdrawal, tics, and rituals.
This is also true for the SGA clozapine because of its dangerous hematologic side effects [152]. As an alternative, SGAs, especially risperidone, aripiprazole, and quetiapine, are substances of choice for treating aggression, self injuring behavior, temper tantrums, withdrawal, tics and rituals [35, 43, 62, 68, 103, 122, 153, 170, 221, 231, 241, 249, 262, 272, 290, 295, 319]. Other SGAs (such as asenapine and iloperidone) may also be used off-label but do not offer advantages [326]. Positive effects should be balanced against (metabolic, endocrine, neurologic, and cardiac) side effects [61, 273]. Therefore, mainly low-dose application should be tried. Recommended dosages and specific features are listed in Table 4. Adding topiramate to risperidone therapy was more effective on overall behavior when compared to risperidone monotherapy [257]. A potential adverse effect of topiramate on language development [227] has, nevertheless, to be considered.
Table 3
ASD Symptoms, comorbid disorders and (off-label) pharmacotherapy
Symptoms
Available drugs
Behavioral problems, restlessness, temper tantrums, self-injuring behavior
Antipsychotics, (anticonvulsants)
Social problems
Oxytocin, D‑cycloserin, memantine (experimental)
Sleeping problems
Melatonin, antipsychotics, antihistaminics
ADHD
Atomoxetin, methylphenidate, amphetamines, (guanfacine ER)
Tics
Antipsychotics, (\(\alpha_{2}\) sympathomimetics, SSRIs)
Depression
SSRIs, SNRIs, (+ antipsychotics)
Bipolar disorder
Antipsychotics, (lithium)
Anxiety & OCD
SSRIs (higher dosage needed), pregabaline
Seizures
Valproic acid, levetiracetam, lamotrigine (and others)
Psychosis
Antipsychotics
GI problems
Diet? probiotics?
Table 4
Selected antipsychotics used in children and adolescents with ASD
Drug
\(t\)\(1/2\)\({}^{\text{a}}\)
Recommended Dose (mg/kg/d)
Spec. remarks
References\({}^{\text{b}}\)
Risperidone
22 h\({}^{\text{c}}\)
0.005–0.02\({}^{\text{d}}\) also available as syrup
Standard therapy\({}^{\text{e}}\)
[42, 64, 153, 207, 278]
Aripiprazole
60–80 h
0.05–0.1\({}^{\text{f}}\)
Standard therapy\({}^{\text{g}}\)
[46, 62, 66, 82, 196, 231]
Olanzapine
30–60 h
0.1
SE: sedation, metabolic
[93, 136, 291]
Paliperidone
 
0.5–2
No advantage over risperidone
[98]
Quetiapine
7 h
0.5–4
Also acts against GAD\({}^{\text{h}}\)
[109, 122, 200]
Ziprasidone
6 h
0.02–0.4
Cardiac SE (QTc \(\uparrow\))
[69, 195]
Pimozide
55 h
0.02–0.08
FGA, therapy resistant tics
[79]
\({}^{\text{a}}\) [110], \({}^{\text{b}}\) as related to ASD, \({}^{\text{c}}\) 9-hydroxyrisperidone, \({}^{\text{d}}\) also available as syrup \({}^{\text{e}}\) FDA approved from age 5 years on, \({}^{\text{f}}\) also available as solution, \({}^{\text{g}}\) FDA approved from age 6 years on, \({}^{\text{h}}\) GAD – generalized anxiety disorder

Antidepressants

In normally developing children, selective serotonin antagonists (SSRIs) are effective against depressive symptoms with substance-related differences in effectivity and side effects. SSRIs also act against anxiety disorders in lower dosages and against OCD in higher dosages, compared to the treatment of depression. In children with ASD, SSRIs are widely prescribed, but their therapeutic effect is less evident [319]. Other AD agents, such as MAOIs, mirtazapine, hypericum, etc., also seem to produce only little effect, possibly because of elevated peripheral serotonin blood levels in a number of children and adolescents with ASD [100, 232, 309, 319].
A few studies suggest improvements of repetitive and stereotypic behavior with AD therapy in children with ASD [221], although this was not reported by King et al. [168] or Williams et al. [319]. Side effects of SSRIs usually are mild but may be exaggerated in children with ASD, especially when children are restless and agitated [173]. Bupropion, a NDRI6 acts like a stimulant, may create dependence, and should not be used in adolescents. Mirtazapine [243], a tricyclic AD, has modest antidepressant effects and further acts as a sedative and hypnotic agent by stimulating H1 receptors but is slowly eliminated (\(t\)\(1/2\) 37 h), strongly increases appetite, and leads to significant weight gain [143]. Studies in autistic children are scarce (e.g., [243]), and long-term studies are not available. Mirtazapine, therefore, should not be used or only used for a limited period and in low doses. Clomipramine and tricyclic antidepressants should only be used with care because of their severe side effects, and duloxetine and pregabaline have not been systematically studied in children and adolescents with ASD.
In summary, although AD medication, especially SSRIs, is widely prescribed in children and adolescents, its effectiveness is limited to not evident in children with ASD, and side effects may be more exaggerated in these patients. Therefore, the use of ADs in ASD can generally not be recommended. Because of their widespread use, pharmacologic data on AD medication are nevertheless summarized in Table 5.
Table 5
Selected antidepressants used in children and adolescents with ASD to treat depression, anxiety, and OCD
Drug
\(t\)\(1/2\)\({}^{\text{a}}\)
Recommended Dose (mg/kg/d)
Specific remarks
Literature\({}^{\text{b}}\)
Fluoxetine
1–6 d
0.4–0.8
SE: sleep & eating problems
[135, 169, 253]
Paroxetine
12–22 h
0.4
Also effective against anxiety disord. and drug treatment
[242]
Sertraline
23–26 h
1
Well tolerated
[292]
Agomelatin
2.3 h
0.5–1
MT1 & \(\beta 2\) agonist, no systematic studies in adolescents
[224]
Duloxetin
8–17 h
0.4–1.2
SNRI
[224]
Pregabalin
6 h
3–6–10
GABA analogon, pain killer, anticonvulsant, anxiolytic
No studies in ASD patients
\({}^{\text{a}}\) [110], \({}^{\text{b}}\) as related to ASD

Anticonvulsants

Anticonvulsants may be used to treat epilepsies, bipolar disorders, and externalizing behavioral problems7. Anticonvulsant treatment of children with ASD [83, 133, 261], like in other patients with convulsions, depends on the type of convulsions and should always be combined with psychosocial support [261].
The most commonly used pharmacotherapeutics are valproic acid, lamotrigine, levetiracetam, and ethosuximide [96], cf. Table 6. In select syndromes such as Landau–Kleffner syndrome or ESES8, corticosteroids, ACTH, or immunoglobulin therapy may be considered [303]. Additional nonpharmacological therapeutic options for therapy-resistant epilepsies include vagus nerve stimulation [184], ketogenic diet, and neurosurgical interventions [114]. It is not clear whether an interictal epileptiform EEG may be a cofactor contributing to neurologic deterioration or progressing developmental retardation [310]. Pharmacologic treatment should always be considered if symptoms get worse.
Table 6
Anticonvulsants selected
Drug
\(t\)\(1/2\) (h)\({}^{\text{a}}\)
Recommended Dose (mg/kg/d)
Comments
References\({}^{\text{b}}\)
Ethosuximide
53
10–20–40
Absences, well tolerated
[95]e
   
No effect on behavior, additive to VPS
 
Valproic acid
12–16
10–15–30
Enhances GABA-ergic inhibition
[96, 136]
   
Cortical hyperconnectivity, increases risk
 
   
Of ASD and malformation when
 
   
Administered during pregnancy
 
Lamotrigine
25–50
0.5–4
Against gen. and PE, well tolerated
[23]
   
Against BSD, no effect on behavior
 
Levetiracetam
7
20–40–60
Against generalized and PE, SE tiredness
[96]
   
No effect on behavior
 
Clobazam
18
0.2–0.8
Add-on against prim. generalized and PE
[83]
Clonazepam
18–50
0.01–0.4
Against myoclonus epilepsy, SE: dizziness, ataxia
[83]
Gabapentin
 
10–40
Add-on against PE and sec. generalized
 
   
Epilepsy, SE tiredness, DRESS\({}^{\text{c}}\)
[115]
Sultiame
24
5–6
SE: ataxia, paresthesia, anorexia
 
Topiramate
19–25
1–\(4/2\)
Against PE and generalized epilepsy,
 
   
LGS\({}^{\text{d}}\), SE tiredness
 
   
Weight loss, cognitive
[68, 133]
   
impairment
 
Vigabatrin
5–8
20–\(60/2\)
  
\({}^{\text{a}}\) [110], \({}^{\text{b}}\) as related to ASD, \({}^{\text{c}}\) DRESS \(=\) drug rash with eosinophilia and systemic symptoms, \({}^{\text{d}}\) LGS \(=\) Lennox–Gastaut syndrome

Therapy for Common Problems of ASD and Comorbid Disorders

Pharmacotherapy for patients with ASD aims at reducing inappropriate behavior and the related intrafamiliar and psychological stress, at improving engagement in therapy, health-related quality of life, performance at school and work, social integration and participation, and at treating comorbid problems such as ADHD or seizures [14, 53, 67, 72, 154, 156, 164, 180, 210, 220, 245, 274]. Limitations include inconsistent evidence of efficiency and side effects, especially with long-term use [107]. A recent study [53] compared the benefits and adverse effects of the pharmacological treatment of a number of targeted symptoms in 505 children with ASD. The authors found small to medium benefits to adverse effects ratios and concluded that individualized treatment is mandatory. Table 3 summarizes the medical indications and available drugs.

ADHD

ASD and ADHD share genetic, neurophysiological, and clinical similarities [10, 181]. Both disorders affect attention, flexibility, planning, and response inhibition, have a high heritability, early onset, overlapping comorbidities, and prevail in males [50, 58]. Hans Asperger already described attention problems as “almost regularly occurring in children of this type” [13]. Ronald et al. [265] found significant correlations between ASD and ADHD pheno and genotypes in their twins’ early development study, and a probability of 41% for co-occurrence ADHD in ASD patients. Nijmijer et al. [225] found genetic linkages between ASD and ADHD on chromosomes 7, 12, 15, 16, and 18. The “dual disorder” is characterized by increased psychopathology and psychosocial stress, more compromised cognitive and daily functions, including maladaptive behaviors, and poorer effects of therapy [48, 125, 147, 160, 246, 251]. ASD and ADHD share multiple comorbidities, such as dysexecutive problems, increased anxiety, sensory integration, sleep, affective and central hearing processing disorders, developmental delay, OCD, and epilepsy [187, 223, 281]. These comorbid conditions will largely determine the clinical picture. Unfortunately, ADHD in autistic patients is generally not appropriately treated [160]. This could be due to the fact that ADHD was excluded in autism diagnosis in ICD-10, a path that has now been changed in DSM‑5 and ICD-11.
Treatment of ADHD in patients with ASD should follow the same multimodal algorithms as for ADHD alone and should include psychoeducation [87, 219, 238], parental training [41, 85, 87], school-based measures (such as daily record cards [70, 80, 97], structured task organization, physical activity [39, 158, 302]), and medication [31, 285, 296]. ADHD medication is usually less effective, and SE are more pronounced in ASD patients, especially in those with ID [48, 85, 241, 255]. Cognitive training [56] and neurofeedback [88, 212, 252] are less effective and more complex. Occupational therapy [49] is useful as an adjunct for improving comorbid sensory integration and dysexecutive problems.
Medication for ASD/ADHD targets modulating dopamine and epinephrinergic transmitter systems, thereby increasing dopamine availability in frontal areas and striatum, and downregulating dopamine moderators. Usually, two types of medication are distinguished: stimulants (methylphenidate, amphetamine, lis-dexamphetamine) and nonstimulants (atomoxetine and alpha‑2 agonists).
Stimulants. Effectiveness and compatibility of methylphenidate, the most frequently used ADHD medication, have multiply been proven in patients with ASD and ADHD, with and without ID [11, 255, 282, 298]. In addition to the main ADHD symptoms, executive and nonexecutive memory, reaction time, reaction time variability, response inhibition, social communication, and self-regulation are significantly improved with methylphenidate [51, 149, 298] with somewhat lower effect sizes (around 0.5) in children with ASD and ADHD, compared to normally developing children with ADHD. Because of the short \(t\)\(1/2\) of about 2 hours, stimulants are usually administered in a slow-release formulation, acting for 10–14 hours, depending on the preparation. About 70% of the normally developing children and half of the children with ASD and ID respond by improved behavior, especially with decreased impulsivity, improved cooperation and attention, and less hyperactivity. Behavioral improvement is more pronounced in children presenting with hyperactivity and normal IQ [4]. Careful dosage titration is recommended because of the large variability of efficacy that may be explained genetically [206]. The effect of methylphenidate on growth has been divergently debated with height deficits ranging from 0 to 4.7 cm with consistent use [258]. In children with severe side effects or decreased responsiveness to methylphenidate, amphetamine [284], or lisdexamphetamine [52, 54, 127, 145], an inactive amphetamine precursor that is activated in the erythrocytes may be recommended because of their larger effect sizes. Amphetamines, and especially lisdexamphetamine, also improve mood while acting.
Emotional dysregulation (irritability) is a common problem in children with ADHD and with ASD, with rates around 78% for both disorders [179]. Stimulants and atomoxetine act effectively but may also increase emotional dysregulation, although at a much lower prevalence of about 17% [104]. In addition, effects on sleep (longer sleep latency, decreased sleep efficiency, and shorter sleep duration) were observed with stimulant medication [167].
Atomoxetine. The norepinephrine reuptake inhibitor and NMDA receptor antagonist possesses good effectiveness [123, 124] and (compared to methylphenidate) a considerably longer \(t\)\(1/2\) of 35 hours and 99% plasma albumin binding. Because of its nearly continuous action, atomoxetine is a recommendable alternative to methylphenidate, although with a smaller effect size [5, 236, 244], especially in children who respond with pronounced SE to stimulants or are very difficult to handle in the morning and evening hours, when methylphenidate does not act. It may also be recommended in children with comorbid depression, tics, or anxiety disorders [3, 5]. Atomoxetine needs a longer dosing period (up to 12 weeks) and may cause initial fatigue, headache, and gastrointestinal SE, wherefore the medication should initially be started in the evening hours. About 15% of the patients may react with increased aggression, requiring discontinuation of atomoxetine and either addition of risperidone [207] or aripiprazole [231] or switching to extended-release guanfacine [269, 270] or lisdexamphetamine [52].
Comparing atomoxetine and amphetamine derivates, higher effect sizes of methyplhenidate slow release preparations have been reported [121]. Small but significant cardiovascular effects have been reported for stimulant and atomoxetine medication [132], mainly small increases of the heart rate and of systolic or diastolic blood pressure [132]. Because significant cardiovascular effects may not be excluded in a small subgroup of patients (e.g., with slow drug metabolism), occasional blood pressure checks are recommended.
Alpha-2-agonists. Clonidine and extended-release guanfacine are less effective medications against ADHD core symptoms with some antitic potential, pronounced tiredness, and gastrointestinal SE, which may lead to discontinuing the medication. Hyperactivity and impulsivity are improved in about 45% of cases [144, 199, 241, 270, 294].
Other treatments for ADHD. Mindfulness-based [1, 259, 268] and neurofeedback therapies [138] have been tried with some success in children with ASD and ADHD.

Affective Disorders

Due to the fact that antidepressant medication is of questionable effect in children and adolescents with ASD, their use may generally not be recommended. There is no clear-cut evidence that this recommendation is also valid for patients with severe depression, and the widespread use of antidepressant medication reflects this challenge, especially in the light that the prevalence of comorbid depression in autistic patients is fourfold compared to the nonautistic population [318]. Combining antidepressants with (low-dose) antipsychotic medication may generally be recommended for augmenting antidepressant effects in therapy resistant depressive patients and–although with low evidence [78]–in suicidal patients. This relates to the long period needed for antidepressant drug effects to become evident and to the effect of antipsychotics to reduce initially present internal drive and suicidality. Psychotherapy adds to antidepressant therapy for light to medium severe depression in the short term but better in the long term. For severe depression, combining psycho and pharmacotherapy is recommended in normotypic children [40, 65].
Suicidality has been reported in 21.3% (7–47%) of patients with ASD [142, 324]. Suicidal ideation is very common in adolescents with ASD, especially in Asperger’s autists, and is largely related to their increased vulnerability to stress, anxiety, and depression, their inflexibility, and their proneness to become bullied or sexually abused [142].
Bipolar disorders are detected in 6–21% of adult ASD patients [307], and 30% of bipolar I patients meet the criteria for ASD [161]. Data for children and adolescents are still lacking. Therapeutic options include SGA, valproic acid, AD medication if severe depressive symptoms are present, and lithium. Lithium medication also improves social functioning in animals and adults [190]. Its use may be especially limited in children because of the narrow therapeutic range, its effect on thyroid function, the resulting need of a highly compliant and supportive environment, and the considerable and poorly tolerated emotional indifference created by the drug [208, 277].

Anxiety Disorders

About 40% of children with ASD present with various anxiety disorders, phobias including social phobia, general, and separation anxiety disorder, and OCD [323]. They also often react with symptoms of anxiety or even panic in reaction to changes in their environment. An early study [292] reported beneficial effects with low-dose AD medication against anxieties. Stachnik et al [290] reviewed the beneficial effect of neuroleptics for anxiety disorders in children with ASD. High doses of antidepressants may reduce OCD symptoms in normotypic children. Unfortunately, their effectiveness is not confirmed in children with ASD [169, 222, 253], possibly because of the background similarities of ASD and OCD [271].
In general, the treatment methods of choice for fears and OCD are parent training, play therapy, and cognitive behavioral therapy (CBT) [6, 60]. Antidepressants in higher dosages may be tried in individual patients as an adjunct to cognitive therapies. Because of the poor flexibility of patients with ASD, CBT may be very laborious in autistic children and adolescents.

Medication Against Sleep Disorders

Medication may be helpful in inducing and improving disturbed sleep but should be provided with caution: melatonin will improve sleep rhythm in 85% of the children with ASD even in those without disturbed melatonin circadian rhythm at a daily dosage of 1–6 mg given 30 minutes before bedtime [108, 267]. Advancing sleep onset will require a smaller dose of 0.2–0.5 mg given 3–5 h prior to the desired sleep time [32, 175]9.
Other sleep stimulating agents, like valerian, passion flower, and hops provide placebo support; benzodiazepines, zolpidem, and zaleplon act on GABA receptors, helping in inducing sleep but usually have a long \(t\)\(1/2\), decrease REM sleep phases, but lead to habituation, to losing sleep induction effects during prolonged use, and to promoting anxiety [234]. Sleep-inducing antidepressants like trazodone are commonly used. For contraindications (tricyclics, mirtazapine), see Sect. 3.2.
Restless legs syndrome [59, 280]10, another syndrome disturbing sleep and quality of life based on a genetic predisposition, dysregulation of iron metabolism, and the dopaminergic system, suggest considering iron deficiency as a cause of sleep disturbance [308].
Other sleep-stimulating agents, like valerian, passion flower, and hops, provide placebo support; benzodiazepines, zolpidem, and zaleplon act on GABA receptors, helping in inducing sleep but usually have a long \(t\)\(1/2\), decrease REM sleep phases, lead to habituation, may lose sleep induction effects and promote anxiety during prolonged use [234]. Sleep-inducing antidepressants like trazodone11 are commonly used. For contraindications (tricyclics, mirtazapine), see Sect. 3.2.
Benzodiazepines, especially those targeting \(\text{GABA}_{A}\) receptor subtypes, may attenuate ASD symptoms [216]. The clinical significance of this effect is not known at present12.

Convulsions and Epilepsy

Epilepsy (more than one convulsion) occurs in about 5–46% of children with ASD, (compared to 1–2% in children not on the spectrum), depending on the clinical sample and the severity of ID [287]. Comorbid epilepsy adds to the impact of ASD on quality of life [303] because of a number of additional problems, such as cognitive, speech developmental, sleep, affective, medical, social, and behavioral issues [90, 118]. Phenotypes and causes are still insufficiently researched.
Mitochondrial respiratory chain defects have been detected as an important link between epilepsy and ASD [315]. In addition, three ASD associated syndromes with known genetic cause, tuberous sclerosis, Rett’s syndrome, and fragile X syndrome, are associated with epilepsy. Another group of disorders, epileptic encephalopathies, have been described in the context of brain dysfunction and increasing autistic symptomatology [74], affecting about 40% of children with convulsions in early childhood. These include early myoclonic encephalopathies, West, Dravet, Lennox Gastaud, and Landau–Kleffner syndromes, myoclonus epilepsy in nonprogressive encephalopathies, and continuous spike waves in slow-wave sleep (CSWS) [303]. Risk factors include epilepsies with known structural defects, bilateral frontal EEG changes, and persistent hypsarrhythmia [303].

Gastrointestinal Issues

Gastrointestinal distress related to constitutional, behavioral, and inflammatory causes is frequently observed in children with ASD and may be related to altered ASD severity [140]. Alterations of the intestinal microbiota, permeability, and functioning may, for example, alter intestinal serotonin metabolism and cause hyperserotoninemia, alter immune responses, and even brain functioning and behavior via the gut–brain axis [12, 193]. Attempts to influence these disturbances by diets (such as a gluten-free diet), probiotics, antibiotic or other “treatments” such as detoxification, would need careful prospective randomized clinical trials, precise diagnostics, and well-established clinical algorithms. At present, this clinical evidence is not available [240]

Irritability, Aggression, Disruptive, and Self-Injuring Behavior

Impulsive aggression and related disruptive behavior, as well as self-injuring behavior are frequently observed in ASD/ADHD and are the leading cause for school suspension, clinical referrals, and ward admissions [182]. Positive parenting [71], early intensive psychosocial and behavioral interventions [60, 76], specific multisystemic programs, such as multisystemic therapy [131] or the Fast Track program [25, 55], and psychosocial interventions such as T‑MAY [279] or TRAAY [276], and group sessions for social competence [101] lead to significant improvements of adaptive behavior. Recommendations for medical treatment include stimulants (in the case of comorbid ADHD) and nonstimulant medication, SGAs (cf. Sect. 3.1), antidepressant and mood stabilizing agents [48, 68, 75, 91, 116, 159]. In addition to pharmacotherapy, behavioral and social competence training, and parental counselling are strongly recommended.

Sleep Disorders

Independently of their intellectual capacity, up to \(2/3\) of children with ASD suffer from sleep problems: delayed sleep onset, frequent night awakenings, reduced total sleep time, dys and parasomnias [26, 57, 63, 157, 175, 189, 197, 205, 256, 308, 317]. These problems often persist into adulthood. The causes range from poor sleep hygiene and inconsistent parental behavior [317], (self) regulatory problems and central excitatory/inhibitory imbalance, delayed sleep pattern maturation, a disturbed hypothalamic-pituitary-adrenal axis, and decreased and dysrhythmic melatonin secretion to decreased binding of melatonin to its transporter protein and melatonin receptor dysfunction [57, 141, 202]. Recently, slow-release melatonin13 was approved by the European Medicines Agency for the treatment of sleep disorders in children with ASD from the age of 2. In addition, anxiety [305], ADHD/ASD associated sleep and sensory integration problems [126] leading to increased external stimulation (or decreased stimulus filtering), and cerebral convulsions may disturb sleep and quality of life of affected children and, consequently, of the whole family. Therefore, sleep diagnostics and treatment are important for both children with ASD and their families [174, 308].
Restless legs syndrome [59, 280], another syndrome disturbing sleep and quality of life based on a genetic predisposition, dysregulation of iron metabolism, and the dopaminergic system, suggest considering iron deficiency as a cause of sleep disturbance [308].
Behavioral measures [30, 283, 314] like fixed bedtime routine, providing sleeping cues and a low stimulation evening routine, supporting self-soothing behavior, light therapy14 [84], avoiding daytime sleeping, etc., and sensory integration therapy [325] have proven to be helpful, although with little evidence [30].

Chronic Tic Disorders, Tourette Syndrome, and Stereotypies

Chronic tic disorders and motor stereotypies are common comorbid movement disorders in children and adolescents with ASD [249]. The prevalence of chronic tic disorder is about 6.5% [281], about 10 times higher than in normally developing children. It is characterized by involuntary movements or utterings that vary in onset and frequency, depending on daytime and seasonal variations and stress exposure. Treatment is necessary if severity and frequency exceed subjective or environmental tolerance. Effective treatment options [249] (besides relaxation, stress reduction, and bio or neurofeedback) include antipsychotics such as risperidone, aripiprazole, or pimozide, eventually with added pentoxyfylline, and the anticonvulsant topiramate are effective, whereas haloperidole, levetiracetam, guanfacine, and atomoxetine, as well as metoclopramide and odansetron, have not proven effective [249, 262].

Other Substances, Supplementary and Alternative Therapies

Among the “newer” pharmacologic concepts (such as IGF‑1, memantine, D‑cycloserine, arbaclofen, and oxytocin [240, 300]), only three show promise for the future: oxytocin with the objective to improve sociogenic behavior, beta blockers to reduce stress, and the glutamate antagonist, 2‑methyl-6-(phenylethynyl)pyridine (MPEP), to reduce stereotypic behavior [94]. For the latter substance, it is feared that sociogenic behavior may deteriorate during treatment [297].
In the short term, intranasal oxytocin enhances motivation and attention to social stimuli, improves social initiative, understanding, learning [8, 22, 176], and better recognition of emotions [111]. Unfortunately, these improvements were not substantiated in long-term trials [7, 112, 313, 321, 322]. A meta-analysis [248] reported medium-effect sizes for prolonged oxytocin therapy in small samples. Reasons for the variation in oxytocin response include time dependency of the oxytocin response [230], single nucleotide polymorphisms of the oxytocin receptor [148], and lasting effects of postnatal stimulation of the oxytocin system [300]. When studying oxytocin effects patients and targets must be carefully selected. Therefore, the clinical usefulness of oxytocin is still a matter of debate [228, 306]. Melanocortin, stimulating oxytocin release, could be a useful alternative [215], but large clinical trials are lacking. Still, a special edition of “Brain Research”15 provides a comprehensive overview about the state of research.
There is only limited evidence for using beta blockers for reducing stress-related autoaggressive behavior [312] or memantine for improving language and memory functions [233]. Defects of GABA-A receptors, leading to deficient synaptogenesis, have been demonstrated in fragile X syndrome, a pervasive developmental disorder with known genetic defect16. Ganaxolone, a strong GABA-A agonist, was used in a controlled clinical study [29, 188] and was found to be safe but only effective in a subgroup of patients with fragile X syndrome, high levels of anxiety, and low intellectual capacity.
Medical cannabis, especially for ADHD, tics, sleep problems, behavioral problems, and anxiety [2, 134, 247], may improve symptoms but does not lead to remission. Treatment evidence at present is limited to anecdotical reports and a few small studies; three further studies are to be expected. Treatment options should, therefore, be restricted to single patients in whom standard treatment did not improve severe symptoms.
Various behavioral and functional therapies, such as structured behavioral therapies [178, 254, 299], communication and social skills training [177, 213], occupational therapy [49, 194], mindfulness [259], play teaching [162], music [217, 289], and speech therapy, have been shown to have beneficial effects in improving development, behavior, speech, social functioning, and quality of life [146, 191, 192, 220, 221, 275]. Physical exercise is an effective treatment option, especially in children with dual disorder, ASD and ADHD [128, 286, 302].
Alternative, “natural” treatments seem less invasive, safer (there are no reports on dangerous action), more intuitive to understand, and easier to procure. Parents are concerned with the safety or side effects (listed in the package leaflet) of medication or are disappointed because conventional medication did not change the core symptoms of ASD [120]. Therefore, alternative therapies are very popular [186, 191, 316]; a third of the parents of children with ASD have tried “alternative”, “integrative”, or “complementary”17 therapies [185, 186, 191]. A higher educational level of the mothers predicted the use of alternative therapies [120]. Half of the families use alternative therapies, although they do not rate them as useful.
Most of these therapies are used as an adjunct to conventional therapy. Biologically based therapies (such as diet[239, 293], vitamins and minerals, food supplements such as omega‑3 fatty acids [150], herbal remedies, secretin), and mind–body interventions (such as prayer, shamanism, biofeedback, meditation, and relaxation) are more often perceived efficacious than body-based methods (such as sensory integration therapy [325], massage, craniosacral therapy, neurofeedback, and special exercises) or energy therapies (healing touch, energy transfer) [120]. Technology based interventions seem promising because of the attention sustaining potential, but, at present, evidence of the success of such approaches is poor [172, 250]. Examples are interventions for acquiring language skills [226], for differentiating facial expressions [19], treating food selectivity [20], or anxiety or stress management [37].
A number of physicians encourage multivitamins (49%), essential fatty acids (25%), melatonin (25%), and probiotics (19%), and discourage withholding (76%) or delaying immunizations (55%), chelation (61%), anti-infectives (57%), or secretin (43%) [120]. It has to be stated that there is no clinical evidence for applying specific (e.g., gluten-free or pro-biotic) diets [203], vitamins18 [155, 237], oligominerals, herbal medicine [311], transfer of energy, chelates19 [151], or biologicals such as secretin [180, 186]. It has been found that 10% of parents even use potentially dangerous “medication” such as “whole-brain extracts” [185]. Medication from the Far East, such as traditional Chinese medicine or acupuncture, or osteopathy may be useful in the short-term run in improving single symptoms (restlessness, sleep disturbance); the long-term outcome is rather dubious [45].

Discussion

Pharmacotherapy in children and adolescents with ASD may be helpful in overcoming otherwise not resolvable behavioral and attentional problems (see Table 2 for an overview of indications and classes of useful substances). Individualized treatment is always mandatory, Reviewing the extensive literature on pharmacotherapy of ASD, a few trends may be recognized:
1.
Conventional therapy, although mostly funded on extensive controlled studies, has its limits, especially when treating irritability and temper tantrums. These problems should be restricted by early behavioral treatment. Unfortunately, these treatments are tedious and not available everywhere. In addition, the question of the impact of comorbid conditions has not been solved as yet.
 
2.
Pharmacologic treatments are not sufficient; the primary ASD treatment, especially for children with intellectual disabilities, will remain structured and functional therapy, as well as parental empowerment and support.
 
3.
Therapies aiming at improving the core symptoms of ASD, such as social communication: novel therapies, e.g., oxytocin, are encumbered with the complex functioning of our social brain, which is outlined in the first days of life or even before.
 
4.
At present, genetically based therapies are not visible on the horizon, mostly because the genetic background of ASD is so complex that it will probably need further years of intensive research to link clinical pictures to genetic variants and establish repair options.
 
Behavioral problems, including irritability, reactive and proactive aggression, disruptive and self-stimulating behavior, restlessness, and temper tantrums, are among the most important therapeutic targets in children with ASD. Because of their very limited flexibility [102] and working memory problems [117], children with ASD easily become despaired and helpless and express this in externalizing behavior that can become difficult to control. Pharmacologic treatment, mostly using antipsychotics, must find a compromise between behavioral control, oversedation, and (mostly metabolic) side effects.
Depressed mood and anxiety disorders call for psychotherapy and, in selected patients, for treatment with antidepressants. The problems with antidepressant medication are its reduced efficacy in autistic vs. normally developing children (see Sect. 3.2), and, again, walking the tightrope between brightening mood or reducing anxiety or obsessions and compulsions and an increased behavioral activation.
Sleep problems are observed in a majority of patients with ASD. Sleep hygiene and bedtime routines should be tried before trying medication, and sleep-related side effects of stimulant therapy should also be considered as a promoting factor of sleep dysfunction. Melatonin is the first-line drug, especially for difficulties in falling asleep. It is effective in about two-thirds and counterbalances inherited melatonin dysfunction. It should be noted that falling asleep with lights on (especially from computer or mobile phone screens) counteracts the action of melatonin medication.
Treatment of ADHD, one of the most prominent comorbid conditions of ASD with overlapping symptoms, is often a key factor in enabling social and intellectual learning, school attendance, and fighting restlessness and impulsivity. Problems are related to the reduced efficacy of pharmacotherapy compared to normotypic patients and a multitude of interacting problems, e.g., bipolar disorder and ADHD.
Convulsions, most frequently observed in children with ASD and ID, should be treated like in normally developing children (see Sect. 3.2.1). Attention should be paid to sedation, metabolic, learning inhibition side effects, and, and in adolescents, to teratogenic side effects for the offspring.
The rediscovery of the gut–brain axis is a relatively new field of research and might, therefore, be overestimated by parents. More prospective studies will shed light on the effects of dietary and probiotic measures. Alternative treatments are comprehensively largely overestimated for their effects, ranging from dietary to physical and possibly endangering measures. Because alternative “medications” are not controlled for their action in prospective randomized trials, it is difficult to argue against the use of such substances in the general public, mostly because “natural” substances are considered harmless and innocuous (see Sect. 3.4).
In summary, we compiled an overview on substances that may be advantageously used in children with ASD with the aim of improving social behavior, learning ability, and quality of life of the children and their environment. The approach is rather defensive, mostly targeting undesired symptoms. Future work and experience should focus on desired changes of core symptoms, on long-term efficacy, on reducing polypragmasia and undesired drug effects, and on avoiding overtreatment, especially if behavioral therapies are available as an alternative. On the other hand, the benefits of carefully prescribed medication should always be recognized.

Conflict of Interest

The authors state that no author has a conflict of interest to declare.
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://​creativecommons.​org/​licenses/​by/​4.​0/​.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Fußnoten
1
applied behavioral analysis [209].
 
2
Treatment and Education of Autistic and related Communication Handicapped Children [211].
 
3
Picture Exchange Communication System [89].
 
4
N‑methyl-D-aspartate.
 
5
Again, selecting more carefully performed studies, more recent, often cited papers, and preferring reviews, if available, over original studies.
 
6
norepinephrine and dopamine reuptake inhibitor.
 
7
With inconsistent results [129, 137].
 
8
Electrical status epilepticus during slow-wave sleep.
 
9
These two references do not primarily refer to children with ASD.
 
10
General description.
 
11
Trittico®.
 
12
Alterations of the excitatory/inhibitory CNS imbalance in children with ASD? [99].
 
13
Slenyto®.
 
14
10.000 lux for \(1/2\) h in the early evening and/or morning in order to synchronize the circadian rhythm better.
 
15
Vol. 1580:1–232(2015).
 
16
Fragile X mental retardation 1 (FMR1) gene on chromosome X (Xa27.3).
 
17
Alternative and conventional medication.
 
18
This is disputed for vitamin D: evidence [155] vs. no evidence [204].
 
19
For heavy metal detoxication.
 
Literatur
3.
Zurück zum Zitat Allen A, Kurlan R, Gilbert D, Dunn D, Dallee FR, Spencer T. Atomoxetine treatment in children with ADHD and comorbid tic disorders. In: 16th World Congress of IACAPAP. Darmstadt: Steinkopff; 2004. pp. 311–31. Allen A, Kurlan R, Gilbert D, Dunn D, Dallee FR, Spencer T. Atomoxetine treatment in children with ADHD and comorbid tic disorders. In: 16th World Congress of IACAPAP. Darmstadt: Steinkopff; 2004. pp. 311–31.
4.
Zurück zum Zitat Aman MG, Buican B, Arnold LE. Methylphenidate treatmentin children with borderline IQ and mental retardation: analysis of three aggregated studies. J Child Adolesc Psychopharmacol. 2003;13(1):29–40. PubMedCrossRef Aman MG, Buican B, Arnold LE. Methylphenidate treatmentin children with borderline IQ and mental retardation: analysis of three aggregated studies. J Child Adolesc Psychopharmacol. 2003;13(1):29–40. PubMedCrossRef
6.
Zurück zum Zitat American Academy of Child and Adolescent Psychiatry Committee on Quality Issues. Practice parameter for the assessment and treatment of children and adolescents with obsessive–compulsive disorder. J Am Acad Child Adoles Psych. 2012;51(1):98–113. American Academy of Child and Adolescent Psychiatry Committee on Quality Issues. Practice parameter for the assessment and treatment of children and adolescents with obsessive–compulsive disorder. J Am Acad Child Adoles Psych. 2012;51(1):98–113.
8.
Zurück zum Zitat Andari E, Duhamel JR, Zalla T, Herbrecht E, Leboyer M, Sirigu A. Promoting social behavior with oxytocin in high-functioning autism spectrum disorders. Proc Natl Acad Sci Usa. 2010;107:4389–94. PubMedPubMedCentralCrossRef Andari E, Duhamel JR, Zalla T, Herbrecht E, Leboyer M, Sirigu A. Promoting social behavior with oxytocin in high-functioning autism spectrum disorders. Proc Natl Acad Sci Usa. 2010;107:4389–94. PubMedPubMedCentralCrossRef
9.
Zurück zum Zitat Anderson LT, Campbell M, Grega DM, Perry R, Small AM, Green WH. Haloperidol in the treatment of infantile autism: effects on learning and behavioral symptoms. Am J Psychiatry. 1984;141:1195–202. PubMedCrossRef Anderson LT, Campbell M, Grega DM, Perry R, Small AM, Green WH. Haloperidol in the treatment of infantile autism: effects on learning and behavioral symptoms. Am J Psychiatry. 1984;141:1195–202. PubMedCrossRef
10.
Zurück zum Zitat Antshel KM, Zhang-James Y, Faraone SV. The comorbidity of ADHD and autism spectrum disorder. Expert Rev Neurother. 2013;13(10):1117–28. PubMedCrossRef Antshel KM, Zhang-James Y, Faraone SV. The comorbidity of ADHD and autism spectrum disorder. Expert Rev Neurother. 2013;13(10):1117–28. PubMedCrossRef
11.
Zurück zum Zitat Arnold LE. Commentary: filling out the evidence base for treatment of attention-deficit hyperactivity disorder symptoms in children with intellectual and developmental disability: conclusions for clinicians – response to Simonoff et al. J Child Psychol Psychiatry Allied Discip. 2013;54(6):701–4. CrossRef Arnold LE. Commentary: filling out the evidence base for treatment of attention-deficit hyperactivity disorder symptoms in children with intellectual and developmental disability: conclusions for clinicians – response to Simonoff et al. J Child Psychol Psychiatry Allied Discip. 2013;54(6):701–4. CrossRef
14.
Zurück zum Zitat Bachmann CJ, Manthey T, Kamp-Becker I, Glaeske G, Hoffmann F. Psychopharmacological treatment in children and adolescents with autism spectrum disorders in Germany. Res Dev Disabil. 2013;34(9):2551–63. PubMedCrossRef Bachmann CJ, Manthey T, Kamp-Becker I, Glaeske G, Hoffmann F. Psychopharmacological treatment in children and adolescents with autism spectrum disorders in Germany. Res Dev Disabil. 2013;34(9):2551–63. PubMedCrossRef
16.
Zurück zum Zitat Bailey T. Beyond DSM: The role of auditory processing in attention and its disorders. Appl Neuropsychol Child. 2012;1(2):112–20. PubMedCrossRef Bailey T. Beyond DSM: The role of auditory processing in attention and its disorders. Appl Neuropsychol Child. 2012;1(2):112–20. PubMedCrossRef
19.
Zurück zum Zitat Banire B, Al Thani D, Makki M, Qaraqe M, Anand K, Olcay C, Khowaja K, Mansoor B. Attention assessment: Evaluation of facial expressions of children with autism spectrum disorder. In. In: Universal access in human-computer interaction. Multimodality and assistive environments. Berlin Heidelberg: Springer; 2019. pp. 32–48. https://​doi.​org/​10.​1007/​978-3-030-23563-5_​4. CrossRef Banire B, Al Thani D, Makki M, Qaraqe M, Anand K, Olcay C, Khowaja K, Mansoor B. Attention assessment: Evaluation of facial expressions of children with autism spectrum disorder. In. In: Universal access in human-computer interaction. Multimodality and assistive environments. Berlin Heidelberg: Springer; 2019. pp. 32–48. https://​doi.​org/​10.​1007/​978-3-030-23563-5_​4. CrossRef
21.
Zurück zum Zitat Baribeau DA, Anagnostou E. Social communication is an emerging target for pharmacotherapy in autism spectrum disorder – a review of the literature on potential agents. J Can Acad Child Adolesc Psychiatry. 2014;23(1):20–30. PubMedPubMedCentral Baribeau DA, Anagnostou E. Social communication is an emerging target for pharmacotherapy in autism spectrum disorder – a review of the literature on potential agents. J Can Acad Child Adolesc Psychiatry. 2014;23(1):20–30. PubMedPubMedCentral
22.
Zurück zum Zitat Bartz JA, Hollander E. Oxytocin and experimental therapeutics in autism spectrum disorders. Prog Brain Res. 2008;170:451–62. PubMedCrossRef Bartz JA, Hollander E. Oxytocin and experimental therapeutics in autism spectrum disorders. Prog Brain Res. 2008;170:451–62. PubMedCrossRef
23.
Zurück zum Zitat Belsito KM, Law PA, Kirk KS, Landa RJ, Zimmerman AW. Lamotrigine therapy for autistic disorder: a randomized, double-blind, placebo-controled trial. J Autism Dev Disord. 2001;31:175–81. PubMedCrossRef Belsito KM, Law PA, Kirk KS, Landa RJ, Zimmerman AW. Lamotrigine therapy for autistic disorder: a randomized, double-blind, placebo-controled trial. J Autism Dev Disord. 2001;31:175–81. PubMedCrossRef
28.
Zurück zum Zitat Bowers K, Lin PI, Erickson C. Pharmacogenomic medicine in autism: challenges and opportunities. Paediatr Drugs. 2015;17(2):115–24. PubMedCrossRef Bowers K, Lin PI, Erickson C. Pharmacogenomic medicine in autism: challenges and opportunities. Paediatr Drugs. 2015;17(2):115–24. PubMedCrossRef
29.
Zurück zum Zitat Braat S, Kooy RF. Insights into GABA‑A ergic system deficits in fragile X syndrome lead to clinical trials. Neuropharmacology. 2015;88:48–54. PubMedCrossRef Braat S, Kooy RF. Insights into GABA‑A ergic system deficits in fragile X syndrome lead to clinical trials. Neuropharmacology. 2015;88:48–54. PubMedCrossRef
33.
Zurück zum Zitat Burnashev N, Szepetowski P. NMDA receptor subunit mutations in neurodevelopmental disorders. Curr Opin Pharmacol. 2015;20:73–82. PubMedCrossRef Burnashev N, Szepetowski P. NMDA receptor subunit mutations in neurodevelopmental disorders. Curr Opin Pharmacol. 2015;20:73–82. PubMedCrossRef
34.
Zurück zum Zitat Canitano R. New experimental treatments for core social domain in autism spectrum disorders. Front Pediatr. 2014;2(Article 61):1–6. Canitano R. New experimental treatments for core social domain in autism spectrum disorders. Front Pediatr. 2014;2(Article 61):1–6.
35.
Zurück zum Zitat Canitano R, Scandurra V. Psychopharmacology in autism: an update. Prog Neuropsychopharmacol Biol Psychiatry. 2011;35(1):18–28. PubMedCrossRef Canitano R, Scandurra V. Psychopharmacology in autism: an update. Prog Neuropsychopharmacol Biol Psychiatry. 2011;35(1):18–28. PubMedCrossRef
39.
Zurück zum Zitat Cerrillo-Urbina AJ, García-Hermoso A, Sánchez-López M, Pardo-Guijarro MJ, Santos Gómez JL, Martínez-Vizcaíno V. The effects of physical exercise in children with attention deficit hyperactivity disorder: a systematic review and meta-analysis of randomized control trials. Child Care Health Dev. 2015;41(6):779–88. https://​doi.​org/​10.​1111/​cch.​12255. CrossRefPubMed Cerrillo-Urbina AJ, García-Hermoso A, Sánchez-López M, Pardo-Guijarro MJ, Santos Gómez JL, Martínez-Vizcaíno V. The effects of physical exercise in children with attention deficit hyperactivity disorder: a systematic review and meta-analysis of randomized control trials. Child Care Health Dev. 2015;41(6):779–88. https://​doi.​org/​10.​1111/​cch.​12255. CrossRefPubMed
40.
Zurück zum Zitat Chambless DL, Ollendick TH. Empirically supported psychological interventions: controversies and evidence. Annu Rev Psychol. 2001;52:685–716. PubMedCrossRef Chambless DL, Ollendick TH. Empirically supported psychological interventions: controversies and evidence. Annu Rev Psychol. 2001;52:685–716. PubMedCrossRef
41.
Zurück zum Zitat Charach A, Carson P, Fox S, Ali MU, Beckett J, Lim CG. Interventions for preschool children at high risk for ADHD: a comparative effectiveness review. Pediatrics. 2013;131(5):e1584–e604. PubMedCrossRef Charach A, Carson P, Fox S, Ali MU, Beckett J, Lim CG. Interventions for preschool children at high risk for ADHD: a comparative effectiveness review. Pediatrics. 2013;131(5):e1584–e604. PubMedCrossRef
42.
Zurück zum Zitat Chavez B, Chavez-Brown M, Rey JA. Role of risperidone in children with autism spectrum disorder. Ann Pharmacother. 2006;40(5):909–16. PubMedCrossRef Chavez B, Chavez-Brown M, Rey JA. Role of risperidone in children with autism spectrum disorder. Ann Pharmacother. 2006;40(5):909–16. PubMedCrossRef
43.
Zurück zum Zitat Chavez B, Chavez-Brown M, Sopko MA Jr., Rey JA. Atypical antipsychotics in children with pervasive developmental disorders. Paediatr Drugs. 2007;9(4):249–66. PubMedCrossRef Chavez B, Chavez-Brown M, Sopko MA Jr., Rey JA. Atypical antipsychotics in children with pervasive developmental disorders. Paediatr Drugs. 2007;9(4):249–66. PubMedCrossRef
47.
Zurück zum Zitat Chini B, Leoncino M, Gigliucci V. Oxytocin in the developing brain: Relevance as disease-modifying treatment in autism spectrum disorders. In Carlo Sala and Chiara Verpelli, editors, Neu Syn Dysfunct Autism Spect Dis Intellect Disab. 2016;253–266. London, San Diego, Oxford: Academic Press. Chini B, Leoncino M, Gigliucci V. Oxytocin in the developing brain: Relevance as disease-modifying treatment in autism spectrum disorders. In Carlo Sala and Chiara Verpelli, editors, Neu Syn Dysfunct Autism Spect Dis Intellect Disab. 2016;253–266. London, San Diego, Oxford: Academic Press.
60.
Zurück zum Zitat Dawson G, Burner K. Behavioral interventions in children and adolescents with autism spectrum disorder: a review of recent findings. Curr Opin Pediatr. 2011;23(6):616–20. PubMedCrossRef Dawson G, Burner K. Behavioral interventions in children and adolescents with autism spectrum disorder: a review of recent findings. Curr Opin Pediatr. 2011;23(6):616–20. PubMedCrossRef
61.
Zurück zum Zitat De Hert M, Dobbelaere M, Sheridan EM, Cohen D, Correll CU. Metabolic and endocrine adverse effects of second-generation antipsychotics in children and adolescents: a systematic review of randomized, placebo controlled trials and guidelines for clinical practice. Eur psychiatr. 2011;26(3):144–58. CrossRef De Hert M, Dobbelaere M, Sheridan EM, Cohen D, Correll CU. Metabolic and endocrine adverse effects of second-generation antipsychotics in children and adolescents: a systematic review of randomized, placebo controlled trials and guidelines for clinical practice. Eur psychiatr. 2011;26(3):144–58. CrossRef
62.
Zurück zum Zitat Deb S, Farmah BK, Arshad E, Deb T, Roy M, Unwin GL. The effectiveness of aripiprazole in the management of problem behaviour in people with intellectual disabilities, developmental disabilities and/or autistic spectrum disorder–a systematic review. Res Dev Disabil. 2014;35(3):711–25. PubMedCrossRef Deb S, Farmah BK, Arshad E, Deb T, Roy M, Unwin GL. The effectiveness of aripiprazole in the management of problem behaviour in people with intellectual disabilities, developmental disabilities and/or autistic spectrum disorder–a systematic review. Res Dev Disabil. 2014;35(3):711–25. PubMedCrossRef
64.
Zurück zum Zitat Dinissen M, Dietrich A, van den Hoofdakker BJ, Hoekstra. Clinical and pharmacokinetic evaluation of risperidone for the management of autism spectrum disorder. Expert Opin Drug Metab Toxicol. 2015;11(1):111–24. CrossRef Dinissen M, Dietrich A, van den Hoofdakker BJ, Hoekstra. Clinical and pharmacokinetic evaluation of risperidone for the management of autism spectrum disorder. Expert Opin Drug Metab Toxicol. 2015;11(1):111–24. CrossRef
65.
Zurück zum Zitat Dolle K, Schulte-Körne G. Evidenztabelle Psycho- und Pharmakotherapie im Vergleich und in Kombination zur Leitlinie „Behandlung von depressiven Störungen bei Kindern und Jugendlichen“ [Table of evidence Psycho- and pharmacotherapy, comparing and combining the guideline Treatment of depressive disorders in children and adolescents. 2012. http://​www.​awmf.​org/​leitlinien/​aktuelle-leitlinien.​html. Accessed: 17 Jun 2021. Dolle K, Schulte-Körne G. Evidenztabelle Psycho- und Pharmakotherapie im Vergleich und in Kombination zur Leitlinie „Behandlung von depressiven Störungen bei Kindern und Jugendlichen“ [Table of evidence Psycho- and pharmacotherapy, comparing and combining the guideline Treatment of depressive disorders in children and adolescents. 2012. http://​www.​awmf.​org/​leitlinien/​aktuelle-leitlinien.​html. Accessed: 17 Jun 2021.
66.
Zurück zum Zitat Douglas-Hall P, Curran S, Bird V, Taylor D. Aripiprazole: a review of its use in the treatment of irritability associated with autistic disorder patients aged 6–17. J Cent Nerv Syst Disord. 2011;12(3):143–53. Douglas-Hall P, Curran S, Bird V, Taylor D. Aripiprazole: a review of its use in the treatment of irritability associated with autistic disorder patients aged 6–17. J Cent Nerv Syst Disord. 2011;12(3):143–53.
68.
Zurück zum Zitat Doyle CA, McDougle CJ. Pharmacologic treatments for the behavioral symptoms associated with autism spectrum disorders across the lifespan. Dia Clin Neurosci. 2012;14(3):263–79, 2012. Doyle CA, McDougle CJ. Pharmacologic treatments for the behavioral symptoms associated with autism spectrum disorders across the lifespan. Dia Clin Neurosci. 2012;14(3):263–79, 2012.
69.
Zurück zum Zitat Duggal HS. Ziprasidone for maladaptive behavior and attention-deficit/hyperactivity disorder symptoms in autistic disorder. J Child Adolesc Psychopharmacol. 2007;2:261–3. CrossRef Duggal HS. Ziprasidone for maladaptive behavior and attention-deficit/hyperactivity disorder symptoms in autistic disorder. J Child Adolesc Psychopharmacol. 2007;2:261–3. CrossRef
74.
Zurück zum Zitat Engel J Jr. A proposed diagnostic scheme for people with epileptic seizures and with epilepsy: report of the ilae task force on classification and terminology. Epilepsia. 2001;42:796–803. PubMedCrossRef Engel J Jr. A proposed diagnostic scheme for people with epileptic seizures and with epilepsy: report of the ilae task force on classification and terminology. Epilepsia. 2001;42:796–803. PubMedCrossRef
79.
Zurück zum Zitat Ernst M, Magee HJ, Gonzalez NM, Locascio JJ, Rosenberg CR, Campbell M. Pimozide in autistic children. Psychopharmacol Bull. 1992;28(2):187–91. PubMed Ernst M, Magee HJ, Gonzalez NM, Locascio JJ, Rosenberg CR, Campbell M. Pimozide in autistic children. Psychopharmacol Bull. 1992;28(2):187–91. PubMed
82.
87.
Zurück zum Zitat Ferrin M, Moreno-Granados JM, Salcedo-Marin MD, Ruiz-Veguilla M, Perez-Ayala V, Taylor E. Evaluation of a psychoeducation programme for parents of children and adolescents with ADHD: Immediate and long-term effects using a blind randomized controlled trial. Eur Child Adolesc Psychiatry. 2014;23(8):637–47. PubMedCrossRef Ferrin M, Moreno-Granados JM, Salcedo-Marin MD, Ruiz-Veguilla M, Perez-Ayala V, Taylor E. Evaluation of a psychoeducation programme for parents of children and adolescents with ADHD: Immediate and long-term effects using a blind randomized controlled trial. Eur Child Adolesc Psychiatry. 2014;23(8):637–47. PubMedCrossRef
88.
Zurück zum Zitat Flatz T, Gleußner M. Neurofeedbacktherapie bei ADHS und Autismus [neurofeedback therapy for ADHD and Autism]. Paediatr Paedol. 2014;49:22–7. CrossRef Flatz T, Gleußner M. Neurofeedbacktherapie bei ADHS und Autismus [neurofeedback therapy for ADHD and Autism]. Paediatr Paedol. 2014;49:22–7. CrossRef
91.
Zurück zum Zitat Frazier TW, Youngstrom EA, Haycook T, Sinoff A, Dimitrou F, Knapp J, et al. Effectiveness of medication combined with intensive behavioral intervention for reducing aggression in youth with autism spectrum disorder. J Child Adolesc Psychopharmacol. 2010;20(3):167–77. PubMedCrossRef Frazier TW, Youngstrom EA, Haycook T, Sinoff A, Dimitrou F, Knapp J, et al. Effectiveness of medication combined with intensive behavioral intervention for reducing aggression in youth with autism spectrum disorder. J Child Adolesc Psychopharmacol. 2010;20(3):167–77. PubMedCrossRef
92.
Zurück zum Zitat Frazier TW, Shattuck PT, Narendorf SC, Cooper BP, Wagner M, Spitznagel EL. Prevalence and correlates of psychotropic medication use in adolescents with an autism spectrum disorder with and without caregiver-reported attention-deficit/hyperactivity disorder. J Child Adolesc Pharmacol. 2011;21(6):571–9. https://​doi.​org/​10.​1089/​cap.​2011.​0057. CrossRef Frazier TW, Shattuck PT, Narendorf SC, Cooper BP, Wagner M, Spitznagel EL. Prevalence and correlates of psychotropic medication use in adolescents with an autism spectrum disorder with and without caregiver-reported attention-deficit/hyperactivity disorder. J Child Adolesc Pharmacol. 2011;21(6):571–9. https://​doi.​org/​10.​1089/​cap.​2011.​0057. CrossRef
93.
Zurück zum Zitat Frémaux T, Reymann JM, Chevreuil C, Bentué-Ferrer D. Prescription de l’olanzapine chez l’enfant et l’adolescent [Verschreibung von Olanzapin bei Kindern und Jugendlichen]. Encephale. 2007;33(2):188–96. PubMedCrossRef Frémaux T, Reymann JM, Chevreuil C, Bentué-Ferrer D. Prescription de l’olanzapine chez l’enfant et l’adolescent [Verschreibung von Olanzapin bei Kindern und Jugendlichen]. Encephale. 2007;33(2):188–96. PubMedCrossRef
95.
Zurück zum Zitat Frye RE, Sreenivasula S, Adams JB. Traditional and non-traditional treatments for autism spectrum disorder with seizures: an on-line survey. BMC Pediatr. 2011;11:37. PubMedPubMedCentralCrossRef Frye RE, Sreenivasula S, Adams JB. Traditional and non-traditional treatments for autism spectrum disorder with seizures: an on-line survey. BMC Pediatr. 2011;11:37. PubMedPubMedCentralCrossRef
98.
Zurück zum Zitat Gahr M, Kölle MA, Schönfeldt-Lecuona C, Lepping P, Freudenmann RW. Paliperidone extended-release: does it have a place in antipsychotic therapy? DDDT. 2011;11(5):125–46. CrossRef Gahr M, Kölle MA, Schönfeldt-Lecuona C, Lepping P, Freudenmann RW. Paliperidone extended-release: does it have a place in antipsychotic therapy? DDDT. 2011;11(5):125–46. CrossRef
103.
Zurück zum Zitat Ghanizadeh A, Sahraeizadeh A, Berk M. A head-to-head comparison of Aripiprazole and Risperidone for safety and treating autistic disorders, a randomized double blind clinical trial. Child Psychiatry Hum Dev. 2014;45(2):185–92. PubMedCrossRef Ghanizadeh A, Sahraeizadeh A, Berk M. A head-to-head comparison of Aripiprazole and Risperidone for safety and treating autistic disorders, a randomized double blind clinical trial. Child Psychiatry Hum Dev. 2014;45(2):185–92. PubMedCrossRef
108.
Zurück zum Zitat Goldman SE, Adkins KW, Calcutt MW, Carter MD, Goodpaster RL, Wang L, et al. Melatonin in children with autism spectrum disorders: endogenous and pharmacokinetic profiles in relation to sleep. J Autism Dev Disord. 2014;44:2525–35. PubMedPubMedCentralCrossRef Goldman SE, Adkins KW, Calcutt MW, Carter MD, Goodpaster RL, Wang L, et al. Melatonin in children with autism spectrum disorders: endogenous and pharmacokinetic profiles in relation to sleep. J Autism Dev Disord. 2014;44:2525–35. PubMedPubMedCentralCrossRef
109.
Zurück zum Zitat Golubchik P, Sever J, Weizman A. Low-dose quetiapine for adolescents with autistic spectrum disorder and aggressive behavior: open-label trial. Clin Neuropharmacol. 2011;34(6):216–9. PubMedCrossRef Golubchik P, Sever J, Weizman A. Low-dose quetiapine for adolescents with autistic spectrum disorder and aggressive behavior: open-label trial. Clin Neuropharmacol. 2011;34(6):216–9. PubMedCrossRef
110.
Zurück zum Zitat Gründer G, Benkert O. Handbuch der Psychopharmakatherapie [Handbook of Psychopharmacotherapy]. Heidelberg: Springer; 2008. Gründer G, Benkert O. Handbuch der Psychopharmakatherapie [Handbook of Psychopharmacotherapy]. Heidelberg: Springer; 2008.
111.
Zurück zum Zitat Guastella AJ, Einfeld SL, Gray KM, Rinehart NJ, Tonge BJ, Lambert TJ, et al. Intranasal oxytocin improves emotion recognition for youth with autism spectrum disorders. Biol Psychiatry. 2010;67(7):692–4. PubMedCrossRef Guastella AJ, Einfeld SL, Gray KM, Rinehart NJ, Tonge BJ, Lambert TJ, et al. Intranasal oxytocin improves emotion recognition for youth with autism spectrum disorders. Biol Psychiatry. 2010;67(7):692–4. PubMedCrossRef
112.
Zurück zum Zitat Guastella AJ, Hickie IB, McGuiness MM, Otis M, Woods EA, Disinger HM, et al. Recommendations for the standardisation of oxytocin nasal administration and guidelines for its reporting in human research. Psychoneuroendocrinology. 2013;38(5):612–25. PubMedCrossRef Guastella AJ, Hickie IB, McGuiness MM, Otis M, Woods EA, Disinger HM, et al. Recommendations for the standardisation of oxytocin nasal administration and guidelines for its reporting in human research. Psychoneuroendocrinology. 2013;38(5):612–25. PubMedCrossRef
114.
Zurück zum Zitat Guenot M. Indications et risques des techniques neuro-chirurgicales chez l’enfant présentant une épilepsie partielle pharmaco-résistante. [Surgical treatment for epilepsy in children wihth treatment resistant partial epilepsy: indications and complications]. Rev Neurol. 2004;160(Supplement 1):203–9. CrossRef Guenot M. Indications et risques des techniques neuro-chirurgicales chez l’enfant présentant une épilepsie partielle pharmaco-résistante. [Surgical treatment for epilepsy in children wihth treatment resistant partial epilepsy: indications and complications]. Rev Neurol. 2004;160(Supplement 1):203–9. CrossRef
115.
Zurück zum Zitat Guglielmo R, Ioime L, Grandinetti P, Janiri L. Managing disruptive and compulsive behaviors in adult with autistic disorder with Gabapentin. J Clin Psychopharmacol. 2013;33(2):273–4. PubMedCrossRef Guglielmo R, Ioime L, Grandinetti P, Janiri L. Managing disruptive and compulsive behaviors in adult with autistic disorder with Gabapentin. J Clin Psychopharmacol. 2013;33(2):273–4. PubMedCrossRef
117.
Zurück zum Zitat Habib A, Harris L, Pollick F, Melville C. A meta-analysis of working memory in individuals with autism spectrum disorders. PLoS ONE. 2019;14(4e0216198):1–25. Habib A, Harris L, Pollick F, Melville C. A meta-analysis of working memory in individuals with autism spectrum disorders. PLoS ONE. 2019;14(4e0216198):1–25.
118.
Zurück zum Zitat Hamiwka LD, Wirrell EC. Comorbidities in pediatric epilepsy: beyond “just” treating the seizures. J Child Neurol. 2009;24(6):734–42. PubMedCrossRef Hamiwka LD, Wirrell EC. Comorbidities in pediatric epilepsy: beyond “just” treating the seizures. J Child Neurol. 2009;24(6):734–42. PubMedCrossRef
119.
Zurück zum Zitat Handleman JS, Harris SL. Preschool education programs for children with autism. Austin: ProEd; 2001. Handleman JS, Harris SL. Preschool education programs for children with autism. Austin: ProEd; 2001.
122.
Zurück zum Zitat Hardan AY, Jou RJ, Handen BL. Retrospective study of quetiapine in children and adolescents with pervasive developmental disorders. J Autism Dev Disord. 2005;35(3):387–91. PubMedCrossRef Hardan AY, Jou RJ, Handen BL. Retrospective study of quetiapine in children and adolescents with pervasive developmental disorders. J Autism Dev Disord. 2005;35(3):387–91. PubMedCrossRef
124.
Zurück zum Zitat Harfterkamp M, Buitelaar JK, Minderaa RB, van de Loo-Neus G, van der Gaag RJ, Hoekstra PJ. Long-term treatment with atomoxetine for attention-deficit/ hyperactivity disorder symptoms in children and adolescents with autism spectrum disorder: An open-label extension study. J Child Adolesc Psychopharmacol. 2013;23(3):194–9. https://​doi.​org/​10.​1089/​cap.​2012.​0012. CrossRefPubMed Harfterkamp M, Buitelaar JK, Minderaa RB, van de Loo-Neus G, van der Gaag RJ, Hoekstra PJ. Long-term treatment with atomoxetine for attention-deficit/ hyperactivity disorder symptoms in children and adolescents with autism spectrum disorder: An open-label extension study. J Child Adolesc Psychopharmacol. 2013;23(3):194–9. https://​doi.​org/​10.​1089/​cap.​2012.​0012. CrossRefPubMed
126.
Zurück zum Zitat Hazen EP, Stornelli JL, O’Rourke JA, Koesterer K, McDougle CJ. Sensory symptoms in autism spectrum disorders. Harv Rev Psychiatry. 2014;22(2):112–24. PubMedCrossRef Hazen EP, Stornelli JL, O’Rourke JA, Koesterer K, McDougle CJ. Sensory symptoms in autism spectrum disorders. Harv Rev Psychiatry. 2014;22(2):112–24. PubMedCrossRef
130.
Zurück zum Zitat Henderson C, Wietjunge I, Kinoshita MN, Shumway M, Hammond RS, Postma FR, et al. Reversal of disease-related pathologies in the Fragile X mouse model by selective activation of GABA‑B receptors with arbaclofen. Sci Transl Med. 2012;4(152):1–11. CrossRef Henderson C, Wietjunge I, Kinoshita MN, Shumway M, Hammond RS, Postma FR, et al. Reversal of disease-related pathologies in the Fragile X mouse model by selective activation of GABA‑B receptors with arbaclofen. Sci Transl Med. 2012;4(152):1–11. CrossRef
133.
Zurück zum Zitat Hirota T, Veenstra-Vanderweele J, Hollander E, Kishi T. Antiepileptic medications in autism spectrum disorder: a systematic review and meta-analysis. J Autism Dev Disord. 2014;44(4):948–57. PubMedCrossRef Hirota T, Veenstra-Vanderweele J, Hollander E, Kishi T. Antiepileptic medications in autism spectrum disorder: a systematic review and meta-analysis. J Autism Dev Disord. 2014;44(4):948–57. PubMedCrossRef
135.
Zurück zum Zitat Hollander E, Phillips A, Chaplin W, Zagursky K, Novotny S, Wasserman S, et al. A placebo controlled crossover trial of liquid fluoxetine on repetitive behaviors in childhood and adolescent autism. Neuropsychopharmacology. 2005;30(3):582–9. PubMedCrossRef Hollander E, Phillips A, Chaplin W, Zagursky K, Novotny S, Wasserman S, et al. A placebo controlled crossover trial of liquid fluoxetine on repetitive behaviors in childhood and adolescent autism. Neuropsychopharmacology. 2005;30(3):582–9. PubMedCrossRef
136.
Zurück zum Zitat Hollander E, Soorya L, Wasserman S, Esposito K, Chaplin W, Anagnostou E. Divalproex sodium vs. placebo in the treatment of repetitive behaviours in autism spectrum disorder. Int J Neuropsychopharmacol. 2006;9:209–13. PubMedCrossRef Hollander E, Soorya L, Wasserman S, Esposito K, Chaplin W, Anagnostou E. Divalproex sodium vs. placebo in the treatment of repetitive behaviours in autism spectrum disorder. Int J Neuropsychopharmacol. 2006;9:209–13. PubMedCrossRef
137.
Zurück zum Zitat Hollander E, Wasserman S, Swanson EN, Chaplin W, Schapiro ML, Zagursky K, et al. A double-blind placebo-controlled pilot study of olanzapine in childhood/adolescent pervasive developmental disorder. J Child Adolesc Psychopharmacol. 2006a;16(5):541–8. PubMedCrossRef Hollander E, Wasserman S, Swanson EN, Chaplin W, Schapiro ML, Zagursky K, et al. A double-blind placebo-controlled pilot study of olanzapine in childhood/adolescent pervasive developmental disorder. J Child Adolesc Psychopharmacol. 2006a;16(5):541–8. PubMedCrossRef
139.
Zurück zum Zitat Hosenbocus S, Chahal R. Memantine: a review of possible uses in child and adolescent psychiatry. J Can Acad Child Adolesc Psychiatry. 2013;22(2):166–71. PubMedPubMedCentral Hosenbocus S, Chahal R. Memantine: a review of possible uses in child and adolescent psychiatry. J Can Acad Child Adolesc Psychiatry. 2013;22(2):166–71. PubMedPubMedCentral
140.
Zurück zum Zitat Hsiao EY. Gastrointestinal issues in autism spectrum disorder. Harv Rev Psychiatry. 2014;22(2):104–11. PubMedCrossRef Hsiao EY. Gastrointestinal issues in autism spectrum disorder. Harv Rev Psychiatry. 2014;22(2):104–11. PubMedCrossRef
143.
Zurück zum Zitat Hurwitz R, Blackmore R, Hazell P, Williams K, Woolfenden S. Tricyclic antidepressants for autism spectrum disorders (ASD) in children and adolescents. Coch Data Syst Rev. 2012;;14(3):1–31, 2012. Hurwitz R, Blackmore R, Hazell P, Williams K, Woolfenden S. Tricyclic antidepressants for autism spectrum disorders (ASD) in children and adolescents. Coch Data Syst Rev. 2012;;14(3):1–31, 2012.
146.
149.
151.
Zurück zum Zitat James S, Stevenson SW, Silove N, Williams K. Chelation for autism spectrum disorder (ASD). Coch Data Sys Rev. 2015;11(5):1–27, 2015. James S, Stevenson SW, Silove N, Williams K. Chelation for autism spectrum disorder (ASD). Coch Data Sys Rev. 2015;11(5):1–27, 2015.
152.
Zurück zum Zitat Jensen PS, Buitelaar J, Pandina GJ, Binder C, Haas M. Management of psychiatric disorders in children and adolescents with atypical antipsychotics: a systematic review of published clinical trials. Eur J Child Adolesc Psychiatry. 2007;16(2):104–20. CrossRef Jensen PS, Buitelaar J, Pandina GJ, Binder C, Haas M. Management of psychiatric disorders in children and adolescents with atypical antipsychotics: a systematic review of published clinical trials. Eur J Child Adolesc Psychiatry. 2007;16(2):104–20. CrossRef
155.
Zurück zum Zitat Jia F, Wang B, Schan L, Xu Z, Staal WG, Du L. Core symptoms of autism improved after vitamin D supplementation. Pediatrics. 2015;135(1):e196–e8. PubMedCrossRef Jia F, Wang B, Schan L, Xu Z, Staal WG, Du L. Core symptoms of autism improved after vitamin D supplementation. Pediatrics. 2015;135(1):e196–e8. PubMedCrossRef
157.
Zurück zum Zitat Johnson CR, Turner KS, Foldes EL, Malow BA, Wiggs L. Comparison of sleep questionnaires in the assessment of sleep disturbances in children with autism spectrum disorders. Sleep Med. 2012;13:795–801. PubMedPubMedCentralCrossRef Johnson CR, Turner KS, Foldes EL, Malow BA, Wiggs L. Comparison of sleep questionnaires in the assessment of sleep disturbances in children with autism spectrum disorders. Sleep Med. 2012;13:795–801. PubMedPubMedCentralCrossRef
161.
Zurück zum Zitat Joshi G, Biederman J, Petty C, Goldin RL, Furtak SL, Wozniak J. Examining the comorbidity of bipolar disorder and autism spectrum disorders: a large controlled analysis of phenotypic and familial correlates in a referred population of youth with bipolar I disorder with and without autism spectrum disorders. J Clin Psych. 2013;74(6):578–86. https://​doi.​org/​10.​4088/​JCP.​12m07392. CrossRef Joshi G, Biederman J, Petty C, Goldin RL, Furtak SL, Wozniak J. Examining the comorbidity of bipolar disorder and autism spectrum disorders: a large controlled analysis of phenotypic and familial correlates in a referred population of youth with bipolar I disorder with and without autism spectrum disorders. J Clin Psych. 2013;74(6):578–86. https://​doi.​org/​10.​4088/​JCP.​12m07392. CrossRef
168.
Zurück zum Zitat King BH, Hollander E, Sikich L, McCracken JT, Scahill L, Bregman JD, et al. Lack of efficacy of citalopram in children with autism spectrum disorders and high levels of repetitive behavior. Arch Gen Psychiatry. 2009;66(6):583–90. PubMedPubMedCentralCrossRef King BH, Hollander E, Sikich L, McCracken JT, Scahill L, Bregman JD, et al. Lack of efficacy of citalopram in children with autism spectrum disorders and high levels of repetitive behavior. Arch Gen Psychiatry. 2009;66(6):583–90. PubMedPubMedCentralCrossRef
169.
Zurück zum Zitat King BH. Fluoxetine and repetitive behaviors in children and adolescents with autism spectrum disorder. JAMA. 2019;322(16):1557–8. PubMedCrossRef King BH. Fluoxetine and repetitive behaviors in children and adolescents with autism spectrum disorder. JAMA. 2019;322(16):1557–8. PubMedCrossRef
170.
Zurück zum Zitat Kirino E. Efficacy and tolerability of pharmacotherapy options for the treatment of irritability in autistic children. Clin Med Insights Pediatr. 2014;25(8):17–30. Kirino E. Efficacy and tolerability of pharmacotherapy options for the treatment of irritability in autistic children. Clin Med Insights Pediatr. 2014;25(8):17–30.
171.
Zurück zum Zitat Kleijer KTE, Schmeisser MJ, Krueger DD, Boeckers TM, Scheiffele P, Bourgeron T, et al. Neurobiology of autism gene products: towards pathogenesis and drug targets. Psychopharmacology (Berl.). 2014;231(6):1037–62. CrossRef Kleijer KTE, Schmeisser MJ, Krueger DD, Boeckers TM, Scheiffele P, Bourgeron T, et al. Neurobiology of autism gene products: towards pathogenesis and drug targets. Psychopharmacology (Berl.). 2014;231(6):1037–62. CrossRef
173.
Zurück zum Zitat Kolevzon A, Mathewson KA, Hollander E. Selective serotonin reuptake inhibitors in autism: a review of efficacy and tolerability. J Clin Psychiatry. 2006;67(3):407–14. PubMedCrossRef Kolevzon A, Mathewson KA, Hollander E. Selective serotonin reuptake inhibitors in autism: a review of efficacy and tolerability. J Clin Psychiatry. 2006;67(3):407–14. PubMedCrossRef
174.
Zurück zum Zitat Kotagal S. Treatment of dyssomnias and parasomnias in childhood. Curr Treat Options Neurol. 2012;14(6):630–49. PubMedCrossRef Kotagal S. Treatment of dyssomnias and parasomnias in childhood. Curr Treat Options Neurol. 2012;14(6):630–49. PubMedCrossRef
182.
Zurück zum Zitat Lerner MD, Haque OS, Northrup EC, Lawer L, Bursztajn HJ. Emerging perspectives on adolescents and young adults with high-functioning autism spectrum disorders, violence, and criminal law. J Am Acad Psych Law. 2012;40(2):177–90. Lerner MD, Haque OS, Northrup EC, Lawer L, Bursztajn HJ. Emerging perspectives on adolescents and young adults with high-functioning autism spectrum disorders, violence, and criminal law. J Am Acad Psych Law. 2012;40(2):177–90.
183.
Zurück zum Zitat Lerner MD, White SW, McPartland JC. Mechanisms of change in psychosocial interventions for autism spectrum disorders. Dialog Clin Neurosci. 2012;14(3):307–18. Lerner MD, White SW, McPartland JC. Mechanisms of change in psychosocial interventions for autism spectrum disorders. Dialog Clin Neurosci. 2012;14(3):307–18.
184.
Zurück zum Zitat Levy ML, Levy KM, Hoff D, Amar AP, Park MS, Conklin JM, et al. Vagus nerve stimulation therapy in patients with autism spectrum disorder and intractable epilepsy: results from the vagus nerve stimulation therapy patient outcome registry. J Neurosurg Pediatr. 2010;5(5):595–602. PubMedCrossRef Levy ML, Levy KM, Hoff D, Amar AP, Park MS, Conklin JM, et al. Vagus nerve stimulation therapy in patients with autism spectrum disorder and intractable epilepsy: results from the vagus nerve stimulation therapy patient outcome registry. J Neurosurg Pediatr. 2010;5(5):595–602. PubMedCrossRef
185.
Zurück zum Zitat Levy S. Complementary and alternative medicine among children recently diagnosed with Autistic Spectrum Disorder. J Dev Behav Pediatr. 2003;24:418–23. PubMedCrossRef Levy S. Complementary and alternative medicine among children recently diagnosed with Autistic Spectrum Disorder. J Dev Behav Pediatr. 2003;24:418–23. PubMedCrossRef
186.
Zurück zum Zitat Levy SE, Hyman SL. Complementary and alternative medicine treatments for children with autism spectrum disorders. Child Adolesc Psychiatry. 2015;24(1):117–43. CrossRef Levy SE, Hyman SL. Complementary and alternative medicine treatments for children with autism spectrum disorders. Child Adolesc Psychiatry. 2015;24(1):117–43. CrossRef
189.
Zurück zum Zitat Liu X, Hubbard JA, Fabes RA, Adam JB. Sleep disturbances and correlates of children with autism spectrum disorders. Child Psychiatry Hum Dev. 2006;37:179–91. PubMedCrossRef Liu X, Hubbard JA, Fabes RA, Adam JB. Sleep disturbances and correlates of children with autism spectrum disorders. Child Psychiatry Hum Dev. 2006;37:179–91. PubMedCrossRef
190.
Zurück zum Zitat Liu Z, Smith CB. Lithium: a promising treatment for fragile X syndrome. ACS Chem Neurosci. 2014;18(5):477–83. CrossRef Liu Z, Smith CB. Lithium: a promising treatment for fragile X syndrome. ACS Chem Neurosci. 2014;18(5):477–83. CrossRef
192.
Zurück zum Zitat Lord C, McGee JP. Educating children with autism. Washington, DC: National Academic Press; 2001. Lord C, McGee JP. Educating children with autism. Washington, DC: National Academic Press; 2001.
194.
Zurück zum Zitat Mahdi F, Setiawati Y. Occupational therapy for children with attention deficit hyperactivity disorder: a literature review. J Child Adolesc Psychiatry. 2019;3(1):1–3. Mahdi F, Setiawati Y. Occupational therapy for children with attention deficit hyperactivity disorder: a literature review. J Child Adolesc Psychiatry. 2019;3(1):1–3.
195.
Zurück zum Zitat Malone RP, Delaney MA, Hyman SB, Cater JR. Ziprasidone in adolescents with autism: an open-label pilot study. J Child Adolesc Psychopharmacol. 2007;17(6):779–90. PubMedCrossRef Malone RP, Delaney MA, Hyman SB, Cater JR. Ziprasidone in adolescents with autism: an open-label pilot study. J Child Adolesc Psychopharmacol. 2007;17(6):779–90. PubMedCrossRef
196.
Zurück zum Zitat Maloney A, Mick EO, Frazier J. Aripiprazole decreases irritability in 12 out of 14 youth with autism spectrum disorders. J Child Adolesc Psychopharmacol. 2014;24(6):357–9. PubMedPubMedCentralCrossRef Maloney A, Mick EO, Frazier J. Aripiprazole decreases irritability in 12 out of 14 youth with autism spectrum disorders. J Child Adolesc Psychopharmacol. 2014;24(6):357–9. PubMedPubMedCentralCrossRef
200.
Zurück zum Zitat Masi G, Milone A, Veltri S, Iuliano R, Pfanner C, Pisano S. Use of quetiapine in children and adolescents. Paediatr Drugs. 2015;17(2):125–40. PubMedCrossRef Masi G, Milone A, Veltri S, Iuliano R, Pfanner C, Pisano S. Use of quetiapine in children and adolescents. Paediatr Drugs. 2015;17(2):125–40. PubMedCrossRef
202.
Zurück zum Zitat Matsuura H, Tateno K, Aou S. Dynamical properties of the two-process model for sleep-wake cycles in infantile autism. Cogn Neurodyn. 2008;2:221–8. PubMedPubMedCentralCrossRef Matsuura H, Tateno K, Aou S. Dynamical properties of the two-process model for sleep-wake cycles in infantile autism. Cogn Neurodyn. 2008;2:221–8. PubMedPubMedCentralCrossRef
203.
Zurück zum Zitat Mayer EA, Padua D, Tillisch K. Altered brain-gut axis in autism: comorbidity or causative mechanisms? Bioassays. 2014;36(10):933–9. CrossRef Mayer EA, Padua D, Tillisch K. Altered brain-gut axis in autism: comorbidity or causative mechanisms? Bioassays. 2014;36(10):933–9. CrossRef
206.
Zurück zum Zitat McCracken JT, Badashova KK, Posey DJ, Aman MG, Scahill L, Tierney E, et al. Positive effects of methylphenidate on hyperactivity are moderated by monoaminergic gene variants in children with autism spectrum disorders. Pharmacogenomics. 2014;14(3):295–302. CrossRef McCracken JT, Badashova KK, Posey DJ, Aman MG, Scahill L, Tierney E, et al. Positive effects of methylphenidate on hyperactivity are moderated by monoaminergic gene variants in children with autism spectrum disorders. Pharmacogenomics. 2014;14(3):295–302. CrossRef
207.
Zurück zum Zitat McCracken JT, McGough J, Shah B, Cronin P, Hong D, Aman MG, et al., and for Research Units on Pediatric Psychopharmacology Autism Network. Risperidone in children with autism and serious behavioral problems. New Eng J Med. 2002;347(5):314–21. https://​doi.​org/​10.​1056/​NEJMoa013171. McCracken JT, McGough J, Shah B, Cronin P, Hong D, Aman MG, et al., and for Research Units on Pediatric Psychopharmacology Autism Network. Risperidone in children with autism and serious behavioral problems. New Eng J Med. 2002;347(5):314–21. https://​doi.​org/​10.​1056/​NEJMoa013171.
208.
Zurück zum Zitat McDougle CJ, Scahill L, McCracken JT, Aman MG, Tierney E, Arnold LE, et al. Research Units on Pediatric Psychopharmacology (RUPP) Autism Network. Background and rationale for an initial controlled study of risperidone. Child Adolesc Psychiatr Clin N Am. 2000;9(1):201–24. PubMedCrossRef McDougle CJ, Scahill L, McCracken JT, Aman MG, Tierney E, Arnold LE, et al. Research Units on Pediatric Psychopharmacology (RUPP) Autism Network. Background and rationale for an initial controlled study of risperidone. Child Adolesc Psychiatr Clin N Am. 2000;9(1):201–24. PubMedCrossRef
209.
Zurück zum Zitat McEachin JJ, Smith T, Lovaas OI. Long-term outcome for children with autism who received early intensive behavioral treatment. Am J Ment Retard. 1993;97(4):359–72. PubMed McEachin JJ, Smith T, Lovaas OI. Long-term outcome for children with autism who received early intensive behavioral treatment. Am J Ment Retard. 1993;97(4):359–72. PubMed
210.
Zurück zum Zitat McPheeters ML, Warren Z, Sathe N, Bruzek JL, Krishnaswami S, Jerome RN, et al. A systematic review of medical treatments for children with autism spectrum disorders. Pediatrics. 2011;127(5):e1312–e21. PubMedCrossRef McPheeters ML, Warren Z, Sathe N, Bruzek JL, Krishnaswami S, Jerome RN, et al. A systematic review of medical treatments for children with autism spectrum disorders. Pediatrics. 2011;127(5):e1312–e21. PubMedCrossRef
211.
Zurück zum Zitat Mesibov GB, Shea V, Schopler E. The TEACCH approach to autism spectrum disorders. Issues in clinical child psychology. New York: Springer; 2004. CrossRef Mesibov GB, Shea V, Schopler E. The TEACCH approach to autism spectrum disorders. Issues in clinical child psychology. New York: Springer; 2004. CrossRef
215.
Zurück zum Zitat Modi ME, Inoue K, Barrett CE, Kittelberger KA, Smith DG, Landgraf R, et al. Melanocortin receptor agonists facilitate oxytocin-dependent partner preference formation in the prairie vole. Neuropsychopharmacology. 2015;40:1856–65. PubMedPubMedCentralCrossRef Modi ME, Inoue K, Barrett CE, Kittelberger KA, Smith DG, Landgraf R, et al. Melanocortin receptor agonists facilitate oxytocin-dependent partner preference formation in the prairie vole. Neuropsychopharmacology. 2015;40:1856–65. PubMedPubMedCentralCrossRef
218.
Zurück zum Zitat Molteni M, Nobile M, Cattaneo D, Radice S, Clementi E. Potential benefits and limits of psychopharmacological therapies in pervasive developmental disorders. CCP. 2014;9(4):365–76. CrossRef Molteni M, Nobile M, Cattaneo D, Radice S, Clementi E. Potential benefits and limits of psychopharmacological therapies in pervasive developmental disorders. CCP. 2014;9(4):365–76. CrossRef
220.
Zurück zum Zitat Moyal WN, Lord C, Walkup JT. Quality of life in children and adolescents with autism spectrum disorders: what is known about the effects of pharmacotherapy? Paediatr Drugs. 2014;16(2):123–8. PubMedCrossRef Moyal WN, Lord C, Walkup JT. Quality of life in children and adolescents with autism spectrum disorders: what is known about the effects of pharmacotherapy? Paediatr Drugs. 2014;16(2):123–8. PubMedCrossRef
222.
Zurück zum Zitat Nadeau J, Sulkowski ML, Ung D, Wood JJ, Lewin AB, Murphy TK, et al. Treatment of comorbid anxiety and autism spectrum disorders. Neuropsychiatry (london). 2011;1(6):567–78. CrossRef Nadeau J, Sulkowski ML, Ung D, Wood JJ, Lewin AB, Murphy TK, et al. Treatment of comorbid anxiety and autism spectrum disorders. Neuropsychiatry (london). 2011;1(6):567–78. CrossRef
223.
Zurück zum Zitat Newcorn JH, Halperin JM, Jensen PS, Abikoff HB, Arnold LE, Cantwell DP, et al. Symptom profiles in children with ADHD: Effects of comorbidity and gender. J Am Acad Child Adoles Psych. 2001;40(2):137–46. CrossRef Newcorn JH, Halperin JM, Jensen PS, Abikoff HB, Arnold LE, Cantwell DP, et al. Symptom profiles in children with ADHD: Effects of comorbidity and gender. J Am Acad Child Adoles Psych. 2001;40(2):137–46. CrossRef
224.
Zurück zum Zitat Niederhofer H. Efficacy of Duloxetine and Agomelatine does not exceed that of other antidepressants in patients with autistic disorder: preliminary results in 3 patients. Prim Care Companion Cns Disord. 2011;13(1):PCC.10I0138. Niederhofer H. Efficacy of Duloxetine and Agomelatine does not exceed that of other antidepressants in patients with autistic disorder: preliminary results in 3 patients. Prim Care Companion Cns Disord. 2011;13(1):PCC.10I0138.
225.
Zurück zum Zitat Nijmeijer JS, Arias-Vásquez A, Rommelse NNJ, Altink ME, Anney RJL, Asherson P, et al. Identifying loci for the overlap between attention-deficit/hyperactivity disorder and autism spectrum disorder using a genome-wide QTL linkage approach. J Am Acad Child Adoles Psych. 2010;49(7):675–85. Nijmeijer JS, Arias-Vásquez A, Rommelse NNJ, Altink ME, Anney RJL, Asherson P, et al. Identifying loci for the overlap between attention-deficit/hyperactivity disorder and autism spectrum disorder using a genome-wide QTL linkage approach. J Am Acad Child Adoles Psych. 2010;49(7):675–85.
232.
Zurück zum Zitat Owley T, Walton L, Salt J, Guter S, Winnega M, Leventhal BL, et al. An open-label trial of excitalopram in pervasive developmental disorders. J Am Acad Child Adolesc Psychiatry. 2005;44(4):343–8. PubMedCrossRef Owley T, Walton L, Salt J, Guter S, Winnega M, Leventhal BL, et al. An open-label trial of excitalopram in pervasive developmental disorders. J Am Acad Child Adolesc Psychiatry. 2005;44(4):343–8. PubMedCrossRef
233.
Zurück zum Zitat Owley T, Salt J, Guter S, Grieve A, Walton L, Ayuyao N, et al. A prospective, open-label trial of memantine in the treatment of cognitive, behavioral, and memory dysfunction in pervasive developmental disorders. J Child Adolesc Psychopharmacol. 2006;16(5):517–24. PubMedCrossRef Owley T, Salt J, Guter S, Grieve A, Walton L, Ayuyao N, et al. A prospective, open-label trial of memantine in the treatment of cognitive, behavioral, and memory dysfunction in pervasive developmental disorders. J Child Adolesc Psychopharmacol. 2006;16(5):517–24. PubMedCrossRef
234.
237.
Zurück zum Zitat Patrick RP, Ames BN. Vitamin D hormone regulates serotonin synthesis. Part 1: relevance for autism. FASEB J. 2014;28(6):2398–413. PubMedCrossRef Patrick RP, Ames BN. Vitamin D hormone regulates serotonin synthesis. Part 1: relevance for autism. FASEB J. 2014;28(6):2398–413. PubMedCrossRef
238.
Zurück zum Zitat Pearson DA, Santos CW, Aman MG, Arnold LE, Casat CD, Mansour R, et al. Effects of extended release methylphenidate treatment on ratings of attention-deficit/hyperactivity disorder (adhd) and associated behavior in children with autism spectrum disorders and ADHD symptoms. J Child Adoles Psychopharmacol. 2013;23(5):337–51. https://​doi.​org/​10.​1089/​cap.​2012.​0096. CrossRef Pearson DA, Santos CW, Aman MG, Arnold LE, Casat CD, Mansour R, et al. Effects of extended release methylphenidate treatment on ratings of attention-deficit/hyperactivity disorder (adhd) and associated behavior in children with autism spectrum disorders and ADHD symptoms. J Child Adoles Psychopharmacol. 2013;23(5):337–51. https://​doi.​org/​10.​1089/​cap.​2012.​0096. CrossRef
242.
Zurück zum Zitat Posey DI, Litwiller M, Koburn A, McDougle CJ. Paroxetine in autism. J Am Acad Child Adolesc Psychiatry. 1999;38(2):111–2. PubMedCrossRef Posey DI, Litwiller M, Koburn A, McDougle CJ. Paroxetine in autism. J Am Acad Child Adolesc Psychiatry. 1999;38(2):111–2. PubMedCrossRef
243.
Zurück zum Zitat Posey DJ, Guenin KD, Kohn AE, Swiezy NB, McDougle CJ. A naturalistic open-label study of mirtazapine in autistic and other pervasive developmental disorders. J Child Adolesc Psychopharmacol. 2001;11:267–77. PubMedCrossRef Posey DJ, Guenin KD, Kohn AE, Swiezy NB, McDougle CJ. A naturalistic open-label study of mirtazapine in autistic and other pervasive developmental disorders. J Child Adolesc Psychopharmacol. 2001;11:267–77. PubMedCrossRef
244.
Zurück zum Zitat Posey DJ, Wiegand RE, Wilkerson J, Maynard M, Stigler KA, McDougle CJJ. Open-label atomoxetine for attention-deficit/hyperactivity disorder symptoms associated with high-functioning pervasive developmental disorders. J Child Adolesc Psychopharmacol. 2006;16(5):599–610. PubMedCrossRef Posey DJ, Wiegand RE, Wilkerson J, Maynard M, Stigler KA, McDougle CJJ. Open-label atomoxetine for attention-deficit/hyperactivity disorder symptoms associated with high-functioning pervasive developmental disorders. J Child Adolesc Psychopharmacol. 2006;16(5):599–610. PubMedCrossRef
245.
246.
Zurück zum Zitat Poustka L, Brandeis D, Hohmann M, Bölte S, Banaschewski T. Neurobiologically based interventions for autism spectrum disorders - rationale neurobiology based interventions for autism spectrum disorders - rationale and new directions. RNN. 2014;32(1):197–212. CrossRef Poustka L, Brandeis D, Hohmann M, Bölte S, Banaschewski T. Neurobiologically based interventions for autism spectrum disorders - rationale neurobiology based interventions for autism spectrum disorders - rationale and new directions. RNN. 2014;32(1):197–212. CrossRef
247.
Zurück zum Zitat Premoli M, Aria F, Bonini SA, Maccarinelli G, Gianoncelli A, Pina SD, et al. Cannabidiol: recent advances and new insights for neuropsychiatric disorders treatment. Life. 2019;224:120–7. CrossRef Premoli M, Aria F, Bonini SA, Maccarinelli G, Gianoncelli A, Pina SD, et al. Cannabidiol: recent advances and new insights for neuropsychiatric disorders treatment. Life. 2019;224:120–7. CrossRef
248.
Zurück zum Zitat Preti A, Melis M, Siddi S, Vellante M, Doneddu G, Fadda R. Oxytocin and autism: a systematic review of randomized controlled trials. J Child Adolesc Psychopharmacol. 2014;24(2):54–68. PubMedCrossRef Preti A, Melis M, Siddi S, Vellante M, Doneddu G, Fadda R. Oxytocin and autism: a systematic review of randomized controlled trials. J Child Adolesc Psychopharmacol. 2014;24(2):54–68. PubMedCrossRef
249.
Zurück zum Zitat Rajapakse T, Pringsheim T. Pharmacotherapeutics of Tourette syndrome and stereotypies in autism. Semin Pediatr Neurol. 2010;17(4):254–60. PubMedCrossRef Rajapakse T, Pringsheim T. Pharmacotherapeutics of Tourette syndrome and stereotypies in autism. Semin Pediatr Neurol. 2010;17(4):254–60. PubMedCrossRef
253.
Zurück zum Zitat Reddihough DS, Marraffa C, Mouti A, O’Sullivan M, Lee KJ, Orsini F, et al. Effect of fluoxetine on obsessive-compulsive behaviors in children and adolescents with autism spectrum disorders. A randomized clinical trial. JAMA. 2019;322(16):1561–9. PubMedPubMedCentralCrossRef Reddihough DS, Marraffa C, Mouti A, O’Sullivan M, Lee KJ, Orsini F, et al. Effect of fluoxetine on obsessive-compulsive behaviors in children and adolescents with autism spectrum disorders. A randomized clinical trial. JAMA. 2019;322(16):1561–9. PubMedPubMedCentralCrossRef
255.
Zurück zum Zitat Research Units on Pediatric Psychopharmacology (RUPP) Autism Network. A randomized controlled crossover trial of methylphenidate in pervasive developmental disorders with hyperactivity. Arch Gen Psych. 2005;62:1266–1274. Research Units on Pediatric Psychopharmacology (RUPP) Autism Network. A randomized controlled crossover trial of methylphenidate in pervasive developmental disorders with hyperactivity. Arch Gen Psych. 2005;62:1266–1274.
257.
Zurück zum Zitat Rezaei V, Mohammadi MR, Ghanizadeh A, Sahraian A, Tabrizi M, Rezzadeh SA, et al. Double-blind, placebo-controlled trial of risperidone plus topiramate in children with autistic disorder. Prog Neuropsychopharmacol Biol Psychiatry. 2010;34(7):1269–72. PubMedCrossRef Rezaei V, Mohammadi MR, Ghanizadeh A, Sahraian A, Tabrizi M, Rezzadeh SA, et al. Double-blind, placebo-controlled trial of risperidone plus topiramate in children with autistic disorder. Prog Neuropsychopharmacol Biol Psychiatry. 2010;34(7):1269–72. PubMedCrossRef
260.
Zurück zum Zitat Ringman JM, Jankovic J. Occurrence of tics in Asperger’s syndrome and autistic disorder. J Child Neurol. 2000;21(8):1081–109. Ringman JM, Jankovic J. Occurrence of tics in Asperger’s syndrome and autistic disorder. J Child Neurol. 2000;21(8):1081–109.
262.
Zurück zum Zitat Roessner V, Schoenefeld K, Buse J, Wanderer S, Rothenberger A. Therapie der Tic-Störungen [Therapy of tic disorders]. Z Kinder Jugendpsychiatr. 2012;40(4):217–37. CrossRef Roessner V, Schoenefeld K, Buse J, Wanderer S, Rothenberger A. Therapie der Tic-Störungen [Therapy of tic disorders]. Z Kinder Jugendpsychiatr. 2012;40(4):217–37. CrossRef
263.
267.
Zurück zum Zitat Rossignol DA, Frye RE. Melatonin in autism spectrum disorders. CCP. 2014;9(4):326–34. CrossRef Rossignol DA, Frye RE. Melatonin in autism spectrum disorders. CCP. 2014;9(4):326–34. CrossRef
268.
Zurück zum Zitat Saunders DC. Mindfulness-based ADHD treatment for children: a pilot feasibility study. J Acad Child Adoles Psych. 2019;58(Suppl 10):312. American Academy of Child & Adolescent Psychiatry (AACAP) 66th Annual Meeting. Saunders DC. Mindfulness-based ADHD treatment for children: a pilot feasibility study. J Acad Child Adoles Psych. 2019;58(Suppl 10):312. American Academy of Child & Adolescent Psychiatry (AACAP) 66th Annual Meeting.
269.
Zurück zum Zitat Scahill L, Aman MG, McDougle CJ, McCracken JT, Tierney E, Dziura J, et al. A prospective open trial of guanfacine in children with pervasive developmental disorders. J Child Adolesc Psychopharmacol. 2006;16(5):589–98. PubMedCrossRef Scahill L, Aman MG, McDougle CJ, McCracken JT, Tierney E, Dziura J, et al. A prospective open trial of guanfacine in children with pervasive developmental disorders. J Child Adolesc Psychopharmacol. 2006;16(5):589–98. PubMedCrossRef
272.
Zurück zum Zitat Scheltema Beduin A, de Haan L. Off-label second generation antipsychotics for impulse regulation disorders: a review. Psychopharmacol Bull. 2010;43(3):45–81. PubMed Scheltema Beduin A, de Haan L. Off-label second generation antipsychotics for impulse regulation disorders: a review. Psychopharmacol Bull. 2010;43(3):45–81. PubMed
273.
Zurück zum Zitat Schmeck K. Antipsychotika im Kindes- und Jugendalter: pro und contra [Pros and cons of antipsychotics in children and adolescents]. Prax Schweiz Rundsch Med. 2015;104(16):859–64. Schmeck K. Antipsychotika im Kindes- und Jugendalter: pro und contra [Pros and cons of antipsychotics in children and adolescents]. Prax Schweiz Rundsch Med. 2015;104(16):859–64.
275.
Zurück zum Zitat Schreibman L. Intensive behavioral/psychoeducational treatments for autism: research needs and future direction. J Autism Dev Disord. 2000;30(5):373–8. PubMedCrossRef Schreibman L. Intensive behavioral/psychoeducational treatments for autism: research needs and future direction. J Autism Dev Disord. 2000;30(5):373–8. PubMedCrossRef
277.
Zurück zum Zitat Scott J, Etain B, Bellivier F. Can an integrated science approach to precision medicine research improve lithium treatment in bipolar disorders? Front Psychiatry. 2018;9(360):1–10. Scott J, Etain B, Bellivier F. Can an integrated science approach to precision medicine research improve lithium treatment in bipolar disorders? Front Psychiatry. 2018;9(360):1–10.
278.
Zurück zum Zitat Scott LJ, Dhillon S. Risperidone: a review of its use in the treatment of irritability associated with autistic disorder in children and adolescents. Paediatr Drugs. 2007;9(5):343–54. PubMedCrossRef Scott LJ, Dhillon S. Risperidone: a review of its use in the treatment of irritability associated with autistic disorder in children and adolescents. Paediatr Drugs. 2007;9(5):343–54. PubMedCrossRef
279.
Zurück zum Zitat Scotto Rosato N, Correll CU, Pappadopulos E, Chait A, Crystal S, Jensen PS on behalf of the Treatment of Maladaptive Aggressive in Youth Steering Committee. Treatment of maladaptive aggression in youth: CERT guidelines II. treatments and ongoing management. Pediatrics. 2012;129(6):e1577–586. https://​doi.​org/​10.​1542/​peds.​2010-1361. Scotto Rosato N, Correll CU, Pappadopulos E, Chait A, Crystal S, Jensen PS on behalf of the Treatment of Maladaptive Aggressive in Youth Steering Committee. Treatment of maladaptive aggression in youth: CERT guidelines II. treatments and ongoing management. Pediatrics. 2012;129(6):e1577–586. https://​doi.​org/​10.​1542/​peds.​2010-1361.
284.
Zurück zum Zitat Solanto MV. Neuropsychopharmacological mechanisms of stimulant drug action in attention-deficit hyperactivity disorder: a review and integration. Behav Brain Res. 1998;98(1):127–52. CrossRef Solanto MV. Neuropsychopharmacological mechanisms of stimulant drug action in attention-deficit hyperactivity disorder: a review and integration. Behav Brain Res. 1998;98(1):127–52. CrossRef
287.
288.
Zurück zum Zitat Spencer D, Marchall J, Post B, Kulakodlu M, Newschaffer C, Dennen T, et al. Psychotropic medication use and polypharmacy in children with autism spectrum disorders. Pediatrics. 2013;132(5):833–40. PubMedPubMedCentralCrossRef Spencer D, Marchall J, Post B, Kulakodlu M, Newschaffer C, Dennen T, et al. Psychotropic medication use and polypharmacy in children with autism spectrum disorders. Pediatrics. 2013;132(5):833–40. PubMedPubMedCentralCrossRef
290.
Zurück zum Zitat Stachnik JM, Nunn-Thompson C. Use of atypical antipsychotics in the treatment of autistic disorder. Ann Pharmacother. 2007;41(4):626–34. PubMedCrossRef Stachnik JM, Nunn-Thompson C. Use of atypical antipsychotics in the treatment of autistic disorder. Ann Pharmacother. 2007;41(4):626–34. PubMedCrossRef
291.
Zurück zum Zitat Stavrakaki C, Antochi R, Emery PC. Olanzapine in the treatment of pervasive developmental disorders: a case series analysis. JPN. 2004;29(1):57–60. PubMedPubMedCentral Stavrakaki C, Antochi R, Emery PC. Olanzapine in the treatment of pervasive developmental disorders: a case series analysis. JPN. 2004;29(1):57–60. PubMedPubMedCentral
292.
Zurück zum Zitat Steingard RJ, Zimnitzky B, DeMaso DR, Bauman ML, Bucci JP. Sertraline treatment of transition-associated anxiety and agitation in children with autistic disorder. J Child Adolesc Psychopharmacol. 1997;7(1):9–15. PubMedCrossRef Steingard RJ, Zimnitzky B, DeMaso DR, Bauman ML, Bucci JP. Sertraline treatment of transition-associated anxiety and agitation in children with autistic disorder. J Child Adolesc Psychopharmacol. 1997;7(1):9–15. PubMedCrossRef
293.
Zurück zum Zitat Stevenson J, Buitelaar J, Cortese S, Ferrin M, Konofal E, Lecendreux M, et al., and on behalf of the European ADHD Guidelines Group. Research review: The role of diet in the treatment of attention-deficit/hyperactivity disorder – an appraisal of the evidence on efficacy and recommendations on the design of future studies. J Child Psychol Psychiat. 2014;55(5):416–27. https://​doi.​org/​0.​1111/​jcpp.​12215. Stevenson J, Buitelaar J, Cortese S, Ferrin M, Konofal E, Lecendreux M, et al., and on behalf of the European ADHD Guidelines Group. Research review: The role of diet in the treatment of attention-deficit/hyperactivity disorder – an appraisal of the evidence on efficacy and recommendations on the design of future studies. J Child Psychol Psychiat. 2014;55(5):416–27. https://​doi.​org/​0.​1111/​jcpp.​12215.
294.
Zurück zum Zitat Stigler KA. Psychopharmacologic management of serious behavioral disturbance in ASD. Child Adolesc Psychiatr Clin N Am. 2014;23(1):73–82. PubMedCrossRef Stigler KA. Psychopharmacologic management of serious behavioral disturbance in ASD. Child Adolesc Psychiatr Clin N Am. 2014;23(1):73–82. PubMedCrossRef
295.
Zurück zum Zitat Stigler KA, McDougle CJ. Pharmacotherapy of irritability in pervasive developmental disorders. Child Adolesc Psychiatr Clin N Am. 2008;17(4):739–52. PubMedCrossRef Stigler KA, McDougle CJ. Pharmacotherapy of irritability in pervasive developmental disorders. Child Adolesc Psychiatr Clin N Am. 2008;17(4):739–52. PubMedCrossRef
297.
Zurück zum Zitat Sung M, Chin CH, Lim CG, Liew HSA, Lim CS, Kashala E, et al. What’s in the pipeline? Drugs in development for autism spectrum disorder. NDT. 2014;10:371–81. CrossRef Sung M, Chin CH, Lim CG, Liew HSA, Lim CS, Kashala E, et al. What’s in the pipeline? Drugs in development for autism spectrum disorder. NDT. 2014;10:371–81. CrossRef
299.
Zurück zum Zitat Tonge BJ, Bull K, Brereton A, Wilson R. A review of evidence-based early intervention for behavioural problems in children with autism spectrum disorder: the core components of effective programs, child-focused interventions and comprehensive treatment models. Curr Opin Psychiatry. 2014;27(2):158–65. PubMedCrossRef Tonge BJ, Bull K, Brereton A, Wilson R. A review of evidence-based early intervention for behavioural problems in children with autism spectrum disorder: the core components of effective programs, child-focused interventions and comprehensive treatment models. Curr Opin Psychiatry. 2014;27(2):158–65. PubMedCrossRef
303.
Zurück zum Zitat Tuchman R, Alessandri M, Cuccaro M. Autism spectrum disorder and epilepsy: Moving towards a comprehensive approach to treatment. Brain Dev. 2010;32:719–30. PubMedCrossRef Tuchman R, Alessandri M, Cuccaro M. Autism spectrum disorder and epilepsy: Moving towards a comprehensive approach to treatment. Brain Dev. 2010;32:719–30. PubMedCrossRef
307.
Zurück zum Zitat Vanucchi G, Masi G, Toni C, Dell’Osso L, Erfurth A, Perugi G. Bipolar disorder in adults with Asperger’s Syndrome: a systematic review. J Affect Disord. 2014;168:151–60. CrossRef Vanucchi G, Masi G, Toni C, Dell’Osso L, Erfurth A, Perugi G. Bipolar disorder in adults with Asperger’s Syndrome: a systematic review. J Affect Disord. 2014;168:151–60. CrossRef
308.
Zurück zum Zitat Veatch OJ, Maxwell-Horn AC, Malow BA. Sleep in autism spectrum disorders. Curr Sleep Medicine Rep. 2015;1(2):131–40. CrossRef Veatch OJ, Maxwell-Horn AC, Malow BA. Sleep in autism spectrum disorders. Curr Sleep Medicine Rep. 2015;1(2):131–40. CrossRef
310.
Zurück zum Zitat Venkateswaran S, Shevell M. The case against routine encephalography in specific language impairment. Pediatrics. 2008;122:e911–e6. PubMedCrossRef Venkateswaran S, Shevell M. The case against routine encephalography in specific language impairment. Pediatrics. 2008;122:e911–e6. PubMedCrossRef
311.
Zurück zum Zitat Wang L, Conion MA, Christophersen CT, Sorich MJ, Angley MT. Gastrointestinal microbiota and metabolite biomarkers in children with autism spectrum disorders. Biomarkers Med. 2014;8(3):331–44. CrossRef Wang L, Conion MA, Christophersen CT, Sorich MJ, Angley MT. Gastrointestinal microbiota and metabolite biomarkers in children with autism spectrum disorders. Biomarkers Med. 2014;8(3):331–44. CrossRef
312.
Zurück zum Zitat Ward F, Tharian P, Roy S, Deb M, Unwin GL. Efficacy of beta blockers in the management of problem behaviours in people with intellectual disabilities: a systematic review. Res Dev Disabil. 2013;34(12):4293–303. PubMedCrossRef Ward F, Tharian P, Roy S, Deb M, Unwin GL. Efficacy of beta blockers in the management of problem behaviours in people with intellectual disabilities: a systematic review. Res Dev Disabil. 2013;34(12):4293–303. PubMedCrossRef
313.
Zurück zum Zitat Watanabe T, Kuroda M, Kuwabara H, Aoki Y, Iwashiro N, Tatsunobu N, et al. Clinical and neural effects of six-week administration of oxytocin on core symptoms of autism. Brain. 2015;138:3400–12. PubMedCrossRef Watanabe T, Kuroda M, Kuwabara H, Aoki Y, Iwashiro N, Tatsunobu N, et al. Clinical and neural effects of six-week administration of oxytocin on core symptoms of autism. Brain. 2015;138:3400–12. PubMedCrossRef
314.
Zurück zum Zitat Weiskop S, Richdale A, Matthews J. Behavioural treatment to reduce sleep problems in children with autism or fragile x syndrome. Dev Med Child Neurol. 2005;47(2):94–104. PubMedCrossRef Weiskop S, Richdale A, Matthews J. Behavioural treatment to reduce sleep problems in children with autism or fragile x syndrome. Dev Med Child Neurol. 2005;47(2):94–104. PubMedCrossRef
315.
Zurück zum Zitat Weissman JR, Kelley RI, Bauman ML, Cohen BH, Murray KF, Mitchell RL, et al. Mitochondrial disease in autism spectrum disorder patients: a cohort analysis. PLoS ONE. 2008;3(11):e3815. PubMedPubMedCentralCrossRef Weissman JR, Kelley RI, Bauman ML, Cohen BH, Murray KF, Mitchell RL, et al. Mitochondrial disease in autism spectrum disorder patients: a cohort analysis. PLoS ONE. 2008;3(11):e3815. PubMedPubMedCentralCrossRef
317.
Zurück zum Zitat Wiggs L, Stores G. Sleep patterns and sleep disorders in children with autistic spectrum disorders: insights using parent report and actigraphy. Dev Med Child Neurol. 2004;46:372–80. PubMedCrossRef Wiggs L, Stores G. Sleep patterns and sleep disorders in children with autistic spectrum disorders: insights using parent report and actigraphy. Dev Med Child Neurol. 2004;46:372–80. PubMedCrossRef
326.
Zurück zum Zitat Zuddas A, Zanni R, Usala T. Second generation antipsychotics (SGAs) for non-psychotic disorders in children and adolescents: a review of the randomized controlled studies. Eur Neuropsychopharmacol. 2011;21(8):600–20. PubMedCrossRef Zuddas A, Zanni R, Usala T. Second generation antipsychotics (SGAs) for non-psychotic disorders in children and adolescents: a review of the randomized controlled studies. Eur Neuropsychopharmacol. 2011;21(8):600–20. PubMedCrossRef
Metadaten
Titel
Practitioner’s review: medication for children and adolescents with autism spectrum disorder (ASD) and comorbid conditions
verfasst von
Christian Popow
Susanne Ohmann
Paul Plener
Publikationsdatum
23.06.2021
Verlag
Springer Vienna
Erschienen in
neuropsychiatrie / Ausgabe 3/2021
Print ISSN: 0948-6259
Elektronische ISSN: 2194-1327
DOI
https://doi.org/10.1007/s40211-021-00395-9