Skip to main content
Erschienen in: Wiener Medizinische Wochenschrift 11-12/2015

01.06.2015 | main topic

Molecular mechanisms of pharmacological doses of ascorbate on cancer cells

verfasst von: Sascha Venturelli, Tobias W. Sinnberg, Heike Niessner, Dr. med. Christian Busch

Erschienen in: Wiener Medizinische Wochenschrift | Ausgabe 11-12/2015

Einloggen, um Zugang zu erhalten

Abstract

Intravenous application of high-dose ascorbate (vitamin C) has been used in complementary medicine since the 1970s to treat cancer patients. In recent years it became evident that high-dose ascorbate in the millimolar range bears selective cytotoxic effects on cancer cells in vitro and in vivo. This anticancer effect is dose dependent, catalyzed by serum components and mediated by reactive oxygen species and ascorbyl radicals, making ascorbate a pro-oxidative pro-drug that catalyzes hydrogen peroxide production in tissues instead of acting as a radical scavenger. It further depends on HIF-1 signaling and oxygen pressure, and shows a strong epigenetic signature (alteration of DNA-methylation and induction of tumor-suppressing microRNAs in cancer cells). The detailed understanding of ascorbate-induced antiproliferative molecular mechanisms warrants in-depth preclinical evaluation in cancer-bearing animal models for the optimization of an efficacious therapy regimen (e.g., combination with hyperbaric oxygen or O2-sensitizers) that subsequently need to be evaluated in clinical trials.
Literatur
1.
Zurück zum Zitat Cameron E, Pauling L. Supplemental ascorbate in the supportive treatment of cancer: prolongation of survival times in terminal human cancer. Proc Natl Acad Sci USA. 1976;73:3685–9.PubMedCentralPubMedCrossRef Cameron E, Pauling L. Supplemental ascorbate in the supportive treatment of cancer: prolongation of survival times in terminal human cancer. Proc Natl Acad Sci USA. 1976;73:3685–9.PubMedCentralPubMedCrossRef
2.
Zurück zum Zitat Cameron E, Pauling L. Supplemental ascorbate in the supportive treatment of cancer: reevaluation of prolongation of survival times in terminal human cancer. Proc Natl Acad Sci USA. 1978;75:4538–42.PubMedCentralPubMedCrossRef Cameron E, Pauling L. Supplemental ascorbate in the supportive treatment of cancer: reevaluation of prolongation of survival times in terminal human cancer. Proc Natl Acad Sci USA. 1978;75:4538–42.PubMedCentralPubMedCrossRef
3.
Zurück zum Zitat Creagan ET, Moertel CG, O’Fallon JR, et al. Failure of high-dose vitamin C (ascorbic acid) therapy to benefit patients with advanced cancer. A controlled trial. N Engl J Med. 1979;301:687–90.PubMedCrossRef Creagan ET, Moertel CG, O’Fallon JR, et al. Failure of high-dose vitamin C (ascorbic acid) therapy to benefit patients with advanced cancer. A controlled trial. N Engl J Med. 1979;301:687–90.PubMedCrossRef
4.
Zurück zum Zitat Moertel CG, Fleming TR, Creagan ET, et al. High-dose vitamin C versus placebo in the treatment of patients with advanced cancer who have had no prior chemotherapy. A randomized double-blind comparison. N Engl J Med. 1985;312:137–41.PubMedCrossRef Moertel CG, Fleming TR, Creagan ET, et al. High-dose vitamin C versus placebo in the treatment of patients with advanced cancer who have had no prior chemotherapy. A randomized double-blind comparison. N Engl J Med. 1985;312:137–41.PubMedCrossRef
5.
Zurück zum Zitat Padayatty SJ, Levine M. Reevaluation of ascorbate in cancer treatment: emerging evidence, open minds and serendipity. J Am Coll Nutr. 2000;19:423–5.PubMedCrossRef Padayatty SJ, Levine M. Reevaluation of ascorbate in cancer treatment: emerging evidence, open minds and serendipity. J Am Coll Nutr. 2000;19:423–5.PubMedCrossRef
6.
Zurück zum Zitat Mikirova N, Casciari J, Riordan N, et al. Clinical experience with intravenous administration of ascorbic acid: achievable levels in blood for different states of inflammation and disease in cancer patients. J Transl Med. 2013;11:191.PubMedCentralPubMedCrossRef Mikirova N, Casciari J, Riordan N, et al. Clinical experience with intravenous administration of ascorbic acid: achievable levels in blood for different states of inflammation and disease in cancer patients. J Transl Med. 2013;11:191.PubMedCentralPubMedCrossRef
7.
Zurück zum Zitat Chen Q, Espey MG, Krishna MC, et al. Pharmacologic ascorbic acid concentrations selectively kill cancer cells: action as a pro-drug to deliver hydrogen peroxide to tissues. Proc Natl Acad Sci USA. 2005;102:13604–9.PubMedCentralPubMedCrossRef Chen Q, Espey MG, Krishna MC, et al. Pharmacologic ascorbic acid concentrations selectively kill cancer cells: action as a pro-drug to deliver hydrogen peroxide to tissues. Proc Natl Acad Sci USA. 2005;102:13604–9.PubMedCentralPubMedCrossRef
8.
Zurück zum Zitat Chen Q, Espey MG, Sun AY, et al. Pharmacologic doses of ascorbate act as a prooxidant and decrease growth of aggressive tumor xenografts in mice. Proc Natl Acad Sci USA. 2008;105:11105–9.PubMedCentralPubMedCrossRef Chen Q, Espey MG, Sun AY, et al. Pharmacologic doses of ascorbate act as a prooxidant and decrease growth of aggressive tumor xenografts in mice. Proc Natl Acad Sci USA. 2008;105:11105–9.PubMedCentralPubMedCrossRef
10.
Zurück zum Zitat Esme H, Cemek M, Sezer M, et al. High levels of oxidative stress in patients with advanced lung cancer. Respirology. 2008;13:112–6.PubMedCrossRef Esme H, Cemek M, Sezer M, et al. High levels of oxidative stress in patients with advanced lung cancer. Respirology. 2008;13:112–6.PubMedCrossRef
11.
Zurück zum Zitat Verrax J, Calderon PB. Pharmacologic concentrations of ascorbate are achieved by parenteral administration and exhibit antitumoral effects. Free Radic Biol Med. 2009;47:32–40.PubMedCrossRef Verrax J, Calderon PB. Pharmacologic concentrations of ascorbate are achieved by parenteral administration and exhibit antitumoral effects. Free Radic Biol Med. 2009;47:32–40.PubMedCrossRef
12.
Zurück zum Zitat Stephenson CM, Levin RD, Spector T, et al. Phase I clinical trial to evaluate the safety, tolerability, and pharmacokinetics of high-dose intravenous ascorbic acid in patients with advanced cancer. Cancer Chemother Pharmacol. 2013;72:139–46.PubMedCentralPubMedCrossRef Stephenson CM, Levin RD, Spector T, et al. Phase I clinical trial to evaluate the safety, tolerability, and pharmacokinetics of high-dose intravenous ascorbic acid in patients with advanced cancer. Cancer Chemother Pharmacol. 2013;72:139–46.PubMedCentralPubMedCrossRef
13.
Zurück zum Zitat Padayatty SJ, Sun H, Wang Y, et al. Vitamin C pharmacokinetics: implications for oral and intravenous use. Ann Intern Med. 2004;140:533–7.PubMedCrossRef Padayatty SJ, Sun H, Wang Y, et al. Vitamin C pharmacokinetics: implications for oral and intravenous use. Ann Intern Med. 2004;140:533–7.PubMedCrossRef
14.
Zurück zum Zitat Levine M, Wang Y, Padayatty SJ, et al. A new recommended dietary allowance of vitamin C for healthy young women. Proc Natl Acad Sci USA. 2001;98:9842–6.PubMedCentralPubMedCrossRef Levine M, Wang Y, Padayatty SJ, et al. A new recommended dietary allowance of vitamin C for healthy young women. Proc Natl Acad Sci USA. 2001;98:9842–6.PubMedCentralPubMedCrossRef
15.
Zurück zum Zitat Kuiper C, Vissers MC, Hicks KO. Pharmacokinetic modelling of ascorbate diffusion through normal and tumour tissue. Free Radic Biol Med. 2014;77:340–52.PubMedCrossRef Kuiper C, Vissers MC, Hicks KO. Pharmacokinetic modelling of ascorbate diffusion through normal and tumour tissue. Free Radic Biol Med. 2014;77:340–52.PubMedCrossRef
16.
Zurück zum Zitat Chen Q, Espey MG, Sun AY, et al. Ascorbate in pharmacologic concentrations selectively generates ascorbate radical and hydrogen peroxide in extracellular fluid in vivo. Proc Natl Acad Sci USA. 2007;104:8749–54.PubMedCentralPubMedCrossRef Chen Q, Espey MG, Sun AY, et al. Ascorbate in pharmacologic concentrations selectively generates ascorbate radical and hydrogen peroxide in extracellular fluid in vivo. Proc Natl Acad Sci USA. 2007;104:8749–54.PubMedCentralPubMedCrossRef
17.
Zurück zum Zitat Hoffer LJ, Levine M, Assouline S, et al. Phase I clinical trial of i.v. ascorbic acid in advanced malignancy. Ann Oncol. 2008;19:1969–74.PubMedCrossRef Hoffer LJ, Levine M, Assouline S, et al. Phase I clinical trial of i.v. ascorbic acid in advanced malignancy. Ann Oncol. 2008;19:1969–74.PubMedCrossRef
18.
Zurück zum Zitat Hussain SP, Hofseth LJ, Harris CC. Radical causes of cancer. Nat Rev Cancer. 2003;3:276–85.PubMedCrossRef Hussain SP, Hofseth LJ, Harris CC. Radical causes of cancer. Nat Rev Cancer. 2003;3:276–85.PubMedCrossRef
19.
Zurück zum Zitat Tomasetti M, Santarelli L, Alleva R, et al. Redox-active and redox-silent compounds: synergistic therapeutics in cancer. Curr Med Chem. 2015;22:552–68.PubMedCrossRef Tomasetti M, Santarelli L, Alleva R, et al. Redox-active and redox-silent compounds: synergistic therapeutics in cancer. Curr Med Chem. 2015;22:552–68.PubMedCrossRef
20.
Zurück zum Zitat McCarty MF, Contreras F. Increasing superoxide production and the labile iron pool in tumor cells may sensitize them to extracellular ascorbate. Front Oncol. 2014;4:249.PubMedCentralPubMedCrossRef McCarty MF, Contreras F. Increasing superoxide production and the labile iron pool in tumor cells may sensitize them to extracellular ascorbate. Front Oncol. 2014;4:249.PubMedCentralPubMedCrossRef
21.
Zurück zum Zitat Mojić M, Bogdanović Pristov J, Maksimović-Ivanić D, et al. Extracellular iron diminishes anticancer effects of vitamin C: an in vitro study. Sci Rep. 2014;4:5955.PubMedCentralPubMed Mojić M, Bogdanović Pristov J, Maksimović-Ivanić D, et al. Extracellular iron diminishes anticancer effects of vitamin C: an in vitro study. Sci Rep. 2014;4:5955.PubMedCentralPubMed
22.
Zurück zum Zitat Sinnberg T, Noor S, Venturelli S, et al. The ROS-induced cytotoxicity of ascorbate is attenuated by hypoxia and HIF-1alpha in the NCI60 cancer cell lines. J Cell Mol Med. 2014;18:530–41.PubMedCentralPubMedCrossRef Sinnberg T, Noor S, Venturelli S, et al. The ROS-induced cytotoxicity of ascorbate is attenuated by hypoxia and HIF-1alpha in the NCI60 cancer cell lines. J Cell Mol Med. 2014;18:530–41.PubMedCentralPubMedCrossRef
23.
Zurück zum Zitat Espey MG, Chen P, Chalmers B, et al. Pharmacologic ascorbate synergizes with gemcitabine in preclinical models of pancreatic cancer. Free Radic Biol Med. 2011;50:1610–9.PubMedCentralPubMedCrossRef Espey MG, Chen P, Chalmers B, et al. Pharmacologic ascorbate synergizes with gemcitabine in preclinical models of pancreatic cancer. Free Radic Biol Med. 2011;50:1610–9.PubMedCentralPubMedCrossRef
24.
Zurück zum Zitat Clarke JD, Hsu A, Yu Z, et al. Differential effects of sulforaphane on histone deacetylases, cell cycle arrest and apoptosis in normal prostate cells versus hyperplastic and cancerous prostate cells. Mol Nutr Food Res. 2011;55:999–1009.PubMedCentralPubMedCrossRef Clarke JD, Hsu A, Yu Z, et al. Differential effects of sulforaphane on histone deacetylases, cell cycle arrest and apoptosis in normal prostate cells versus hyperplastic and cancerous prostate cells. Mol Nutr Food Res. 2011;55:999–1009.PubMedCentralPubMedCrossRef
25.
Zurück zum Zitat Berger A, Venturelli S, Kallnischkies M, et al. Kaempferol, a new nutrition-derived pan-inhibitor of human histone deacetylases. J Nutr Biochem. 2013;24:977–85.PubMedCrossRef Berger A, Venturelli S, Kallnischkies M, et al. Kaempferol, a new nutrition-derived pan-inhibitor of human histone deacetylases. J Nutr Biochem. 2013;24:977–85.PubMedCrossRef
26.
Zurück zum Zitat Venturelli S, Berger A, Böcker A, et al. Resveratrol as a Pan-HDAC inhibitor alters the acetylation status of histone proteins in human-derived hepatoblastoma cells. PLoS One. 2013;8:e73097.PubMedCentralPubMedCrossRef Venturelli S, Berger A, Böcker A, et al. Resveratrol as a Pan-HDAC inhibitor alters the acetylation status of histone proteins in human-derived hepatoblastoma cells. PLoS One. 2013;8:e73097.PubMedCentralPubMedCrossRef
27.
Zurück zum Zitat Ellis L, Atadja PW, Johnstone RW. Epigenetics in cancer: targeting chromatin modifications. Mol Cancer Ther. 2009;8:1409–20.PubMedCrossRef Ellis L, Atadja PW, Johnstone RW. Epigenetics in cancer: targeting chromatin modifications. Mol Cancer Ther. 2009;8:1409–20.PubMedCrossRef
29.
Zurück zum Zitat Sato F, Tsuchiya S, Meltzer SJ, et al. MicroRNAs and epigenetics. FEBS J. 2011;278:1598–609.PubMedCrossRef Sato F, Tsuchiya S, Meltzer SJ, et al. MicroRNAs and epigenetics. FEBS J. 2011;278:1598–609.PubMedCrossRef
30.
Zurück zum Zitat Lovat F, Valeri N, Croce CM. MicroRNAs in the pathogenesis of cancer. Semin Oncol. 2011;38:724–33.PubMedCrossRef Lovat F, Valeri N, Croce CM. MicroRNAs in the pathogenesis of cancer. Semin Oncol. 2011;38:724–33.PubMedCrossRef
31.
Zurück zum Zitat Vissers MC, Kuiper C, Dachs GU. Regulation of the 2-oxoglutarate-dependent dioxygenases and implications for cancer. Biochem Soc Trans. 2014;42:945–51.PubMedCrossRef Vissers MC, Kuiper C, Dachs GU. Regulation of the 2-oxoglutarate-dependent dioxygenases and implications for cancer. Biochem Soc Trans. 2014;42:945–51.PubMedCrossRef
32.
34.
Zurück zum Zitat Schriek G, Oppitz M, Busch C, et al. Human SK-Mel 28 melanoma cells resume neural crest cell migration after transplantation into the chick embryo. Melanoma Res. 2005;15:225–34.PubMedCrossRef Schriek G, Oppitz M, Busch C, et al. Human SK-Mel 28 melanoma cells resume neural crest cell migration after transplantation into the chick embryo. Melanoma Res. 2005;15:225–34.PubMedCrossRef
35.
Zurück zum Zitat Busch C, Drews U, Garbe C, et al. Neural crest cell migration of mouse B16-F1 melanoma cells transplanted into the chick embryo is inhibited by the BMP-antagonist noggin. Int J Oncol. 2007;31:1367–78.PubMed Busch C, Drews U, Garbe C, et al. Neural crest cell migration of mouse B16-F1 melanoma cells transplanted into the chick embryo is inhibited by the BMP-antagonist noggin. Int J Oncol. 2007;31:1367–78.PubMed
36.
Zurück zum Zitat Antonov AV, Knight RA, Melino G, et al. MIRUMIR: an online tool to test microRNAs as biomarkers to predict survival in cancer using multiple clinical data sets. Cell Death Differ. 2013;20:367.PubMedCentralPubMedCrossRef Antonov AV, Knight RA, Melino G, et al. MIRUMIR: an online tool to test microRNAs as biomarkers to predict survival in cancer using multiple clinical data sets. Cell Death Differ. 2013;20:367.PubMedCentralPubMedCrossRef
37.
Zurück zum Zitat Casciari JJ, Riordan HD, Miranda-Massari JR, et al. Effects of high dose ascorbate administration on L-10 tumor growth in guinea pigs. P R Health Sci J. 2005;24:145–50.PubMed Casciari JJ, Riordan HD, Miranda-Massari JR, et al. Effects of high dose ascorbate administration on L-10 tumor growth in guinea pigs. P R Health Sci J. 2005;24:145–50.PubMed
38.
Zurück zum Zitat Abdel-Latif MM, Raouf AA, Sabra K, et al. Vitamin C enhances chemosensitization of esophageal cancer cells in vitro. J Chemother. 2005;17:539–49.PubMedCrossRef Abdel-Latif MM, Raouf AA, Sabra K, et al. Vitamin C enhances chemosensitization of esophageal cancer cells in vitro. J Chemother. 2005;17:539–49.PubMedCrossRef
39.
Zurück zum Zitat Hong SW, Jin DH, Hahm ES, et al. Ascorbate (vitamin C) induces cell death through the apoptosis-inducing factor in human breast cancer cells. Oncol Rep. 2007;18:811–5.PubMed Hong SW, Jin DH, Hahm ES, et al. Ascorbate (vitamin C) induces cell death through the apoptosis-inducing factor in human breast cancer cells. Oncol Rep. 2007;18:811–5.PubMed
40.
Zurück zum Zitat Ohtani S, Iwamaru A, Deng W, et al. Tumor suppressor 101F6 and ascorbate synergistically and selectively inhibit non-small cell lung cancer growth by caspase-independent apoptosis and autophagy. Cancer Res. 2007;67:6293–303.PubMedCrossRef Ohtani S, Iwamaru A, Deng W, et al. Tumor suppressor 101F6 and ascorbate synergistically and selectively inhibit non-small cell lung cancer growth by caspase-independent apoptosis and autophagy. Cancer Res. 2007;67:6293–303.PubMedCrossRef
41.
Zurück zum Zitat Sun YX, Zheng QS, Li G, et al. Mechanism of ascorbic acid-induced reversion against malignant phenotype in human gastric cancer cells. Biomed Environ Sci. 2006;19:385–91.PubMed Sun YX, Zheng QS, Li G, et al. Mechanism of ascorbic acid-induced reversion against malignant phenotype in human gastric cancer cells. Biomed Environ Sci. 2006;19:385–91.PubMed
42.
Zurück zum Zitat Bram S, Froussard P, Guichard M, et al. Vitamin C preferential toxicity for malignant melanoma cells. Nature. 1980;284:629–31.PubMedCrossRef Bram S, Froussard P, Guichard M, et al. Vitamin C preferential toxicity for malignant melanoma cells. Nature. 1980;284:629–31.PubMedCrossRef
43.
Zurück zum Zitat Meadows GG, Pierson HF, Abdallah RM. Ascorbate in the treatment of experimental transplanted melanoma. Am J Clin Nutr. 1991;54:1284 S–91 S. Meadows GG, Pierson HF, Abdallah RM. Ascorbate in the treatment of experimental transplanted melanoma. Am J Clin Nutr. 1991;54:1284 S–91 S.
44.
Zurück zum Zitat Hahm E, Jin DH, Kang JS, et al. The molecular mechanisms of vitamin C on cell cycle regulation in B16F10 murine melanoma. J Cell Biochem. 2007;102:1002–10.PubMedCrossRef Hahm E, Jin DH, Kang JS, et al. The molecular mechanisms of vitamin C on cell cycle regulation in B16F10 murine melanoma. J Cell Biochem. 2007;102:1002–10.PubMedCrossRef
45.
Zurück zum Zitat Cha J, Roomi MW, Ivanov V, et al. Ascorbate depletion increases growth and metastasis of melanoma cells in vitamin C deficient mice. Exp Oncol. 2011;33:226–30.PubMed Cha J, Roomi MW, Ivanov V, et al. Ascorbate depletion increases growth and metastasis of melanoma cells in vitamin C deficient mice. Exp Oncol. 2011;33:226–30.PubMed
46.
Zurück zum Zitat Cha J, Roomi MW, Ivanov V, et al. Ascorbate supplementation inhibits growth and metastasis of B16FO melanoma and 4T1 breast cancer cells in vitamin C-deficient mice. Int J Oncol. 2013;42:55–64.PubMedCentralPubMed Cha J, Roomi MW, Ivanov V, et al. Ascorbate supplementation inhibits growth and metastasis of B16FO melanoma and 4T1 breast cancer cells in vitamin C-deficient mice. Int J Oncol. 2013;42:55–64.PubMedCentralPubMed
47.
Zurück zum Zitat Campbell EJ, Vissers MC, Bozonet S, et al. Restoring physiological levels of ascorbate slows tumor growth and moderates HIF-1 pathway activity in Gulo-/- mice. Cancer Med. 2015;4:303–14.PubMedCentralPubMedCrossRef Campbell EJ, Vissers MC, Bozonet S, et al. Restoring physiological levels of ascorbate slows tumor growth and moderates HIF-1 pathway activity in Gulo-/- mice. Cancer Med. 2015;4:303–14.PubMedCentralPubMedCrossRef
48.
Zurück zum Zitat Varga JM, Airoldi L. Inhibition of transplantable melanoma tumor development in mice by prophylactic administration of Ca-ascorbate. Life Sci. 1983;32:1559–64.PubMedCrossRef Varga JM, Airoldi L. Inhibition of transplantable melanoma tumor development in mice by prophylactic administration of Ca-ascorbate. Life Sci. 1983;32:1559–64.PubMedCrossRef
49.
Zurück zum Zitat Kang JS, Cho D, Kim YI, et al. L-ascorbic acid (vitamin C) induces the apoptosis of B16 murine melanoma cells via a caspase-8-independent pathway. Cancer Immunol Immunother. 2003;52:693–8.PubMedCrossRef Kang JS, Cho D, Kim YI, et al. L-ascorbic acid (vitamin C) induces the apoptosis of B16 murine melanoma cells via a caspase-8-independent pathway. Cancer Immunol Immunother. 2003;52:693–8.PubMedCrossRef
50.
Zurück zum Zitat Lin SY, Lai WW, Chou CC, et al. Sodium ascorbate inhibits growth via the induction of cell cycle arrest and apoptosis in human malignant melanoma A375.S2 cells. Melanoma Res. 2006;16:509–19.PubMedCrossRef Lin SY, Lai WW, Chou CC, et al. Sodium ascorbate inhibits growth via the induction of cell cycle arrest and apoptosis in human malignant melanoma A375.S2 cells. Melanoma Res. 2006;16:509–19.PubMedCrossRef
51.
Zurück zum Zitat Verrax J, Stockis J, Tison A, et al. Oxidative stress by ascorbate/menadione association kills K562 human chronic myelogenous leukaemia cells and inhibits its tumour growth in nude mice. Biochem Pharmacol. 2006;72:671–80.PubMedCrossRef Verrax J, Stockis J, Tison A, et al. Oxidative stress by ascorbate/menadione association kills K562 human chronic myelogenous leukaemia cells and inhibits its tumour growth in nude mice. Biochem Pharmacol. 2006;72:671–80.PubMedCrossRef
52.
Zurück zum Zitat Verrax J, Vanbever S, Stockis J, et al. Role of glycolysis inhibition and poly(ADP-ribose) polymerase activation in necrotic-like cell death caused by ascorbate/menadione-induced oxidative stress in K562 human chronic myelogenous leukemic cells. Int J Cancer. 2007;120:1192–7.PubMedCrossRef Verrax J, Vanbever S, Stockis J, et al. Role of glycolysis inhibition and poly(ADP-ribose) polymerase activation in necrotic-like cell death caused by ascorbate/menadione-induced oxidative stress in K562 human chronic myelogenous leukemic cells. Int J Cancer. 2007;120:1192–7.PubMedCrossRef
53.
Zurück zum Zitat Harakeh S, Diab-Assaf M, Khalife JC, et al. Ascorbic acid induces apoptosis in adult T-cell leukemia. Anticancer Res. 2007;27:289–98.PubMed Harakeh S, Diab-Assaf M, Khalife JC, et al. Ascorbic acid induces apoptosis in adult T-cell leukemia. Anticancer Res. 2007;27:289–98.PubMed
54.
Zurück zum Zitat Park S, Han SS, Park CH, et al. L-Ascorbic acid induces apoptosis in acute myeloid leukemia cells via hydrogen peroxide-mediated mechanisms. Int J Biochem Cell Biol. 2004;36:2180–95.PubMedCrossRef Park S, Han SS, Park CH, et al. L-Ascorbic acid induces apoptosis in acute myeloid leukemia cells via hydrogen peroxide-mediated mechanisms. Int J Biochem Cell Biol. 2004;36:2180–95.PubMedCrossRef
55.
Zurück zum Zitat Welsh JL, Wagner BA, van’t Erve TJ, et al. Pharmacological ascorbate with gemcitabine for the control of metastatic and node-positive pancreatic cancer (PACMAN): results from a phase I clinical trial. Cancer Chemother Pharmacol. 2013;71:765–75.PubMedCentralPubMedCrossRef Welsh JL, Wagner BA, van’t Erve TJ, et al. Pharmacological ascorbate with gemcitabine for the control of metastatic and node-positive pancreatic cancer (PACMAN): results from a phase I clinical trial. Cancer Chemother Pharmacol. 2013;71:765–75.PubMedCentralPubMedCrossRef
56.
Zurück zum Zitat Riordan HD, Casciari JJ, González MJ, et al. A pilot clinical study of continuous intravenous ascorbate in terminal cancer patients. P R Health Sci J. 2005;24:269–76.PubMed Riordan HD, Casciari JJ, González MJ, et al. A pilot clinical study of continuous intravenous ascorbate in terminal cancer patients. P R Health Sci J. 2005;24:269–76.PubMed
57.
Zurück zum Zitat Ma Y, Chapman J, Levine M, et al. High-dose parenteral ascorbate enhanced chemosensitivity of ovarian cancer and reduced toxicity of chemotherapy. Sci Transl Med. 2014;6:222ra18.PubMedCrossRef Ma Y, Chapman J, Levine M, et al. High-dose parenteral ascorbate enhanced chemosensitivity of ovarian cancer and reduced toxicity of chemotherapy. Sci Transl Med. 2014;6:222ra18.PubMedCrossRef
58.
Zurück zum Zitat Yeom CH, Jung GC, Song KJ. Changes of terminal cancer patient’s health-related quality of life after high dose vitamin C administration. J Korean Med Sci. 2007;22:7–11.PubMedCentralPubMedCrossRef Yeom CH, Jung GC, Song KJ. Changes of terminal cancer patient’s health-related quality of life after high dose vitamin C administration. J Korean Med Sci. 2007;22:7–11.PubMedCentralPubMedCrossRef
59.
Zurück zum Zitat Schleich T, Rodemeister S, Venturelli S, et al. Decreased plasma ascorbate levels in stage IV melanoma patients. Metab Nutr Oncol 2013. doi:10.1055/s-0033-1348256. Schleich T, Rodemeister S, Venturelli S, et al. Decreased plasma ascorbate levels in stage IV melanoma patients. Metab Nutr Oncol 2013. doi:10.1055/s-0033-1348256.
61.
Zurück zum Zitat Trachootham, D, Alexandre J, Huang P. Targeting cancer cells by ROS-mediated mechanisms: a radical therapeutic approach? Nat Rev Drug Discov. 2009;8:579–91.PubMedCrossRef Trachootham, D, Alexandre J, Huang P. Targeting cancer cells by ROS-mediated mechanisms: a radical therapeutic approach? Nat Rev Drug Discov. 2009;8:579–91.PubMedCrossRef
62.
Zurück zum Zitat Michieli P. Hypoxia, angiogenesis and cancer therapy: to breathe or not to breathe? Cell Cycle. 2009;8:3291–6.PubMedCrossRef Michieli P. Hypoxia, angiogenesis and cancer therapy: to breathe or not to breathe? Cell Cycle. 2009;8:3291–6.PubMedCrossRef
63.
Zurück zum Zitat Harris AL. Hypoxia—a key regulatory factor in tumour growth. Nat Rev Cancer. 2002;2:38–47.PubMedCrossRef Harris AL. Hypoxia—a key regulatory factor in tumour growth. Nat Rev Cancer. 2002;2:38–47.PubMedCrossRef
64.
Zurück zum Zitat Vaupel P, Hockel M, Mayer A. Detection and characterization of tumor hypoxia using pO2 histography. Antioxid Redox Signal. 2007;9:1221–35.PubMedCrossRef Vaupel P, Hockel M, Mayer A. Detection and characterization of tumor hypoxia using pO2 histography. Antioxid Redox Signal. 2007;9:1221–35.PubMedCrossRef
66.
Zurück zum Zitat Kuiper C, Molenaar IG, Dachs GU, et al. Low ascorbate levels are associated with increased hypoxia-inducible factor-1 activity and an aggressive tumor phenotype in endometrial cancer. Cancer Res. 2010;70:5749–58.PubMedCrossRef Kuiper C, Molenaar IG, Dachs GU, et al. Low ascorbate levels are associated with increased hypoxia-inducible factor-1 activity and an aggressive tumor phenotype in endometrial cancer. Cancer Res. 2010;70:5749–58.PubMedCrossRef
67.
Zurück zum Zitat Kuiper C, Dachs GU, Currie MJ, et al. Intracellular ascorbate enhances hypoxia-inducible factor (HIF)-hydroxylase activity and preferentially suppresses the HIF-1 transcriptional response. Free Radic Biol Med. 2014;69:308–17.PubMedCrossRef Kuiper C, Dachs GU, Currie MJ, et al. Intracellular ascorbate enhances hypoxia-inducible factor (HIF)-hydroxylase activity and preferentially suppresses the HIF-1 transcriptional response. Free Radic Biol Med. 2014;69:308–17.PubMedCrossRef
68.
Zurück zum Zitat Rumsey SC, Kwon O, Xu GW, et al. Glucose transporter isoforms GLUT1 and GLUT3 transport dehydroascorbic acid. J Biol Chem. 1997;272:18982–9.PubMedCrossRef Rumsey SC, Kwon O, Xu GW, et al. Glucose transporter isoforms GLUT1 and GLUT3 transport dehydroascorbic acid. J Biol Chem. 1997;272:18982–9.PubMedCrossRef
69.
Zurück zum Zitat Kuiper C, Dachs GU, Munn D, et al. Increased tumor ascorbate is associated with extended disease-free survival and decreased hypoxia-inducible factor-1 activation in human colorectal cancer. Front Oncol. 2014;4:10.PubMedCentralPubMed Kuiper C, Dachs GU, Munn D, et al. Increased tumor ascorbate is associated with extended disease-free survival and decreased hypoxia-inducible factor-1 activation in human colorectal cancer. Front Oncol. 2014;4:10.PubMedCentralPubMed
70.
Zurück zum Zitat Wilson MK, Baguley BC, Wall C, et al. Review of high-dose intravenous vitamin C as an anticancer agent. Asia Pac J Clin Oncol. 2014;10:22–37.PubMedCrossRef Wilson MK, Baguley BC, Wall C, et al. Review of high-dose intravenous vitamin C as an anticancer agent. Asia Pac J Clin Oncol. 2014;10:22–37.PubMedCrossRef
71.
Zurück zum Zitat Zouboulis CC, Garbe C, Krasagakis K, et al. A fluorometric rapid microassay to identify anti-proliferative compounds for human melanoma cells in vitro. Melanoma Res. 1991;1:91–5.PubMedCrossRef Zouboulis CC, Garbe C, Krasagakis K, et al. A fluorometric rapid microassay to identify anti-proliferative compounds for human melanoma cells in vitro. Melanoma Res. 1991;1:91–5.PubMedCrossRef
Metadaten
Titel
Molecular mechanisms of pharmacological doses of ascorbate on cancer cells
verfasst von
Sascha Venturelli
Tobias W. Sinnberg
Heike Niessner
Dr. med. Christian Busch
Publikationsdatum
01.06.2015
Verlag
Springer Vienna
Erschienen in
Wiener Medizinische Wochenschrift / Ausgabe 11-12/2015
Print ISSN: 0043-5341
Elektronische ISSN: 1563-258X
DOI
https://doi.org/10.1007/s10354-015-0356-7

Weitere Artikel der Ausgabe 11-12/2015

Wiener Medizinische Wochenschrift 11-12/2015 Zur Ausgabe