Hamostaseologie 2013; 33(02): 121-130
DOI: 10.5482/HAMO-12-12-0023
Review
Schattauer GmbH

Acquired thrombotic thrombocytopenic purpura

Development of an autoimmune responseErworbene thrombotisch-thrombozytopenische PurpuraEntwicklung einer autoimmunen Erkankung
M. Schaller
1   Department of Haematology and Central Haematology Laboratory, Haemostasis Research Laboratory, Inselspital, Bern University Hospital and University of Bern, Switzerland
,
J.-D. Studt
2   Division of Haematology, University Hospital Zürich, Switzerland
,
J. Voorberg
3   Department of Plasma Proteins, Sanquin-AMC Landsteiner Laboratory, Amsterdam, The Netherlands
,
J. A. Kremer Hovinga
1   Department of Haematology and Central Haematology Laboratory, Haemostasis Research Laboratory, Inselspital, Bern University Hospital and University of Bern, Switzerland
› Author Affiliations
Our work is supported by a Josephine Clark fund from the University of Bern and a Marie-Heim Vögtlin SNF fellowship PMPDP3_139794/1 to M. Schaller, a SNF grant 32003B_124892 to J. A. Kremer Hovinga and the ISTH 2007 Presidential Fund.
Further Information

Publication History

received: 05 December 2012

accepted: 17 January 2013

Publication Date:
05 February 2018 (online)

Summary

The von Willebrand factor (VWF)-cleaving metalloprotease, ADAMTS13 (a disintegrin and metalloprotease with thrombospondin type 1 motifs-13) is the only known target of the dysregulated immune response in acquired TTP. Autoantibodies to ADAMTS13 either neutralize its activity or accelerate its clearance, thereby causing a severe deficiency of ADAMTS13 in plasma. As a consequence, size regulation of VWF is impaired and the persistence of ultra-large VWF (ULVWF) multimers facilitates micro vascular platelet aggregation causing microangiopathic haemolytic anaemia and ischaemic organ damage. Autoimmune TTP although a rare disease with an annual incidence of 1.72 cases has a mortality rate of 20% even with adequate therapy.

We describe the mechanisms involved in ADAMTS13 autoimmunity with a focus on the role of B- and T-cells in the pathogenesis of this disorder. We discuss the potential translation of recent experimental findings into future therapeutic concepts for the treatment of acquired TTP.

Zusammenfassung

Die von-Willebrand-Faktor(VWF)-spaltende Protease ADAMTS13 (a disintegrin and metallo protease with thrombospondin type 1 motifs-13) ist das bisher einzig bekannte Ziel der fehlgeleiteten Immunantwort der erworbenen TTP. Autoantikörper, die an ADAMTS13 binden, neutralisieren entweder deren Aktivität oder beschleunigen den Abbau, was zu schwerer Defizienz von ADAMTS13 im Plasma führt. Die zur Regulation der Größe benötigte Spaltung (Proteolyse) von VWF ist somit stark beeinträchtigt, in Folge kommt es zur Akkumulation ultralanger VWF-Multi meren, die eine Aggregation der Thromobozyten in der Mikrozirkulation bewirken, was schließ-lich zu mikroangiopathischer hämo lytischer Anämie und ischämischer Organschädigung führt. TTP ist eine seltene Krankheit, mit einer jährlichen Inzidenz von 1,72 Fällen pro Million. TTP führt selbst mit adäquater Therapie bei 20% der Patienten zum Tod.

Wir beschreiben die Mechanismen, die in der ADAMTS13-Autoimmunität involviert sind, wobei wir uns auf die Rolle der B- und T-Zellen in der Pathogenese dieser Krankheit konzentrieren. Wir diskutieren, wie die bisherigen experimentellen Ergebnisse in zukünftige therapeutische Anwendungen zur Behandlung der erworbenen TTP eingesetzt werden können.

 
  • References

  • 1 Abbas AK, Lichtman AH. Introduction to the immune system. In: Schmitt W. Basic Immunology: Saunders Elsevier; 2011: 1-22.
  • 2 Diamant E, Melamed D. Class switch recombination in B lymphopoiesis: a potential pathway for B cell autoimmunity. Autoimmun Rev 2004; 03: 464-469.
  • 3 Burnet FM. Immunological recognition of self. Science 1961; 133: 307-311.
  • 4 Pike BL, Boyd AW, Nossal GJ. Clonal anergy: the universally anergic B lymphocyte. Proc Natl Acad Sci USA 1982; 79: 2013-2017.
  • 5 Jerne NK. Towards a network theory of the immune system. Annales d’ Immunologie 1974; 125: 373-389.
  • 6 Curotto MAde Lafaille, Lafaille JJ. Natural and adaptive foxp3+ regulatory T cells: more of the same or a division of labor?. Immunity 2009; 30: 626-635.
  • 7 Edwards JC, Cambridge G, Abrahams VM. Do selfperpetuating B lymphocytes drive human autoimmune disease?. Immunology 1999; 97: 188-196.
  • 8 Tisch R, Wang B. Dysrulation of T cell peripheral tolerance in type 1 diabetes. Adv Immunol 2008; 100: 125-149.
  • 9 Edwards JC, Cambridge G. B-cell targeting in rheumatoid arthritis and other autoimmune diseases. Nat Rev Immunol 2006; 06: 394-403.
  • 10 Foreman AL, Van de Water J, Gougeon ML, Gershwin ME. B cells in autoimmune diseases: insights from analyses of immunoglobulin variable (Ig V) gene usage. Autoimmun Rev 2007; 06: 387-401.
  • 11 Moake JL, Rudy CK, Troll JH. et al. Unusually large plasma factor VIII:von Willebrand factor multimers in chronic relapsing thrombotic thrombocytopenic purpura. N Engl J Med 1982; 307: 1432-1435.
  • 12 Ferrari S, Mudde GC, Rieger M. et al. IgG subclass distribution of anti-ADAMTS13 antibodies in patients with acquired thrombotic thrombocytopenic purpura. J Thromb Haemost 2009; 07: 1703-1710.
  • 13 Pos W, Sorvillo N, Fijnheer R. et al. Residues Arg568 and Phe592 contribute to an antigenic surface for anti-ADAMTS13 antibodies in the spacer domain. Haematologica 2011; 96: 1670-1677.
  • 14 Bettoni G, Palla R, Valsecchi C. et al. ADAMTS-13 activity and autoantibodies classes and subclasses as prognostic predictors in acquired thrombotic thrombocytopenic purpura. J Thromb Haemost 2012; 10: 1556-1565.
  • 15 Stone JH, Zen Y, Deshpande V. IgG4-related disease. N Engl J Med 2012; 366: 539-551.
  • 16 Ferrari S, Scheiflinger F, Rieger M. et al. Prognostic value of anti-ADAMTS 13 antibody features (Ig isotype, titer, and inhibitory effect) in a cohort of 35 adult French patients undergoing a first episode of thrombotic microangiopathy with undetectable ADAMTS 13 activity. Blood 2007; 109: 2815-2822.
  • 17 Rieger M, Mannucci PM, Kremer JAHovinga. et al. ADAMTS13 autoantibodies in patients with thrombotic microangiopathies and other immunomediated diseases. Blood 2005; 106: 1262-1267.
  • 18 Knöbl P. Unraveling the immunologic response in thrombotic thrombocytopenic purpura. J Thromb Haemost 2006; 04: 2352-2354.
  • 19 Froehlich-Zahnd R, George JN, Vesely SK. et al. Evidence for a role of anti-ADAMTS13 autoantibodies despite normal ADAMTS13 activity in recurrent thrombotic thrombocytopenic purpura. Haematologica 2012; 97: 297-303.
  • 20 Levy GG, Nichols WC, Lian EC. et al. Mutations in a member of the ADAMTS gene family cause thrombotic thrombocytopenic purpura. Nature 2001; 413: 488-494.
  • 21 Luken BM, Turenhout EA, Hulstein JJ. et al. The spacer domain of ADAMTS13 contains a major binding site for antibodies in patients with thrombotic thrombocytopenic purpura. Thromb Haemost 2005; 93: 267-274.
  • 22 Zheng XL, Wu H, Shang D. et al. Multiple domains of ADAMTS13 are targeted by autoantibodies against ADAMTS13 in patients with acquired idiopathic thrombotic thrombocytopenic purpura. Haematologica 2010; 95: 1555-1562.
  • 23 Klaus C, Plaimauer B, Studt JD. et al. Epitope mapping of ADAMTS13 autoantibodies in acquired thrombotic thrombocytopenic purpura. Blood 2004; 103: 4514-4519.
  • 24 Yamaguchi Y, Moriki T, Igari A. et al. Epitope analysis of autoantibodies to ADAMTS13 in patients with acquired thrombotic thrombocytopenic purpura. Thromb Res 2011; 128: 169-173.
  • 25 Schaller M, Bigler C, Danner D. et al. Autoantibodies against C1q in systemic lupus erythematosus are antigen-driven. J Immunol 2009; 183: 8225-8231.
  • 26 Schaller M, Burton DR, Ditzel HJ. Autoantibodies to GPI in rheumatoid arthritis: linkage between an animal model and human disease. Nat Immunol 2001; 02: 746-753.
  • 27 Luken BM, Turenhout EA, Kaijen PH. et al. Amino acid regions 572-579 and 657-666 of the spacer domain of ADAMTS13 provide a common antigenic core required for binding of antibodies in patients with acquired TTP. Thromb Haemost 2006; 96: 295-301.
  • 28 Pos W, Luken BM, Kremer JAHovinga. et al. VH1-69 germline encoded antibodies directed towards ADAMTS13 in patients with acquired thrombotic thrombocytopenic purpura. J Thromb Haemost 2009; 07: 421-428.
  • 29 Siegel DL. Translational applications of antibody phage display. Immunol Res 2008; 42: 118-131.
  • 30 Pos W, Crawley JT, Fijnheer R. et al. An autoantibody epitope comprising residues R660, Y661, and Y665 in the ADAMTS13 spacer domain identifies a binding site for the A2 domain of VWF. Blood 2010; 115: 1640-1649.
  • 31 Jin SY, Skipwith CG, Zheng XL. Amino acid residues Arg(659), Arg(660), and Tyr(661) in the spacer domain of ADAMTS13 are critical for cleavage of von Willebrand factor. Blood 2010; 115: 2300-2310.
  • 32 Akiyama M, Takeda S, Kokame K. et al. Crystal structures of the noncatalytic domains of ADAMTS13 reveal multiple discontinuous exosites for von Willebrand factor. Proc Natl Acad Sci USA 2009; 106: 19274-19279.
  • 33 Tao Z, Peng Y, Nolasco L. et al. Recombinant CUB-1 domain polypeptide inhibits the cleavage of ULVWF strings by ADAMTS13 under flow conditions. Blood 2005; 106: 4139-4145.
  • 34 Tao Z, Wang Y, Choi H. et al. Cleavage of ultralarge multimers of von Willebrand factor by C-terminaltruncated mutants of ADAMTS-13 under flow. Blood 2005; 106: 141-143.
  • 35 Zhang P, Pan W, Rux AH. et al. The cooperative activity between the carboxyl-terminal TSP1 repeats and the CUB domains of ADAMTS13 is crucial for recognition of von Willebrand factor under flow. Blood 2007; 110: 1887-1894.
  • 36 Banno F, Chauhan AK, Kokame K. et al. The distal carboxyl-terminal domains of ADAMTS13 are required for regulation of in vivo thrombus formation. Blood 2009; 113: 5323-5329.
  • 37 Vomund AN, Majerus EM. ADAMTS13 bound to endothelial cells exhibits enhanced cleavage of von Willebrand factor. J Biol Chem 2009; 284: 30925-30932.
  • 38 Luken BM, Kaijen PH, Turenhout EA. et al. Multiple B-cell clones producing antibodies directed to the spacer and disintegrin/thrombospondin type-1 repeat 1 (TSP1) of ADAMTS13 in a patient with acquired thrombotic thrombocytopenic purpura. J Thromb Haemost 2006; 04: 2355-2364.
  • 39 Ferrari S, Knöbl P, Kolovratova V. et al. Inverse correlation of free and immune complex-sequestered anti-ADAMTS13 antibodies in a patient with acquired thrombotic thrombocytopenic purpura. J Thromb Haemost 2012; 10: 156-158.
  • 40 Scully M, McDonald V, Cavenagh J. et al. A phase II study of the safety and efficacy of rituximab with plasma exchange in acute acquired thrombotic thrombocytopenic purpura. Blood 2011; 118: 1746-1753.
  • 41 Iioka F, Shimomura D, Ishii T. et al. Short- and long-term effects of rituximab for the treatment of thrombotic thrombocytopenic purpura: four case reports. Int J Hematol 2012; 96: 506-512.
  • 42 George JN. Corticosteroids and rituximab as adjunctive treatments for thrombotic thrombocytopenic purpura. Am J of Hematol 2012; 87 (Suppl. 01) S88-S91.
  • 43 Tun NM, Villani GM. Efficacy of rituximab in acute refractory or chronic relapsing non-familial idiopathic thrombotic thrombocytopenic purpura: a systematic review with pooled data analysis. J Thromb Thrombolysis 2012; 34: 347-359.
  • 44 Yassa SK, Blessios G, Marinides G, Venuto RC. Anti-CD20 monoclonal antibody (rituximab) for life-threatening hemolytic-uremic syndrome. Clin Transplant 2005; 19: 423-426.
  • 45 Yomtovian R, Niklinski W, Silver B. et al. Rituximab for chronic recurring thrombotic thrombocytopenic purpura: a case report and review of the literature. Br J Haematol 2004; 124: 787-795.
  • 46 Zheng X, Pallera AM, Goodnough LT. et al. Remission of chronic thrombotic thrombocytopenic purpura after treatment with cyclophosphamide and rituximab. Ann Intern Med 2003; 138: 105-108.
  • 47 Ahmad A, Aggarwal A, Sharma D. et al. Rituximab for treatment of refractory/relapsing thrombotic thrombocytopenic purpura (TTP). Am J Hematol 2004; 77: 171-176.
  • 48 Uchida J, Hamaguchi Y, Oliver JA. et al. The innate mononuclear phagocyte network depletes B lymphocytes through Fc receptor dependent mechanisms during anti-CD20 antibody immunotherapy. J Exp Med 2004; 199: 1659-1669.
  • 49 Di Gaetano N, Cittera E, Nota R. et al. Complement activation determines the therapeutic activity of rituximab in vivo. J Immunol 2003; 171: 1581-1587.
  • 50 Teeling JL, French RR, Cragg MS. et al. Characterization of new human CD20 monoclonal antibodies with potent cytolytic activity against non-Hodgkin lymphomas Blood. 2004; 104: 1793-1800.
  • 51 Gong Q, Ou Q, Ye S. et al. Importance of cellular microenvironment and circulatory dynamics in B cell immunotherapy. J Immunol 2005; 174: 817-826.
  • 52 Caramazza D, Quintini G, Abbene I. et al. Rituximab for managing relapsing or refractory patients with idiopathic thrombotic thrombocytopenic purpura-haemolytic uraemic syndrome. Blood Transfusion 2010; 08: 203-210.
  • 53 Froissart A, Buffet M, Veyradier A. et al. Efficacy and safety of first-line rituximab in severe, acquired thrombotic thrombocytopenic purpura with a suboptimal response to plasma exchange. Experience of the French Thrombotic Microangiopathies Reference Center. Crit Care Med 2012; 40: 104-111.
  • 54 Rehnberg M, Amu S, Tarkowski A. et al. Short- and long-term effects of anti-CD20 treatment on B cell ontogeny in bone marrow of patients with rheumatoid arthritis. Arthritis Res Ther 2009; 11: R123.
  • 55 Yoshida T, Mei H, Dorner T. et al. Memory B and memory plasma cells. Immunol Rev 2010; 237: 117-139.
  • 56 Popa C, Leandro MJ, Cambridge G, Edwards JC. Repeated B lymphocyte depletion with rituximab in rheumatoid arthritis over 7 yrs. Rheumatology (Oxford) 2007; 46: 626-630.
  • 57 Vallerskog T, Gunnarsson I, Widhe M. et al. Treatment with rituximab affects both the cellular and the humoral arm of the immune system in patients with SLE. Clin Immunol 2007; 122: 62-74.
  • 58 Mamani-Matsuda M, Cosma A, Weller S. et al. The human spleen is a major reservoir for long-lived vaccinia virus-specific memory B cells. Blood 2008; 111: 4653-4659.
  • 59 Dunn-Walters DK, Isaacson PG, Spencer J. Analysis of mutations in immunoglobulin heavy chain variable region genes of microdissected marginal zone (MGZ) B cells suggests that the MGZ of human spleen is a reservoir of memory B cells. J Exp Med 1995; 182: 559-566.
  • 60 Aqui NA, Stein SH, Konkle BA. et al. Role of splenectomy in patients with refractory or relapsed thrombotic thrombocytopenic purpura. J Clin Apher 2003; 18: 51-54.
  • 61 Kappers-Klunne MC, Wijermans P, Fijnheer R. et al. Splenectomy for the treatment of thrombotic thrombocytopenic purpura. Br J Haematol 2005; 130: 768-776.
  • 62 Kremer JAHovinga, Vesely SK, Terrell DR. et al. Survival and relapse in patients with thrombotic thrombocytopenic purpura. Blood 2010; 115: 1500-1511.
  • 63 Dorner T, Kaufmann J, Wegener WA. et al. Initial clinical trial of epratuzumab (humanized anti- CD22 antibody) for immunotherapy of s ystemic lupus erythematosus. Arthritis Res Ther 2006; 08: R74.
  • 64 Dorner T, Shock A, Smith KG. CD22 and autoimmune disease. Int Rev Immunol 2012; 31: 363-738.
  • 65 Vallera DA, Todhunter DA, Kuroki DW. et al. A bispecific recombinant immunotoxin, DT2219, targeting human CD19 and CD22 receptors in a mouse xenograft model of B-cell leukemia / lymphoma. Clin Cancer Res 2005; 11: 3879-3888.
  • 66 Mackay F, Sierro F, Grey ST, Gordon TP. The BAFF/ APRIL system: an important player in systemic rheumatic diseases. Curr Dir Autoimmun 2005; 08: 243-265.
  • 67 Thompson JS, Bixler SA, Qian F. et al. BAFF-R, a newly identified TNF receptor that specifically interacts with BAFF. Science 2001; 293: 2108-2111.
  • 68 Mackay F, Woodcock SA, Lawton P. et al. Mice transgenic for BAFF develop lymphocytic disorders along with autoimmune manifestations. J Exp Med 1999; 190: 1697-1710.
  • 69 Gross JA, Dillon SR, Mudri S. et al. TACI-Ig neutralizes molecules critical for B cell development and autoimmune disease. Impaired B cell maturation in mice lacking BLyS. Immunity 2001; 15: 289-302.
  • 70 Gross JA, Johnston J, Mudri S. et al. TACI and BCMA are receptors for a TNF homologue implicated in B-cell autoimmune disease. Nature 2000; 404: 995-999.
  • 71 Lesley R, Xu Y, Kalled SL. et al. Reduced competitiveness of autoantigen-engaged B cells due to increased dependence on BAFF. Immunity 2004; 20: 441-453.
  • 72 Stohl W, Hiepe F, Latinis KM. et al. Belimumab reduces autoantibodies, normalizes low complement levels, and reduces select B cell populations in patients with systemic lupus erythematosus. Arthritis Rheum 2012; 64: 2328-2337.
  • 73 Genovese MC, Becker JC, Schiff M. et al. Abatacept for rheumatoid arthritis refractory to tumor necrosis factor alpha inhibition. N Engl J Med 2005; 353: 1114-1123.
  • 74 Lindvall JM, Blomberg KE, Valiaho J. et al. Bruton’s tyrosine kinase: cell biology, sequence conservation, mutation spectrum, siRNA modifications, and expression profiling. Immunol Rev 2005; 203: 200-215.
  • 75 Wong BR, Grossbard EB, Payan DG, Masuda ES. Targeting Syk as a treatment for allergic and autoimmune disorders. Expert Opin Investig Drugs 2004; 13: 743-762.
  • 76 Venanzi ES, Benoist C, Mathis D. Good riddance: Thymocyte clonal deletion prevents autoimmunity. Curr Opin Immunol 2004; 16: 197-202.
  • 77 Starr R, Hilton DJ. Defining control: regulation of dendritic cell activation and immune homeostasis by SOCS1. Immunity 2003; 19: 308-309.
  • 78 Sorvillo N, Pos W, van den Berg LM. et al. The macrophage mannose receptor promotes uptake of ADAMTS13 by dendritic cells. Blood 2012; 119: 3828-3835.
  • 79 Coppo P, Busson M, Veyradier A. et al. HLADRB1*11: a strong risk factor for acquired severe ADAMTS13 deficiency-related idiopathic thrombotic thrombocytopenic purpura in Caucasians. Thromb Heamost 2010; 08: 856-859.
  • 80 Pos W, Luken BM, Sorvillo N. et al. Humoral immune response to ADAMTS13 in acquired TTP. J Thromb Heamost 2011; 09: 1285-1291.
  • 81 Mariani M, Cairo A, Palla R. et al. B and T lymphocytes in acquired thrombotic thrombocytopenic purpura during disease remission. Thromb Res 2011; 128: 590-592.
  • 82 Gambineri E, Torgerson TR, Ochs HD. Immune dysregulation, polyendocrinopathy, enteropathy, and X-linked inheritance (IPEX), a syndrome of systemic autoimmunity caused by mutations of FOXP3, a critical regulator of T-cell homeostasis. Curr Opin Rheumatol 2003; 15: 430-435.
  • 83 Kim CH. Molecular targets of FoxP3+ regulatory T cells. Mini Rev Med Chem 2007; 07: 1136-1143.
  • 84 Scully M, Brown J, Patel R. et al. Human leukocyte antigen association in idiopathic thrombotic thrombocytopenic purpura: evidence for an immunogenetic link. J Thromb Haemost 2010; 08: 257-262.
  • 85 John ML, Hitzler W, Scharrer I. The role of human leukocyte antigens as predisposing and/or protective factors in patients with idiopathic thrombotic thrombocytopenic purpura. Ann Hematol 2012; 91: 507-510.
  • 86 Studt JD, Hovinga JA, Radonic R. et al. Familial acquired thrombotic thrombocytopenic purpura: ADAMTS13 inhibitory autoantibodies in identical twins. Blood 2004; 103: 4195-4197.
  • 87 Cataland SR, Wu HM. Targeting the inhibitor of ADAMTS13 in thrombotic thrombocytopenic purpura. Expert Opin Pharmacothe 2007; 08: 437-444.
  • 88 Cataland SR, Jin M, Lin S. et al. Effect of prophylactic cyclosporine therapy on ADAMTS13 biomarkers in patients with idiopathic thrombotic thrombocytopenic purpura. Am J Hematol 2008; 83: 911-915.
  • 89 Cataland SR, Jin M, Ferketich AK. et al. An evaluation of cyclosporin and corticosteroids individually as adjuncts to plasma exchange in the treatment of thrombotic thrombocytopenic purpura. Br J Haematol 2007; 136: 146-149.
  • 90 Van der Plas RM, Schiphorst ME, Huizinga EG. et al. Von Willebrand factor proteolysis is deficient in classic, but not in bone marrow transplantation-associated, thrombotic thrombocytopenic purpura. Blood 1999; 93: 3798-3802.
  • 91 Peyvandi F, Siboni SM, Lambertenghi DDeliliers. et al. Prospective study on the behaviour of the metalloprotease ADAMTS13 and of von Willebrand factor after bone marrow transplantation. Br J Haematol 2006; 134: 187-195.
  • 92 Kentouche K, Zintl F, Angerhaus D. et al. Von Willebrand factor-cleaving protease (ADAMTS13) in the course of stem cell transplantation. Semin Thromb Hemost 2006; 32: 98-104.
  • 93 Hershko K, Simhadri V, Blaisdell A. et al. Cyclosporin A impairs the secretion and activity of ADAMTS13. J Biol Chem 2012; 287: 44361-44371.
  • 94 Mathis D, Benoist C. A decade of AIRE. Nat Rev Immunol 2007; 07: 645-650.
  • 95 Fuchs TA, Kremer JAHovinga, Schatzberg D. et al. Circulating DNA and myeloperoxidase indicate disease activity in patients with thrombotic microangiopathies. Blood 2012; 120: 1157-1164.
  • 96 Plaimauer B, Kremer JAHovinga, Juno C. et al. Recombinant ADAMTS13 normalizes von Willebrand factor-cleaving activity in plasma of acquired TTP patients by overriding inhibitory antibodies. J Thromb Haemost 2011; 09: 936-944.
  • 97 Jian C, Xiao J, Gong L. et al. Gain-of-function ADAMTS13 variants that are resistant to autoantibodies against ADAMTS13 in patients with acquired thrombotic thrombocytopenic purpura. Blood 2012; 119: 3836-3843.
  • 98 Coppo P, Veyradier A. Current management and therapeutical perspectives in thrombotic thrombocytopenic purpura. Presse Med 2012; 41: 163-176.
  • 99 Kremer JAHovinga, Voorberg J. Improving on nature: redesigning ADAMTS13. Blood 2012; 119: 3654-3655.