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INTRODUCTION
Over recent decades, treatment options for inflamma-
tory diseases such as rheumatoid arthritis (RA) have in-
creased dramatically. These range from orally available 
steroids and conventional synthetic disease modifying 
drugs (csDMARDs) to parenteral biological therapies 
(bDMARDs).  Most recently, with advances in our under-
standing of cell signalling pathways, we can target small 
molecules associated with intracellular signal transduc-
tion.1 These orally available drugs form a new category 
of treatment known as targeted synthetic DMARDs (tsD-
MARDs).2 The first drug class within this category to gain 
marketing authorisations are the Janus Kinase inhibitors 
(JAK inhibitors or jakinibs).3 By inhibiting Janus Kinases, 
these drugs inhibit signalling through a variety of cytokine 
and haematopoietic growth factor receptors.4

There are four members of the JAK family, and all are 
receptor-associated tyrosine kinases (JAK1, JAK2, JAK3 
and TYK2).4 Tyrosine kinases are phosphotransferase 
enzymes which transphosphorylate tyrosine residues 

on other proteins. This 
process can trigger 
(usually) or hinder (less 
commonly) the activity 
of the target protein, 
often as part of an en-
zymatic cascade.5,6 All 
JAKs work in a similar 
manner, usually in as-
sociation with type I 
and II cytokine recep-
tors, which are intrinsic 
elements of immune 
responses.7,8 Conse-
quently, inhibiting these 

enzymes has great potential for controlling unwanted or 
overactive immune pathways.9 It is important to under-
stand both the role of cytokines in regulating immune 
function and the JAK-STAT (signal transducer and acti-
vators of transcription) pathways in order to fully appreci-
ate the true value of JAK inhibition, especially in relation 
to its role in diseases such as RA.5,8 
Cytokines form a large family of (mostly) soluble mediators, 
which are responsible for controlling a wide range of bodi-
ly processes, from growth to haematopoiesis. They play 
an important role in both innate and adaptive arms of the 
immune response.9,10 Unsurprisingly, an imbalance of their 
activity is associated with a number of different autoimmune 
diseases and malignancies.11,12 Anti-inflammatory agents 
such as glucocorticoids, as well as csDMARDs, can impair 
cytokine secretion and downstream activities, but long-term 
use and off-target effects result in unwanted side effects, 
such as osteopenia and liver toxicity.13,14 Some bDMARDs 
(TNF inhibitors, IL-6 receptor blockers) target pro-inflamma-
tory cytokines themselves, with significant benefit. These 
bDMARDs have contributed to the revolution in the man-
agement of autoimmunity but they are expensive, require 
parenteral administration, as well as co-prescription with 
methotrexate (MTX) to achieve optimal outcomes.15-17 
Many patients with RA prefer oral drug therapy, trigger-
ing an unmet need for potent oral medications.17 Using 
synthetic, orally available drugs to target intracellular 
signalling pathways has the potential to meet this need, 
potentially matching biological efficacy within a pill.2-6 
The JAK-STAT pathways provided rational targets due 
to their involvement in cytokine signalling, including cy-
tokines thought to be active in RA, such as interleukins, 
interferons and growth factors.5,8 
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JAK-STAT PATHWAY
JAK-STAT pathways are utilised by type I and II cyto-
kine receptors, as well as by receptors for interferons 
and growth factors. These receptors lack intrinsic cata-
lytic activity and rely on JAKs for downstream responses 
and subsequent modulation of gene expression (Figure 
1).1 Janus is the Greek god of doorways, looking both 
outside and inside a room, and illustrates how JAKs fa-
cilitate signals from the cell surface into the cell.18 Each 
cytokine receptor is paired with a different JAK pair, 
usually as heterodimers. Upon cross-linking by its cyto-
kine, the receptor-associated JAKs transphosphorylate 
one another. The activated JAKs in turn phosphorylate 
the cytokine receptor tail. The phosphorylated receptor 
forms a docking site for STATs, that otherwise reside in 
the cytosol. These STATs are then phosphorylated by the 
JAKs before dissociating from the receptor and them-
selves forming heterodimers or homodimers. They then 
translocate to the nucleus where they act as transcrip-
tion factors, regulating gene expression. 19 There are sev-
en mammalian STATS which, like JAKs, associate with 
different signalling pathways.8

The importance of these pathways in health and dis-
ease has been demonstrated through multiple studies 
involving knockout mice and mutagenized cell lines.20-22 

Of more relevance, certain types of human primary im-
munodeficiencies such as severe combined immunode-
ficiency (SCID), are caused by non-redundant mutations 
related to these pathways.23,24 In contrast, overexpres-
sion of these pathways is associated with both autoim-
mune disease and malignancy.25-28 Consequently, their 
blockade provides a means to block, simultaneously, the 
actions of multiple key cytokines associated with auto-
immunity.1

SPECIFICITY VS SELECTIVITY
Each JAK enzyme contains an ATP binding pocket which 
is critical to their function. It is the ATP bound within the 
pocket that supplies the phosphate group intrinsic to 
JAK activity. Whilst structurally similar, each JAK has a 
subtly different ATP binding pocket.29 It is worth adding 
that there are over 500 tyrosine kinases in the human 
genome, each of which has a related mode of action and 
possesses an ATP binding pocket.1 Drugs that inhibit 
these enzymes, such as the jakinibs, generally act by im-
peding ATP binding.29,30 Because ATP binding pockets 
differ between the JAKs (and more widely within the ty-
rosine kinase ‘superfamily’), it should be possible to find 
drugs that selectively block a particular JAK.11 
The selectivity of a JAK inhibitor is fundamentally differ-
ent to the specificity of a biologic drug. Rheumatologists 
have become familiar with biologics which, as a conse-
quence of nature’s highly evolved antibody design, are 
highly specific for their target (TNF, IL-6 receptor) with 
virtually no possibility for ‘off-target’ effects on other mol-

ecules or pathways.31 This is sometimes referred to as 
a lock and key mechanism of action – most keys sim-
ply do not work in the ‘wrong’ lock.32 In contrast, small 
molecule enzyme inhibitors, such as the jakinibs, are in 
a Michaelis-Menten equilibrium with their substrate and 
ATP.33 A highly selective JAK inhibitor (eg, with selectivity 
for JAK1), will compete with ATP on JAK1 with a higher 
potency than on JAK2, JAK3 or TYK2.  However, as the 
intracellular concentration of the drug increases it is likely 
to affect ATP binding to these other JAK family mem-
bers, with loss of selectivity (Figure 2).33,34 Rather than 
lock and key, this can be thought of as fingers in gloves, 
and it is unlikely that a jakinib can be developed that is 
completely specific for a single JAK.35 Intracellular con-
centration depends not only on dosing, but on factors 
specific to each patient, such as age, weight, liver and 
kidney function, other medications, etc. It should also 
be stressed that selectivity is usually deduced from re-
ductionist laboratory enzymatic or cellular assays, which 
may or may not reflect the in vivo situation.12 Early phase 
(phase 1, 2) clinical trials aim to identify the optimal drug 
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Figure 1. The JAK-STAT pathway. Step 1) The ligand 
(usually a cytokine) binds and cross-links its receptor. 
Step 2) The associated JAKs transphosphorylate and 
activate each other. Step 3) The activated JAKs phos-
phorylate the receptor tail. Step 4) The receptor tail be-
comes a docking site for recruited STAT proteins, which 
themselves are phosphorylated by the activated JAKs. 
Step 5) The phosphorylated STATs dissociate from the 
receptor and dimerise. Step 6) STAT dimers translocate 
to the nucleus where they regulate gene transcription. 
JAK = Janus kinase, P = phosphate group, STAT = sig-
nal transducer and activator of transcription. 
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dose, at a population level, in terms of achieving optimal 
selectivity.36 However, it is real life experience, in a typical 
patient population, when rheumatologists need to judge 
the selectivity of a particular therapeutic.

WHICH PATHWAY TO BLOCK?
At the time of writing, there are already three licensed 
jakinibs, with several more in clinical trials.4 In terms of 
which JAK provides the optimal therapeutic target, the 
decision is complex, not least because of heterodimeric 
JAK pairing. Only JAK2 acts as a homodimer, in terms of 
haematopoietic growth factor signalling (Figure 3).37 Most 
JAKs illustrate significant redundancy, being involved in 
several pathways.4 In contrast, JAK3 only transduces 
signals from g-chain cytokines IL-2, -4, -7, -9, -15 and 
-21.38,39 These play a central role in the adaptive immune 
response, with certain cytokine deficiencies resulting in 
a SCID phenotype. Human JAK3 deficiencies and inac-
tivating mutations also result in SCID.21-24 The fact that 
therapeutic blockade of JAK3 is achievable without 
life-threatening toxicity relates back to the reversible and/
or transient enzymatic blockade intrinsic to small mole-
cule drugs versus the permanent absence with genetic 
deficiencies. It follows from the above that a drug that is 
selective for JAK3 should have relatively defined down-
stream effects, predominantly reducing the activity of 
g-chain cytokines.21-24

In contrast to JAK3, the other JAK family members play 
a more redundant role, featuring in several pathways 
(Figure 3). These include important pro-inflammatory 
cytokines such as type I interferons (IFN-I) and IL-6, as 
well as IL-12, -23 and IFN-g.40 Hence, inhibition of these 
pathways will have relatively pleiotropic effects. This is 
not necessarily undesirable but will reduce the differenc-
es between drugs which, at least in vitro, are differential-

ly selective. Of note, the haematopoietic growth factors 
erythropoietin (EPO), thrombopoietin (TPO), granulocyte 
macrophage colony stimulating factor (GM-CSF), IL-3 
and IL-5 signal via JAK2 homodimers.41 Blocking this 
pathway theoretically could cause anaemia, leukopenia 
and thrombocytopenia and, arguably, may be a pathway 
to avoid.8  Nonetheless, GM-CSF plays a pro-inflamma-
tory role in RA, whose blockade has been shown to be 
beneficial.4  Whether a jakinib could have differential se-
lectivity for a JAK2 homodimer versus a heterodimer is 
uncertain, but certainly JAK2 inhibition is not universally 
associated with haematological side effects. In humans, 
genetic deficiencies in JAK1 and JAK2 are not rec-
ognised, consistent with knockout mice studies showing 
perinatal and embryonic lethality respectively.42-44 Con-
versely, human TYK2 deficiencies result in an impaired 
immune response against viral and bacterial pathogens, 
likely due to defects in the transduction of IFN-I, IL-12 
and IL-23 signalling.21 As mentioned above, transient 
and generally reversible therapeutic targeting of these 
pathways does not reproduce these serious genetic de-
fects. 

Figure 2. A simple demonstration of drug selectivity. A) 
At low concentration, JAK1 is more completely blocked 
due to preferential binding. B) As the concentration rises, 
JAK2 starts to become blocked but not as completely as 
JAK1, for which the affinity remains higher.

Figure 3. Different JAK combinations with their 
subsequent downstream effects, each mediated by a 
specific subset of cytokines.5,6,40,45,46
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JAK INHIBITORS IN PRACTICE
Tofacitinib, baricitinib and, most recently upadacitinib, are 
each approved for the treatment of RA. In terms of se-
lectivity, tofacitinib is more selective for JAK 1, 2 and 3 
versus TYK2. Baricitinib is more selective for JAK 1 and 
2, and upadacitinib for JAK1.4 All are of proven efficacy in 
the management of RA. According to Figure 3, tofacitinib 
and baricitinib might be expected to have similar activity in 
terms of cytokine blockade, with upadacitinib having less 
effect on haematopoietic growth factor signalling and IL-
12/23 signalling.4 In contrast, recent in vitro studies using 
human peripheral blood mononuclear cells suggest that, 
whilst quantitative differences exist in the potency of these 
jakinibs to inhibit cytokine signalling, these differences are 
perhaps less than expected and not always in the ex-
pected order of potency.47 Similarly, clinical trials have not 
revealed major differences in efficacy or safety between 
these three agents in terms of efficacy or adverse events.4 
Clinical trial populations are, of course, quite tightly select-
ed in terms of factors such as renal and liver function and 
lack of serious comorbidities, and it remains possible that 
real life pharmacokinetic factors may reveal differences 
between these drugs in certain populations.48 

CONCLUSION
There have been great advances in the pharmacologi-
cal management of RA and other autoimmune diseas-
es over recent decades, and jakinibs are emerging as a 
new therapeutic option. As small molecule, chemically 
synthesised drugs their advantages include oral admin-
istration, and reduced manufacturing costs compared 
with biologics.49-51 Clinical trials also suggest efficacy 
with or without concomitant MTX administration. Their 
short half-lives should equate with briefer peri-operative 
interruption compared to biologics and, potentially, more 
rapid reversal of adverse effects.49 Most importantly they 
demonstrate efficacy at least equivalent to biologics, with 
a similar profile of adverse events. 
Despite these advantages, some of the major cytokines 
involved in RA pathogenesis, specifically TNF-a, IL-1 and 
IL-17, are not dependent on JAKs for their signalling.52-54 

Whether or not combination therapy, for example with a 
jakinib and TNF inhibitor, will show benefit over a jakinib 
or TNF inhibitor alone awaits appropriate testing.  How-
ever, the chronic inflammatory microenvironment is com-
plex,55 and indirect inhibition of these cytokines remains 
possible in association with jakinib therapy.
The field of JAK inhibition remains in its infancy. Several 
other jakinibs are in development, and trials of the ap-
proved drugs are ongoing in a range of immune medi-
ated inflammatory diseases.  As suggested elsewhere in 
this brief review, real world evidence will be particularly 
important in defining differences between the jakinibs, 
particularly in terms of their adverse event profiles. None-
theless, the evidence to date illustrates that jakinibs are 

likely to provide a potent therapeutic option in a range of 
autoimmune and inflammatory diseases. 
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