Skip to main content
Log in

Interleukin-2 in Cancer Therapy

Uses and Optimum Management of Adverse Effects

  • Disease Management
  • Published:
BioDrugs Aims and scope Submit manuscript

Abstract

Recombinant interleukin-2 (rIL-2) produces remissions in several human tumours, including metastatic renal cell cancer (RCC) and malignant melanoma. High-dose intravenous bolus rIL-2 is approved in the US in these 2 indications, based on evidence of rIL-2-induced durable remissions in a significant minority of patients. Due to the toxicity associated with high-dose rIL-2, alternative regimens were investigated in RCC, including low-dose intravenous bolus, subcutaneous outpatient regimens and continuous intravenous infusion, yielding similar response rates. A prospective randomised trial comparing different doses and routes of administration is underway. Because response rates to single agent rIL-2 are inadequate, combination therapies were studied. In RCC patients, a combination of rIL-2 and IFNα resulted in better response rates than either cytok-ine alone, with no apparent survival advantage. Combination with chemotherapy increased toxicity and had no proven benefit. Results of adoptive immunotherapy studies combining rIL-2 with either lymphokine-activated killer cells or tumour infiltrating lymphocytes were comparable to those of rIL-2 alone. In malignant melanoma, combination therapy of rIL-2 with chemotherapy was explored. Results of single-institution phase II combination studies of variable chemotherapy and rIL-2 and IFNα regimens were promising and randomised trials are underway.

rIL-2 is being is evaluated in haematological malignancies. The rationale is based on pre-clinical evidence that a variety of leukaemic blasts are sensitive to cytolysis or growth inhibition mediated by rIL-2-activated immune effector cells.

New immunotherapeutic strategies may ultimately improve the anti-tumour efficacy of rIL-2-based therapy. Early trials using rIL-2 as adjuvant therapy to vaccines or dendritic cell-based therapy have yielded promising results.

rIL-2 therapy initiates a cytokine-mediated pro-inflammatory process leading to an adverse effect profile that is quite different from traditional chemotherapeutic agents. Dose-limiting toxicities are primarily cardiovascular and pulmonary and are dose-dependent in frequency and severity. Patients receiving high-dose regimens may require intensive care unit support, limiting its use to those with excellent performance status and adequate organ function. Patients receiving less intensive dose regimens may require less rigorous screening and monitoring. It has been postulated that rIL-2 related toxicity is mediated through the release of secondary cytokines, including TNF, IFNψ, IL-6 and IL-1. With the increasing understanding of the pathophysiological mechanisms of the effects of rIL-2, it is possible that concurrent administration of selective cytokine antagonists may reduce the toxicity associated with rIL-2 without interfering with its anti-neoplastic activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Table I
Table II
Table III
Table IV

Similar content being viewed by others

References

  1. Rosenberg SA, Lotze MT, Muul LM, et al. Observations on the systemic administration of autologous lymphokine-activated killer cells and recombinant interleukin-2 to patients with metastatic cancer. N Engl J Med 1985; 313: 1485–92

    Article  PubMed  CAS  Google Scholar 

  2. Rosenberg SA, Lotze MT, Muul LM, et al. A progress report on the treatment of 157 patients with advanced cancer using lymphokine-activated killer cells and interleukin-2 or high-dose interleukin-2 alone. N Engl J Med 1987; 316: 889–97

    Google Scholar 

  3. Rosenberg SA, Packard BS, Aebersold PM, et al. Use of tumor-infilterating lymphocytes and interleukin-2 in the immunotherapy of patients with metastatic melanoma: a preliminary report. N Engl J Med 1988; 320: 1418–9

    Google Scholar 

  4. West WH, Kurt WT, Yannelli JR, et al. Constant-infusion recombinant interleukin-2 in adoptive immunotherapy of advanced cancer. N Engl J Med 1987; 316: 898–905

    Article  PubMed  CAS  Google Scholar 

  5. Parkinson DR, Fisher RI, Rayner AA, et al. Therapy of renal cell carcinoma with interleukin-2 and lymphokine-activated killer cells: phase II experience with a hybrid bolus and continuous infusion interleukin-2 regimen. J Clin Oncol 1990; 8: 1630–6

    PubMed  CAS  Google Scholar 

  6. Rosenberg SA, Lotze M, Yang JC, et al. Experience with the use of high-dose interleukin-2 in the treatment of 652 cancer patients. Ann Surg 1989; 210: 474–84

    Article  PubMed  CAS  Google Scholar 

  7. Proleukin (aldesleukin for injection) package insert. Emeryville (CA): Chiron Therapeutics, 1992

  8. Fyfe G, Fisher RI, Rosenberg SA, et al. Results of treatment of 255 patients with metastatic renal cell carcinoma who received high dose recombinant interleukin-2 therapy. J Clin Oncol 1995; 13: 688–96

    PubMed  CAS  Google Scholar 

  9. Fisher RJ, Rosenberg SA, Sznol M, et al. High dose aldesleukin in renal cell carcinoma: long term survival update. Cancer J Sci Am 1997; 3 Suppl. 1: S70–2

    PubMed  Google Scholar 

  10. Bukowski RM. Natural history and therapy of metastatic renal cell carcinoma: role of interleukin 2. Cancer 1997; 80: 1198–220

    Article  PubMed  CAS  Google Scholar 

  11. Atkins MB, Sparano J, Fisher RI, et al. Randomized phase II trial of high-dose interleukin-2 either alone or in combination with interferon alfa-2b in advanced renal cell carcinoma. J Clin Oncol 1993; 11:661–70

    PubMed  CAS  Google Scholar 

  12. Yang JC, Topalian SL, Parkinson D, et al. Randomized comparison of high-dose and low-dose intravenous interleukin-2 for the therapy of metastatic RCC: an interim report. J Clin Oncol 1994; 12: 1572–6

    PubMed  CAS  Google Scholar 

  13. Rosenberg SA, Yang JC, Topalian SL, et al. Treatment of 283 consecutive patients with metastatic melanoma or renal cell carcinoma using high-dose bolus interleukin-2. JAMA 1994; 271:907–13

    Article  PubMed  CAS  Google Scholar 

  14. Rosenberg SA, Lotze MT, Yang JC, et al. Prospective randomized trial of high-dose interleukin-2 alone or in conjunction with lymphokine-activated killer cells for the treatment of patients with advanced cancer. J Natl Cancer Inst 1993; 85: 622–32

    Article  PubMed  CAS  Google Scholar 

  15. Tanja SS, Pierce W, Figlin R, et al. Immunotherapy for RCC: the era of interleukin-2 based treatment. Urology 1995; 45: 911–24

    Article  Google Scholar 

  16. Bukowski RM, Goodman P, Crawford ED, et al. Phase II trial of high-dose intermittent interleukin-2 in metastatic RCC: a Southwest Oncology Group study. J Natl Cancer Inst 1990; 82: 143–6

    Article  PubMed  CAS  Google Scholar 

  17. Abrams JS, Raymer AA, Wiernik PH, et al. High dose recombinant interleukin-2 alone: a regimen with limited activity in the treatment of advanced renal cell carcinoma. J Natl Cancer Inst 1990; 82: 1202–6

    Article  PubMed  CAS  Google Scholar 

  18. Philip T, Negrier S, Lasset C, et al. Patients with metastatic RCC candidate for immunotherapy with cytokines. analysis of a single institution study on 181 patients. Br J Cancer 1993; 68: 1036–42

    Article  PubMed  CAS  Google Scholar 

  19. Palmer PA, Atzpodien J, Philip T, et al. A comparison of 2 modes of administration of recombinant interleukin-2: continuous intravenous infusion alone versus subcutaneous administration plus inteferon alfa in patients with advanced RCC. Cancer Biother 1993; 8: 123–36

    Article  PubMed  CAS  Google Scholar 

  20. Whitehead RP, Wolf MK, Sloanki DI, et al. A phase II trial of continuous infusion recombinant interleukin-2 in patients with advanced RCC: a Southwest Oncology Group study. J Immunother 1995; 18: 104–14

    Article  CAS  Google Scholar 

  21. Escudier B, Farace F, Theodore C, et al. Traitaient du cancer du rein metastatique avec un nouveau schema d’interleukine-2: experience de l’institut Gustav-Roussy. Bull Cancer (Paris) 1995; 82: 296–302

    CAS  Google Scholar 

  22. Lopez M, Carpano S, Cancrini A, et al. Phase II study of continuous intravenous infusion of recombinant interleukin-2 in patients with advanced RCC. Ann Oncol 1993; 4: 689–91

    PubMed  CAS  Google Scholar 

  23. Escudier B, Ravaud A, Fabbro M, et al. High-dose interleukin-2 two days a week for metastatic RCC: a FNCLCC multicenter study. J Immunother 1994; 16: 306–12

    Article  CAS  Google Scholar 

  24. Von der Maase H, Geertsen P, Thacher, et al. Recombinant interleukin-2 in metastatic RCC: a European multicenter phase II study. Eur J Cancer 1991; 27: 1583–9

    Article  PubMed  Google Scholar 

  25. Koretz MJ, Lawson DH, York RM, et al. Randomized study of interleukin-2 (IL-2) alone vs IL-2 plus lymphokine-activated killer cells for treatment of melanoma and renal cell cancer. Arch Surg 1991; 126: 898–903

    Article  PubMed  CAS  Google Scholar 

  26. Geertsen PF, Hermann GG, von der Maase H, et al. Treatment of metastatic RCC by intermittent continuous intravenous infusion of recombinant interleukin-2: a single center phase II study. J Clin Oncol 1992; 10: 753–9

    PubMed  CAS  Google Scholar 

  27. Stroter G, Foassa SD, Rugarli C, et al. Metastatic renal cell carcinoma treated with low-dose interleukin-2: a phase II multicenter study. Cancer Treat Rev 1989; 16 Suppl. A: 111–3

    Article  Google Scholar 

  28. Law TM, Motzer RJ, Mazumdar M, et al. Phase III randomized trial of interleukin-2 withor without lymphokine-activated killer cells in the treatment of patients with advanced RCC. Cancer 1995; 76: 824–32

    Article  PubMed  CAS  Google Scholar 

  29. Negrier S, Escudier B, Lasset C, et al. Randomized human interleukin-2, recombinant alfa-2a, or both in metastatic renal cell carcinoma. N Engl J Med 1998; 338: 1272–8

    Article  PubMed  CAS  Google Scholar 

  30. Schomburg A, Kirchner H, Lopez-Hänninen E. Hepatic and serologic toxicity of systemic interleukin-2 and/or interferon-alpha. Am J Clin Oncol 1994; 17: 199–209

    Article  PubMed  CAS  Google Scholar 

  31. Lissoni P, Barni S, Ardizzoia A, et al. Second line therapy with low-dose subcutaneous interleukin-2 alone in advanced renal cancer patients resistant to interferon-alpha. Eur J Cancer 1992; 28: 92–6

    Article  PubMed  CAS  Google Scholar 

  32. Lissoni P, Barni S, Ardizzoia A, et al. Prognostic factors of the clinical response of subcutaneous immunotherapy with interleukin-2 alone in patients with metastatic RCC. Oncology 1994; 51: 59–62

    Article  PubMed  CAS  Google Scholar 

  33. Lopez Hanninen E, Kirchner H, Atzpodien J, et al. Interleukin-2 based hormone therapy for metastatic renal cell carcinoma: risks and benefits in 215 consecutive single institution patients. J Urol 1996; 155: 19–25

    Article  Google Scholar 

  34. Buter J, Sleijer DT, van der Graaf WTA, et al. A progress report on the outpatient treatment of patients with advanced renal cell carcinoma using subcutaneous recombinant interleukin-2. Semin Oncol 1993; 20: 16–21

    PubMed  CAS  Google Scholar 

  35. Casamassima A, Guida M, Latorre A, et al. Effects of subcutaneous recombinant IL-2 on humoral immunity in advanced cancer patients. Int J Oncol 1993; 3: 171–6

    PubMed  CAS  Google Scholar 

  36. deLena M, Guida M, Casamassima A, et al. Subcutaneous IL-2 in advanced melanoma and kidney carcinoma. Int J Oncol 1992; 1: 181–9

    PubMed  CAS  Google Scholar 

  37. Whitehead RP, Ward D, Heminway L, et al. Subcutaneous recombinant interleukin-2 in a dose escalating regimen in patients with metastatic renal cell adenocarcinoma. Cancer Res 1990; 50: 6708–15

    PubMed  CAS  Google Scholar 

  38. Marumo K, Ueno M, Maraki J, et al. Antitumor effects of interleukin-2 against RCC: basic study and clinical application. Urol Int 1991; 47 Suppl. 1: 132–7

    Article  PubMed  Google Scholar 

  39. Yang JC, Rosenberg SA. An ongoing prospective randomized comparison of interleukin-2 regimens for the treatment of metastatic renal cell cancer. Cancer J Sci Am 1997; 3: S79–84

    PubMed  Google Scholar 

  40. Jones M, Philip T, Palmer P, et al. The impact of interleukin-2 on survival in renal cancer: a multivariate analysis. Cancer Biother 1993; 8: 275–88

    Article  PubMed  CAS  Google Scholar 

  41. Kirchner I, Franzke A, Buer J, et al. Pharmacokinetics of recombinant human interleukin-2 in advanced renal cell carcinoma patients following subcutaneous application. Br J Clin Pharmacol 1998; 46: 5–10

    Article  PubMed  CAS  Google Scholar 

  42. Figlin RA, Belldegrun A, Moldawer N, et al. Concomitant administration of recombinant human interleukin-2 and recombinant human interferon-alpha 2A: an active outpatient regimen in metastatic renal cell carcinoma. J Clin Oncol 1992; 10: 414–21

    PubMed  CAS  Google Scholar 

  43. Vogelzang NJ, Lipton A, Figlin RA. Subcutaneous interleukin 2 plus interferon alfa-2a in metastatic renal cancer: an outpatient multicenter trial. J Clin Oncol 1993; 11: 1809–16

    PubMed  CAS  Google Scholar 

  44. Weiss GR, Margolin KA, Aronson FR, et al. A randomized phase II trial of continuous infusion interleukin-2 or bolus injection interleukin-2 plus lymphokine-activated killer cells for advanced RCC. J Clin Oncol 1992; 10: 275–81

    PubMed  CAS  Google Scholar 

  45. Atkins MB, Kunkel L, Sznol M, et al. High-dose recombinant interleukin-2 therapy in patients with metastatic melanoma: long-term survival update. Cancer J Sci Am 2000; 6 Suppl. 1: S11–4

    PubMed  Google Scholar 

  46. Rosenberg SA. Keynote address: perspectives on the use of interleukin-2 in cancer treatment. Cancer J Sci Am 1997; 3 Suppl. 1: S2–6

    PubMed  Google Scholar 

  47. Mastrangelo MJ, Berd D, Bellet RE. Aggressive chemotherapy for melanoma. Principles and Practices of Oricology Updates. Pennsylvania: Lippincott, 1991. Vol 5: 1–11

    Google Scholar 

  48. De Prete SA, Maurer LH, O’Donnell J, et al. Combination chemotherapy with cisplatin, carmustine, dacarbazine, and tamoxifen in metastatic melanoma. Cancer Treat Rep 1984; 68: 1403–5

    PubMed  Google Scholar 

  49. McClay E, Materangelo M, Berd D, et al. Effective combination chemo/hormonal therapy for malignant melanoma: experience with three consecutive trials. Int J Cancer 1992; 50: 553–6

    Article  PubMed  CAS  Google Scholar 

  50. Reintgen D, Saba H. Chemotherapy for stage 4 melanoma: a three year experience with cisplatin, DTIC, BCNU, and tamoxifen. Semin Surg Oncol 1993; 9: 251–8

    PubMed  CAS  Google Scholar 

  51. Richards JM, Mehta N, Ramming K, et al. Sequential chemo-immunotherapy in the treatment of metastatic melanoma. J Clin Oncol 1992; 10: 1338–43

    PubMed  CAS  Google Scholar 

  52. Richards JM, Gale D, Mehta N. Combination of chemotherapy with interleukin-2 and interferon alpha for the treatment of metastatic melanoma. J Clin Oncol 1999; 17 (2): 651–7

    PubMed  CAS  Google Scholar 

  53. Legha SS, Ring S, Eton O, et al. Development and results of Biochemotherapy in metastatic melanoma: the University of Texas M.D. Anderson Cancer Center Experience. Cancer J Sci Am 1997; 3 Suppl. 1: S9–15

    PubMed  Google Scholar 

  54. Legha SS, Ring S, Eton O, et al. Development of biochemotherapy regimen with concurrent administration of cisplatin, vinblastine, dacarbazine, interferon alfa, and interleukin-2 for patients with metastatic melanoma. J Clin Oncol 1998; 16: 1752–9

    PubMed  CAS  Google Scholar 

  55. Oshimi K, Oshimi Y, Akutsu M, et al. Cytotoxicity of interleukin-2-activated lymphocytes for leukemia and lymphoma cells. Blood 1986; 68: 938–48

    PubMed  CAS  Google Scholar 

  56. Fierro MT, Liao XS, Lusso P, et al. In vitro and in vivo susceptibility of human leukemic cells to lympkokine activated killer activity. Leukemia 1998; 2: 50–4

    Google Scholar 

  57. Foa R, Meloni G, Tosti S, et al. Treatment of acute myeloid leukaemia patients with recombinant interleukin-2: a pilot study. Br J Haematol 1991; 77: 491–6

    Article  PubMed  CAS  Google Scholar 

  58. Maraninchi D, Blaise D, Viens P, et al. High-dose recombinant interleukin-2 and acute myeloid leukemias in relapse. Blood 1991; 78: 2182–7

    PubMed  CAS  Google Scholar 

  59. Sievers EL, Lange BJ, Sondel PM, et al. Feasibility, toxicity, and biologic response of interleukin-2 after consolidation chemotherapy for acute myelogenous leukemia: a report from the children’s Cancer Group. J Clin Oncol 1998; 16: 914–9

    PubMed  CAS  Google Scholar 

  60. Sievers EL, Lange BJ, Sondel PM, et al. Children’s Cancer Group trials of interleukin-2 therapy to prevent relapse of acute myelogenous leukemia. Cancer J Sci Am 2000; 6 Suppl. l:S39–44

    PubMed  Google Scholar 

  61. Massumoto C, Benyunes MC, Sale G, et al. Close simulation of acute graft-versus host disease by interleukin-2 administered after autologous bone marrow transplantation for hematological malignancy. Bone Marrow Transplant 1996; 17: 351–6

    PubMed  CAS  Google Scholar 

  62. Robinson N, Benyunes MC, Thompson JA, et al. Interleukin-2 after autologous stem cell transplantation for hematological malignancy: a phase I/II study. Bone Marrow Transplant 1997; 19: 435–42

    Article  PubMed  CAS  Google Scholar 

  63. Margolin KA, Van Besien K, Wright, et al. Interleukin-2-activated autologous bone marrow and peripheral blood stem cells in the treatment of acute leukemia and lymphoma. Biol Blood Marrow Transplant 1999; 5: 36–45

    Article  PubMed  CAS  Google Scholar 

  64. Straus DJ, Huang J, Testa MA, et al. Prognostic factors in the treatment of human innunodeficiency virus associated nohodgkin’s lymphoma: analysis of AIDS clinical trials group protocol 142-low dose versus standard-dose m-BACOD plus granulocyte macrophage colony-stimulating factor: National Institute of Allergy and Infectious Diseases. J Clin Oncol 1998; 16: 3601–6

    PubMed  CAS  Google Scholar 

  65. Clerici M, Shearer GM. The Th1-Th2 hypothesis of HIV infection: new insights. Immunol Today 1994; 15: 575–81

    Article  PubMed  CAS  Google Scholar 

  66. Baiocchi RA, Caligiuri MA. Low-dose interleukin-2 prevents the development of Epstein-Barr virus (EBV)-associated lymphoproliferative disease in SCID/SCID mice reconstituted with EBV-seropositive human peripheral blood lymphocytes. Proc Natl Acad Sci U S A 1994; 91: 5577–58

    Article  PubMed  CAS  Google Scholar 

  67. Bernstein ZP, Porter MM, Gloud M, et al. Prolonged administration of low-dose interleukin-2 in human immunodeficiency virus-associated malignancy results in selective expansion of innate immune effectors without significant clinical toxicity. Blood 1995; 86: 3287–94

    PubMed  CAS  Google Scholar 

  68. Mulé JJ, Yang JC, Lafreniere RL, et al. Identification of cellular mechanisms operational in vivo during the regression of established pulmonary metastases by the systemic administration of high-dose recombinant interleukin 2. J Immunol 1987; 139:285–94

    PubMed  Google Scholar 

  69. O’Donnell RW, Marquis DM, Mudholkar GS, et al. In vivo enhancement of antitumor immunity by interleukin 2-rich lymphokines. Cancer Res 1986; 3273–8

  70. Stidham KR, Ricci WM, Vervat C, et al. Modulation of specific active immunization against murine melanoma using recombinant cytokines. Surg Oncol 1996; 5: 221–9

    Article  PubMed  CAS  Google Scholar 

  71. Zhang J, Wenthold Jr RJ, Yu ZX, et al. Characterization of the pulmonary lesions induced in rats by human recombinant interleukin-2. Toxicol Pathol 1995; 653-66

  72. Elder RL, Stolinski LA, Whiteside TL, et al. Interleukin-2 treatment causes acute loss of DC precursors and mature DC which rebound with the increase in lymphocytes. J Immunother. In press

  73. Rosenberg SA, Yang JC, Schwartzentruber DJ, et al. Impact of cytokine administration on the generation of antitumor reactivity in patients with metastatic melanoma receiving a peptide vaccine. J Immunol 1999; 163: 1690–5

    PubMed  CAS  Google Scholar 

  74. Sleijer DT, Jansen RA, Buter J, et al. Phase II study of subcutaneous interleukin-2 in unselected patients with advanced renal cell cancer on an outpatient basis. J Clin Oncol 1992; 10 (7): 1119–23

    Google Scholar 

  75. Mier JW, Vachino G, van der Meer JW, et al. Induction of circulating tumor necrosis factor (TNF alpha) as the mechanism of the febrile response to interleukin-2 in cancer patients. J Clin Immunol 1988; 8: 824–36

    Article  Google Scholar 

  76. Mier JW. Pathogenesis of the interleukin-2 induced vascular leak syndrome. Atkins MB, Mier JW, editors. Theraputic application of interleukin-2. New York (NY): Marcel Dekker, 1993: 363–79

    Google Scholar 

  77. Lee RE, Lotze MT, Skibber JM, et al. Cardiorespiratory effects of immunotherapy with interleukin-2. J Clin Oncol 1989; 7: 7–20

    PubMed  CAS  Google Scholar 

  78. Margolin KA, Rayner AA, Hawkins MJ, et al. Interleukin-2 and lymphokine-activated killer cell therapy of solid tumors: analysis of toxicity and management guidelines. J Clin Oncol 1989; 7: 486–98

    PubMed  CAS  Google Scholar 

  79. Silverman HJ, Abrams J, Rubin LJ. Effects of interleukin-2 on oxygen consumption in patients with advanced malignancy. Chest 1988; 94: 816–20

    Article  PubMed  CAS  Google Scholar 

  80. Ognibene FP, Rosenberg SA, Lotze M, et al. Interleukin-2 administration causes reversible hemodynamic changes and left ventricular dysfunction similar to those seen in septic shock. Chest 1988; 94: 750–4

    Article  PubMed  CAS  Google Scholar 

  81. Gaynor ER, Vitek L, Sticklin L, et al. The hemodynamic effects of treatment with interleukin-2 and lymphokine-activated killer cells. Ann Intern Med 1988; 109: 953–8

    PubMed  CAS  Google Scholar 

  82. Mier JW, Aronson FR, Numerof RP, et al. Toxicity of immunotherapy and lymphokine-activated killer cells. Pathol Immunopathol Res 1988; 7: 459–76

    Article  PubMed  CAS  Google Scholar 

  83. Cunnion RE, Scher GL, Parker MM, et al. The coronary circulation in human septic shock. Circulation 1986; 73: 637–44

    Article  PubMed  CAS  Google Scholar 

  84. Parrillo JE. Pathogenetic mechanisms of septic shock. N Engl J Med 1993; 328: 1471–7

    Article  PubMed  CAS  Google Scholar 

  85. Finkel MS, Oddis CV, Jacob TD, et al. Negative inotropic effects of cytokines on the heart mediated by nitrous oxide. Science 1992; 257: 387–9

    Article  PubMed  CAS  Google Scholar 

  86. Truica CI, Hansen CH, Garvin DF, et al. Idiopathic giant cell myocarditis after autologous hematopoietic stem cell transplantation and interleukin-2 immunotherapy: a case report. Cancer 1998; 83 (6): 1231–6

    Article  PubMed  CAS  Google Scholar 

  87. Textor SC, Margolin K, Blayney D, et al. Renal, volume, hormonal changes during therapeutic administration of recombinant interleukin-2 in man. Am J Med 1987; 83: 1055–61

    Article  PubMed  CAS  Google Scholar 

  88. Webb DE, Austin HA III, Belldegrun A, et al. Metabolic and renal effects of interleukin-2 immunotherapy for metastatic cancer. Clin Nephrol 1988; 30: 141–5

    PubMed  CAS  Google Scholar 

  89. Belldegrun A, Webb DE, Austin HA III, et al. Effects of interleukin-2 on renal function in patients receiving immunotherapy for advanced cancer. Ann Intern Med 1987; 106: 817–22

    PubMed  CAS  Google Scholar 

  90. Sosman JA, Kohler PC, Hank JA, et al. Repetitive weekly cycles of interleukin-2: clinical and immunologic effects of dose, schedule, and addition of indomethacin. J Natl Cancer Inst 1988; 80: 1451–61

    Article  PubMed  CAS  Google Scholar 

  91. Schwartzentruber D, Lotze M, Rosenberg S. Colonie perforation: an unusual complication of therapy with high-dose inteleukin-2. Cancer 1988; 2350-3

  92. Macfarlane M, Yang JC, Guleria AS, et al. The hematologie toxicity of interleukin-2 in patients with metastatic melanoma and renal cell carcinoma. Cancer 1995; 75: 1030–7

    Article  PubMed  CAS  Google Scholar 

  93. Bernard JT, Amerisco S, Kempf, et al. Transient focal neurologic deficits complicating interleukin-2 therapy. Neurology 1990; 40: 154–5

    Article  PubMed  CAS  Google Scholar 

  94. Philip T, Mercatello A, Negrier S, et al. Interleukin-2 with and without LAK cells in metastatic renal cell carcinoma: the Lyon first-year experience in 20 patients. Cancer Treat Rev 1989; 16 Suppl. A: 91–104

    Article  PubMed  Google Scholar 

  95. Loh FL, Herskovitz S, Berger AR, et al. Brachial plexopathy associated associated with interleukin-2 therapy. Neurology 1992; 42: 462–3

    Article  PubMed  CAS  Google Scholar 

  96. Heys SD, Mills KL, Eremin O. Bilateral carpal tunnel syndrome associated with interleukin-2 therapy. Postgrad Med J 1992; 68: 587–8

    Article  PubMed  CAS  Google Scholar 

  97. Somers SS, Reynolds JV, Guillou PJ, et al. Multifocal neurotoxicity during interleukin-2 therapy for malignant melanoma. Clin Oncol (R Coll Radiol) 1992; 4: 135–6

    Article  CAS  Google Scholar 

  98. Vecht CJ, Keohane C, Menon RS, et al. Acute fatal leuko-encephalopathy after interleukin-2 therapy. N Engl J Med 1990; 323: 1146–7

    PubMed  CAS  Google Scholar 

  99. Karp BI, Yang JC, Khorsand C, et al. Multiple cerebral lesions complicating therapy with interleukin-2. Neurology 1996; 47: 417–24

    Article  PubMed  CAS  Google Scholar 

  100. Klempner MS, Noring R, Mier JW, et al. An acquired chemotactic defect in neutrophils from patients receiving interleukin-2 immunotherapy. N Engl J Med 1990; 322: 959–65

    Article  PubMed  CAS  Google Scholar 

  101. Jablons D, Bolton E, Mertins S, et al. IL-2-based immunotherapy alters circulating neutrophil Fc receptor expression and chemotaxic. J Immunol 1990; 144: 3630–6

    PubMed  CAS  Google Scholar 

  102. Atkinson YH, Marasco WA, Lopez AF, et al. recombinant human tumor necrosis factor-alpha: regulation of N-formylmethionylleucylphenylalanine receptor affinity and function in human neutrophils. J Clin Invest 1988; 81: 759–65

    Article  PubMed  CAS  Google Scholar 

  103. Kargel AH, Travis WD, Feinberg L, et al. Pathological findings associated with interleukin-2 based immunotherapy for cancer: a postmortem study of 19 patients. Human Pathol 1990; 21: 493–502

    Article  Google Scholar 

  104. Bock SN, Lee RE, Fisher B, et al. A prospective randomized trial evaluating prophylactic antibiotics to prevent triple-lumen catheter-related sepsis in patients treated with immunotherapy. J Clin Oncol 1990; 8: 161–9

    PubMed  CAS  Google Scholar 

  105. Atkins MR, Mier JW, Parkinson DR, et al. Hypothyroidism after treatment with interleukin-2 and lymphokine-activated killer cells. N Engl J Med 1988; 318: 1557–63

    Article  PubMed  CAS  Google Scholar 

  106. Massarotti EM, Liu NY, Mier J, et al. Chronic inflammatory arthritis after treatment with high-dose interleukin-2 for malignancy. Am J Med 1992; 92: 693–7

    Article  PubMed  CAS  Google Scholar 

  107. Weinstein A, Bujak D, Mittleman A, et al. Erythema nodosum in a patient with renal cell carcinoma treated with interleukin-2 and lymphokine-activated killer cells [letter]. JAMA 1987; 258 (21); 3120–1

    Article  PubMed  CAS  Google Scholar 

  108. Esteva-Lorenzo FJ, Janik JE, Fenton RG, et al. Myositis associated with interleukin-2 therapy in a patient with metastatic renal carcinoma. Cancer 1995; 76 (7): 1219–23

    Article  PubMed  CAS  Google Scholar 

  109. Franzke A, Peest D, Probst-Kepper M, et al. Autoimmunity resulting from cytokine treatment predicts long-term survival in patients with metastatic renal cell carcinoma. J Clin Oncol 1999; 17 (2): 529–33

    PubMed  CAS  Google Scholar 

  110. Lee RE, Gaspari AA, Lotze MT, et al. Interleukin-2 and psoriasis. Arch Dermatol 1988; 124: 1811–5

    Article  PubMed  CAS  Google Scholar 

  111. Ramseur WL, Richards F II, Duggan DB. A case of fatal pemphigus vulgaris in association with beta interferon and interleukin-2 therapy. Cancer 1986; 63: 2005–7

    Article  Google Scholar 

  112. Ilson DH, Motzer RJ, Kradin RL, et al. A phase II trial of interleukin-2 and interferon alfa-2a in patients with advanced renal cell carcinoma. J Clin Oncol 1992; 10 (7): 1124–30

    PubMed  CAS  Google Scholar 

  113. Figlin RA, Pierce WC, Belldegrun A. Combination biologic therapy with interleukin-2 and interferon-alpha in the outpatient treatment of metastatic renal cell carcinoma. Semin Oncol 1993; 20 (6) Suppl. 9: 11–5

    PubMed  CAS  Google Scholar 

  114. Atzpodien J, Hänninen EL, Kirchner H, et al. Multiinstitutional home-therapy trial of recombinant human interleukin-2 and interferon alfa-2 in progressive metastatic renal cell carcinoma. J Clin Oncol 1995; 13 (2): 497–501

    PubMed  CAS  Google Scholar 

  115. Atzpodien J, Kirchner H, Hänninen EL, et al. Interleukin-2 in combination with interferon-alpha and 5-flurouracil for metastatic renal cell carcinoma. Eur J Cancer 1993; 29A: 6–8

    Article  Google Scholar 

  116. Hänninen EL, Kirchner H, Atzpodien J, et al. Interleukin-2 based home therapy of metastatic renal cell carcinoma: risks and benefits in 215 consecutive single institution patients. J Urol 1996; 155: 19–25

    Article  Google Scholar 

  117. Tourani JM, Pfister C, Berdah JF, et al. Outpatient treatment with subcutaneous interleukin-2 and interferon alfa administration in combination with flurouracil in patients with metastatic renal cell carcinoma: results of a sequential nonrandomized Phase II study. J Clin Oncol 1998; 16 (7): 2505–13

    PubMed  CAS  Google Scholar 

  118. Gemlo BT, Palladino MA, Jaffe HS, et al. Circulating cytokines in patients with metastatic cancer treated with recombinant interleukin-2 and lymphokine-activated killer cells. Cancer Res 1988; 48: 5864–7

    PubMed  CAS  Google Scholar 

  119. Lotze MT, Matory Y, Ettinghausen S, et al. In vivo administration of purified human interleukin-2: half life, immunologic effects and expansion of peripheral lymphoid cells in vivo with recombinant IL-2. J Immunol 1985; 135: 2865–75

    PubMed  CAS  Google Scholar 

  120. Jablons DM, Mule JJ, Mclntosh JK, et al. IL-6/IFN-beta-2 as a circulating hormone: induction by cytokine administration in humans. J Immunol 1989; 142: 1542–7

    PubMed  CAS  Google Scholar 

  121. Dinarello CA, Cannon JG, Wolff SM, et al. Tumor necrosis factor (cachectin) is an endogenous pyrogen and induces production of interleukin-1. J Exp Med 1986; 163: 1433–50

    Article  PubMed  CAS  Google Scholar 

  122. Okusawa S, Gelfand JA, Ikejima T, et al. Interleukin-1 induces a shock-like state in rabbits: synergism with tumor necrosis factor and the effect of cyclo-oxygenase inhibition. J Clin Invest 1988; 81 (4): 1162–72

    Article  PubMed  CAS  Google Scholar 

  123. Horvath CJ, Ferro TJ, Jesmok G, et al. Recombinant tumor necrosis factor increases pulmonary vascular permeability independent of neutrphils. Proc Natl Acad Sci U S A 1988; 85 (23): 9219–23

    Article  PubMed  CAS  Google Scholar 

  124. Jakubowski AA, Casper ES, Gabrilove JL, et al. Phase I trial of intramuscularly administered tumor necrosis factor in patients with advanced cancer. J Clin Oncol 1989; 7 (303): 298–303

    PubMed  CAS  Google Scholar 

  125. Beutler B, Milsark IW, Cerami AC. Passive immunization against cachectin/tumor necrosis factor protects mice from the lethal effects of endotoxin. Science 1985; 229 (4716): 869–71

    Article  PubMed  CAS  Google Scholar 

  126. Beutler B, Krochin N, Milsark I, et al. A control of cachectin (tumor necrosis factor) synthesis: mechanisms of endotoxin resistance. Science 1986; 232 (4753): 977–80

    Article  PubMed  CAS  Google Scholar 

  127. Kern JA, Lamb RJ, Reed JC, et al. Dexamethazone inhibition of interleukin-1 beta production by human monocytes: posttranslational mechanisms. J Clin Invest 1988; 81 (1): 237–44

    Article  PubMed  CAS  Google Scholar 

  128. Mier JW, Vachino G, Klempner MS, et al. Inhibition of interleukin-2-induced tumor necrosis factor release by dexamethazone: prevention of an acquired neutophil chemotaxis defect and differential suppression of interleukin-2-associated side effects. Blood 1990; 76:10; 1933–40

    PubMed  CAS  Google Scholar 

  129. Snydman DR, Sullivan B, Gill M, et al. Nosocomial sepsis associated with interleukin-2. Ann Intern Med 1990; 112 (2): 102–7

    PubMed  CAS  Google Scholar 

  130. Dower SK, Smith CA, Park LS. Human cytokine receptors. J Clin Immunol 1990; 248: 289–99

    Article  Google Scholar 

  131. Smith CA, Davis T, Anderson D, et al. A receptor for tumor necrosis factor defines an unusual family of cellular and viral proteins. Science 1990; 248: 1019–23

    Article  PubMed  CAS  Google Scholar 

  132. Trehu EG, Mier JW, Du Bois, et al. A Phase I clinical trial of interleukin-2 in combination with the soluble tumor necrosis factor receptor p75 IgG chimera receptor IgG chimera (TNFR: Fc). Clin Cancer Res 1996; 2 (8) 1341–51

    PubMed  CAS  Google Scholar 

  133. Du Bois JS, Trehu EG, Mier JW, et al. Randomized placebocontrolled clinical trial of high-dose interleukin-2 in combination with a soluble p75 tumor necrosis factor receptor immunoglobulin G chimera in patients with advanced melanoma and renal cell carcinoma. J Clin Oncol 1997; 15 (3): 1052–62

    PubMed  Google Scholar 

  134. Kotasek D, Vercellotti GM, Ochoa AC, et al. Mechanism of cultured endothelial injury induced by lymphokine-activated killer cells. Cancer Res 1988; 48: 5528–32

    PubMed  CAS  Google Scholar 

  135. Aronson FR, Libby P, Brandon EP, et al. IL-2 rapidly induces natural killer cell adhesion to human endothelial cells. J Immunol 1988; 141: 158–63

    PubMed  CAS  Google Scholar 

  136. Fujita S, Puri RK, Yu Z-X, et al. An ultrastructural study of in-vivo interactions between lymphocytes and endothelial cells in the pathogenesis of the vascular leak syndrome induced by interleukin-2. Cancer 1991; 68: 2169–74

    Article  PubMed  CAS  Google Scholar 

  137. Finnegan NM, Redond HP, Bouchier-Hayes DJ. Taurine attenuates recombiant interleukin-2-activated, lymphocyte-mediated endothelial cell injury. Cancer 1998; 82: 186–99

    Article  PubMed  CAS  Google Scholar 

  138. Margolin K, Atkins M, Sparano J, et al. Prospective randomized trial of lisofylline for the prevention of toxicities of high-dose interleukin-2 therapy in advanced renal cancer and malignant melanoma. Clin Cancer Res 1997; 3: 565–72

    PubMed  CAS  Google Scholar 

  139. Nummerof RP, Aronson FR, Mier JW, et al. Il-2 stimulates the production of IL-1 α and IL-1 β by human peripheral blood mononuclear cells. J Immunol 1988; 141: 4250–7

    Google Scholar 

  140. Nummerof RP, Kotik AN, Dinarello CA, et al. Pro-interleukin-1 β production by a subpopulation of human Tcells,but not NK cells, in response to interleukin-2. Cell Immunol 1990; 130: 118–28

    Article  Google Scholar 

  141. McDermott DF, Trehu EG, Mier JW, et al. A two part Phase I trial of high-dose interleukin-2 in combination with soluble (Chinese hamster ovary) interleukin-1 receptor. Clin Cancer Res 1998; 5: 1203–13

    Google Scholar 

  142. Kilbourn RG, Griffith OW. Overproduction of nitric oxide in cytokine-mediated hypotension and septic shock. J Natl Cancer Inst 1992; 84: 827–31

    Article  PubMed  CAS  Google Scholar 

  143. Kilbourn RG, Belloni P. Endothelial cell production of nitrogen oxides in response to interferon gamma in combination with tumor necrosis factor, interleukin-1, or endotoxin. J Natl Cancer Inst 1990; 82: 772–6

    Article  PubMed  CAS  Google Scholar 

  144. Kilbourn RG, Fonseca GA, Trissel LA, et al. Strategies to reduce side effects of Interleukin-2: evaluation of the antihypotensive agent NG-monomethyl-L-arginine. Cancer J Sci Am 2000; 6 Suppl. 1: S21–30

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tarek Mekhail.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mekhail, T., Wood, L. & Bukowski, R. Interleukin-2 in Cancer Therapy. BioDrugs 14, 299–318 (2000). https://doi.org/10.2165/00063030-200014050-00003

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00063030-200014050-00003

Keywords

Navigation