Skip to main content
Log in

Dopamine Dysregulation Syndrome

An Overview of its Epidemiology, Mechanisms and Management

  • Review Article
  • Published:
CNS Drugs Aims and scope Submit manuscript

Abstract

Dopamine dysregulation syndrome (DDS) is a relatively recently described iatrogenic disturbance that may complicate long-term symptomatic therapy of Parkinson’s disease. Patients with DDS develop an addictive pattern of dopamine replacement therapy (DRT) use, administering doses in excess of those required to control their motor symptoms. The prevalence of DDS in patients attending specialist Parkinson’s disease centres is 3–4%. Amongst the behavioural disturbances associated with DDS are punding, which is a complex stereotyped behaviour, and impulse control disorders (ICDs), such as pathological gambling, hypersexuality, compulsive shopping and compulsive eating.

We review the risk factors and potential mechanisms for the development of DDS, including personality traits, potential genetic influences and Parkinson’s disease-related cognitive deficits. Impulsive personality traits are prominent in patients developing DDS, and have been previously associated with the development of substance dependence. Candidate genes affecting the dopamine ‘D2-like’ receptor family have been associated with impulsive personality traits in addition to drug and nondrug addictions. Impaired decision making is implicated in addictive behaviours, and decision-making abilities can be influenced by dopaminergic medications. In Parkinson’s disease, disruption of the reciprocal loops between the striatum and structures in the prefrontal cortex following dopamine depletion may predispose to DDS.

The role of DRT in DDS is discussed, with particular reference to models of addiction, suggesting that compulsive drug use is due to progressive neuroadaptations in dopamine projections to the accumbens-related circuitry. Evidence for neuroadaptations and sensitization occurring in DDS include enhanced levodopa-induced ventral striatal dopamine release. Levodopa is still considered the most potent trigger for DDS in Parkinson’s disease, but subcutaneous apomorphine and oral dopamine agonists may also be responsible.

In the management of DDS, further research is needed to identify at-risk groups, thereby facilitating more effective early intervention. Therefore, an increased awareness of the syndrome amongst treating physicians is vital. Medication reduction strategies are employed, particularly with regard to avoiding rapidly acting ‘booster’ DRT formulations. Psychosocial treatments, including cognitive-behavioural therapy, have been beneficial in treating substance use disorders and ICDs in non-Parkinson’s disease patients, but there are currently no published trials of psychological interventions in DDS. Further studies are also required to identify factors that can predict those patients with DDS or ICDs who will derive benefit from surgical interventions such as deep brain stimulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Table I
Table II
Fig. 1

Similar content being viewed by others

References

  1. Parkinson J. An essay on the shaking palsy. London: Sherwood, Nealy and Jones, 1817

    Google Scholar 

  2. Evans AH, Lees AJ. Dopamine dysregulation syndrome in Parkinson’s disease. Curr Opin Neurol 2004; 17(4): 393–8

    Article  PubMed  Google Scholar 

  3. Lawrence AD, Evans AH, Lees AJ. Compulsive use of dopamine replacement therapy in Parkinson’s disease: reward systems gone awry? Lancet Neurol 2003; 2(10): 595–604

    Article  PubMed  CAS  Google Scholar 

  4. Evans AH, Katzenschlager R, Paviour D, et al. Punding in Parkinson’s disease: its relation to the dopamine dysregulation syndrome. Mov Disord 2004; 19(4): 397–405

    Article  PubMed  Google Scholar 

  5. Witjas T, Kaphan E, Azulay JP, et al. Nonmotor fluctuations in Parkinson’s disease: frequent and disabling. Neurology 2002; 59(3): 408–13

    Article  PubMed  Google Scholar 

  6. Nissenbaum H, Quinn NP, Brown RG, et al. Mood swings associated with the ‘on-off’ phenomenon in Parkinson’s disease. Psychol Med 1987; 17(4): 899–904

    Article  PubMed  CAS  Google Scholar 

  7. Hillen ME, Sage JI. Nonmotor fluctuations in patients with Parkinson’s disease. Neurology 1996; 47(5): 1180–3

    Article  PubMed  CAS  Google Scholar 

  8. Maricle RA, Valentine RJ, Carter J, et al. Mood response to levodopa infusion in early Parkinson’s disease. Neurology 1998; 50(6): 1890–2

    Article  PubMed  CAS  Google Scholar 

  9. Menza MA, Sage J, Marshall E, et al. Mood changes and “on-off” phenomena in Parkinson’s disease. Mov Disord 1990; 5(2): 148–51

    Article  PubMed  CAS  Google Scholar 

  10. Gambler sues drugs giant for $15m loss [online]. Available from URL: http://www.telegraph.co.uk/news/worldnews/northamerica/usa/1511535/Gambler-sues-drugs-giant-for-15m-loss.html [Accessed 2008 Nov 27]

  11. Giovannoni G, O’Sullivan JD, Turner K, et al. Hedonistic homeostatic dysregulation in patients with Parkinson’s disease on dopamine replacement therapies. J Neurol Neurosurg Psychiatry 2000; 68(4): 423–8

    Article  PubMed  CAS  Google Scholar 

  12. Bearn J, Evans A, Kelleher M, et al. Recognition of a dopamine replacement therapy dependence syndrome in Parkinson’s disease: a pilot study. Drug Alcohol Depend 2004; 76(3): 305–10

    Article  PubMed  CAS  Google Scholar 

  13. Merims D, Galili-Mosberg R, Melamed E. Is there addiction to levodopa in patients with Parkinson’s disease? Mov Disord 2000; 15(5): 1014–6

    Article  PubMed  CAS  Google Scholar 

  14. Spigset O, von Scheele C. Levodopa dependence and abuse in Parkinson’s disease. Pharmacotherapy 1997; 17(5): 1027–30

    PubMed  CAS  Google Scholar 

  15. O’Brien CP, DiGiacomo JN, Fahn S, et al. Mental effects of high-dosage levodopa. Arch Gen Psychiatry 1971; 24(1): 61–4

    Article  PubMed  Google Scholar 

  16. Tack E, De Cuypere G, Jannes C, et al. Levodopa addiction: a case study. Acta Psychiatr Scand 1988; 78(3): 356–60

    Article  PubMed  CAS  Google Scholar 

  17. Priebe S. Levodopa dependence: a case report. Pharmaco-psychiatry 1984; 17(4): 109–10

    CAS  Google Scholar 

  18. Pezzella FR, Colosimo C, Vanacore N, et al. Prevalence and clinical features of hedonistic homeostatic dysregulation in Parkinson’s disease. Mov Disord 2005; 20(1): 77–81

    Article  PubMed  Google Scholar 

  19. Wise RA, Bozarth MA. A psychomotor stimulant theory of addiction. Psychol Rev 1987; 94(4): 469–92

    Article  PubMed  CAS  Google Scholar 

  20. Rylander G. Psychoses and the punding and choreiform syndromes in addiction to central stimulant drugs. Psychiatr Neurol Neurochir 1972; 75(3): 203–12

    PubMed  CAS  Google Scholar 

  21. Schiorring E. Psychopathology induced by “speed drugs”. Pharmacol Biochem Behav 1981; 14(Suppl. 1): 109–22

    PubMed  Google Scholar 

  22. Friedman JH. Punding on levodopa. Biol Psychiatry 1994; 36(5): 350–1

    Article  PubMed  CAS  Google Scholar 

  23. Fernandez HH, Friedman JH. Punding on L-dopa. Mov Disord 1999; 14(5): 836–8

    Article  PubMed  CAS  Google Scholar 

  24. Fasano A, Elia AE, Soleti F, et al. Punding and computer addiction in Parkinson’s disease. Mov Disord 2006; 21(8): 1217–8

    Article  PubMed  Google Scholar 

  25. Voon V, Thomsen T, Miyasaki JM, et al. Factors associated with dopaminergic drug-related pathological gambling in Parkinson disease. Arch Neurol 2007; 64(2): 212–6

    Article  PubMed  Google Scholar 

  26. O’Sullivan SS, Evans AH, Lees AJ. Punding in Parkinson’s disease. Pract Neurol 2007; 7(6): 397–9

    Article  PubMed  Google Scholar 

  27. American Psychiatric Association. Diagnostic and statistical manual of mental disorders. 4th ed., text revision. Washington, DC: American Psychiatric Association, 2000

    Google Scholar 

  28. Grant JE, Levine L, Kim D, et al. Impulse control disorders in adult psychiatric inpatients. Am J Psychiatry 2005; 162(11): 2184–8

    Article  PubMed  Google Scholar 

  29. McElroy SL, Keck Jr PE, Pope Jr HG, et al. Compulsive buying: a report of 20 cases. J Clin Psychiatry 1994; 55(6): 242–8

    PubMed  CAS  Google Scholar 

  30. Nirenberg MJ, Waters C. Compulsive eating and weight gain related to dopamine agonist use. Mov Disord 2006; 21(4): 524–9

    Article  PubMed  Google Scholar 

  31. Molina JA, Sainz-Artiga MJ, Fraile A, et al. Pathologic gambling in Parkinson’s disease: a behavioral manifestation of pharmacologic treatment? Mov Disord 2000; 15(5): 869–72

    Article  PubMed  CAS  Google Scholar 

  32. Klos KJ, Bower JH, Josephs KA, et al. Pathological hyper-sexuality predominantly linked to adjuvant dopamine agonist therapy in Parkinson’s disease and multiple system atrophy. Parkinsonism Relat Disord 2005; 11(6): 381–6

    Article  PubMed  Google Scholar 

  33. Voon V, Fox SH. Medication-related impulse control and repetitive behaviors in Parkinson disease. Arch Neurol 2007; 64(8): 1089–96

    Article  PubMed  Google Scholar 

  34. Voon V, Hassan K, Zurowski M, et al. Prospective prevalence of pathologic gambling and medication association in Parkinson disease. Neurology 2006; 66(11): 1750–2

    Article  PubMed  CAS  Google Scholar 

  35. Petry NM, Stinson FS, Grant BF. Comorbidity of DSM-IV pathological gambling and other psychiatric disorders: results from the National Epidemiologic Survey on Alcohol and Related Conditions. J Clin Psychiatry 2005; 66(5): 564–74

    Article  PubMed  Google Scholar 

  36. Cunningham-Williams RM, Grucza RA, Cottler LB, et al. Prevalence and predictors of pathological gambling: results from the St Louis personality, health and lifestyle (SLPHL) study. J Psychiatr Res 2005; 39(4): 377–90

    Article  PubMed  Google Scholar 

  37. Voon V, Hassan K, Zurowski M, et al. Prevalence of repetitive and reward-seeking behaviors in Parkinson disease. Neurology 2006; 67(7): 1254–7

    Article  PubMed  CAS  Google Scholar 

  38. Bathgate D, Snowden JS, Varma A, et al. Behaviour in frontotemporal dementia, Alzheimer’s disease and vascular dementia. Acta Neurol Scand 2001 Jun; 103(6): 367–78

    Article  PubMed  CAS  Google Scholar 

  39. Briganti A, Chun FK, Salonia A, et al. A comparative review of apomorphine formulations for erectile dysfunction: recommendations for use in the elderly. Drugs Aging 2006; 23(4): 309–19

    Article  PubMed  CAS  Google Scholar 

  40. Miyasaki JM, Al Hassan K, Lang AE, et al. Punding prevalence in Parkinson’s disease. Mov Disord 2007; 22(8): 1179–81

    Article  PubMed  Google Scholar 

  41. American Psychiatric Association. Diagnostic and statistical manual of mental disorders. 4th ed. Washington, DC: American Psychiatric Association, 1994

    Google Scholar 

  42. Colosimo C, Merello M, Hughes AJ, et al. J. Motor response to acute dopaminergic challenge with apomorphine and levodopa in Parkinson’s disease: implications for the pathogenesis of the on-off phenomenon. J Neurol Neurosurg Psychiatry 1996; 60(6): 634–7

    CAS  Google Scholar 

  43. World Health Organization. International classification of diseases. 10th ed. Geneva: World Health Organization, 1992

    Google Scholar 

  44. Cloninger CR. A systematic method for clinical description and classification of personality variants: a proposal. Arch Gen Psychiatry 1987; 44(6): 573–88

    Article  PubMed  CAS  Google Scholar 

  45. Hosak L, Preiss M, Halir M, et al. Temperament and character inventory (TCI) personality profile in metam-phetamine abusers: a controlled study. Eur Psychiatry 2004; 19(4): 193–5

    Article  PubMed  Google Scholar 

  46. Palmgreen P, Donohew L, Lorch EP, et al. Television campaigns and adolescent marijuana use: tests of sensation seeking targeting. Am J Public Health 2001; 91(2): 292–6

    Article  PubMed  CAS  Google Scholar 

  47. Zilberman ML, Tavares H, el-Guebaly N. Relationship between craving and personality in treatment-seeking women with substance-related disorders. BMC Psychiatry 2003; 3: 1

    Article  PubMed  Google Scholar 

  48. Meszaros K, Lenzinger E, Hornik K, et al. The Tridimensional Personality Questionnaire as a predictor of relapse in detoxified alcohol dependents. The European Fluvoxamine in Alcoholism Study Group. Alcohol Clin Exp Res 1999; 23(3): 483–6

    CAS  Google Scholar 

  49. Zuckerman M. Sensation seeking and behavior disorders. Arch Gen Psychiatry 1988; 45(5): 502–4

    Article  PubMed  CAS  Google Scholar 

  50. Leyton M, Boileau I, Benkelfat C, et al. Amphetamine-induced increases in extracellular dopamine, drug wanting, and novelty seeking: a PET/[11C]raclopride study in healthy men. Neuropsychopharmacology 2002; 27(6): 1027–35

    Article  PubMed  CAS  Google Scholar 

  51. Todes CJ, Lees AJ. The pre-morbid personality of patients with Parkinson’s disease. J Neurol Neurosurg Psychiatry 1985; 48(2): 97–100

    Article  PubMed  CAS  Google Scholar 

  52. Menza MA, Golbe LI, Cody RA, et al. Dopamine-related personality traits in Parkinson’s disease. Neurology 1993; 43 (3 Pt 1): 505–8

    Article  PubMed  CAS  Google Scholar 

  53. Poewe W, Karamat E, Kemmler GW, et al. The premorbid personality of patients with Parkinson’s disease: a comparative study with healthy controls and patients with essential tremor. Adv Neurol 1990; 53: 339–42

    PubMed  CAS  Google Scholar 

  54. Fujii C, Harada S, Ohkoshi N, et al. Cross-cultural traits for personality of patients with Parkinson’s disease in Japan. Am J Med Genet 2000; 96(1): 1–3

    Article  PubMed  CAS  Google Scholar 

  55. Menza M. The personality associated with Parkinson’s disease. Curr Psychiatry Rep 2000; 2(5): 421–6

    Article  PubMed  CAS  Google Scholar 

  56. Evans AH, Lawrence AD, Potts J, et al. Relationship between impulsive sensation seeking traits, smoking, alcohol and caffeine intake, and Parkinson’s disease. J Neurol Neurosurg Psychiatry 2006; 77(3): 317–21

    Article  PubMed  CAS  Google Scholar 

  57. Ishihara L, Brayne C. What is the evidence for a premorbid parkinsonian personality: a systematic review. Mov Disord 2006; 21(8): 1066–72

    Article  PubMed  Google Scholar 

  58. Evans AH, Lawrence AD, Potts J, et al. Factors influencing susceptibility to compulsive dopaminergic drug use in Parkinson disease. Neurology 2005; 65(10): 1570–4

    Article  PubMed  CAS  Google Scholar 

  59. Lawrence AJ, Blackwell AD, Barker RA, et al. Predictors of punding in Parkinson’s disease: results from a questionnaire survey. Mov Disord 2007; 22(16): 2339–45

    Article  PubMed  Google Scholar 

  60. Gallagher DA, O’Sullivan SS, Evans AH, et al. Pathological gambling in Parkinson’s disease: risk factors and differences from dopamine dysregulation. An analysis of published case series. Mov Disord 2007; 22(12): 1757–63

    Google Scholar 

  61. Chambers RA, Taylor JR, Potenza MN. Developmental neurocircuitry of motivation in adolescence: a critical period of addiction vulnerability. Am J Psychiatry 2003; 160(6): 1041–52

    Article  PubMed  Google Scholar 

  62. Kreek MJ, Nielsen DA, LaForge KS. Genes associated with addiction: alcoholism, opiate, and cocaine addiction. Neuromolecular Med 2004; 5(1): 85–108

    Article  PubMed  CAS  Google Scholar 

  63. Kreek MJ, Nielsen DA, Butelman ER, et al. Genetic influences on impulsivity, risk taking, stress responsivity and vulnerability to drug abuse and addiction. Nat Neuro-sci 2005; 8(11): 1450–7

    Article  CAS  Google Scholar 

  64. Blum K, Noble EP, Sheridan PJ, et al. Allelic association of human dopamine D2 receptor gene in alcoholism. JAMA 1990; 263(15): 2055–60

    Article  PubMed  CAS  Google Scholar 

  65. Klein TA, Neumann J, Reuter M, et al. Genetically determined differences in learning from errors. Science 2007; 318(5856): 1642–5

    Article  PubMed  CAS  Google Scholar 

  66. Cohen MX, Krohn-Grimberghe A, Elger CE, et al. Dopamine gene predicts the brain’s response to dopaminergic drug. Eur J Neurosci 2007; 26(12): 3652–60

    Article  PubMed  Google Scholar 

  67. Blum K, Braverman ER, Wood RC, et al. Increased prevalence of the Taq I A1 allele of the dopamine receptor gene (DRD2) in obesity with comorbid substance use disorder: a preliminary report. Pharmacogenetics 1996; 6(4): 297–305

    Article  PubMed  CAS  Google Scholar 

  68. Noble EP. D2 dopamine receptor gene in psychiatric and neurologic disorders and its phenotypes. Am J Med Genet B Neuropsychiatr Genet 2003; 116(1): 103–25

    Article  Google Scholar 

  69. Comings DE, Ferry L, Bradshaw-Robinson S, et al. The dopamine D2 receptor (DRD2) gene: a genetic risk factor in smoking. Pharmacogenetics 1996; 6(1): 73–9

    Article  PubMed  CAS  Google Scholar 

  70. Blum K, Braverman ER, Holder JM, et al. Reward deficiency syndrome: a biogenetic model for the diagnosis and treatment of impulsive, addictive, and compulsive behaviors. J Psychoactive Drugs 2000; 32Suppl: i–iv, 1–112

    Google Scholar 

  71. Comings DE, Rosenthal RJ, Lesieur HR, et al. A study of the dopamine D2 receptor gene in pathological gambling. Pharmacogenetics 1996; 6(3): 223–34

    Article  PubMed  CAS  Google Scholar 

  72. Fang YJ, Thomas GN, Xu ZL, et al. An affected pedigree member analysis of linkage between the dopamine D2 receptor gene TaqI polymorphism and obesity and hypertension. Int J Cardiol 2005; 102(1): 111–6

    Article  PubMed  Google Scholar 

  73. Davis C, Levitan RD, Kaplan AS, et al. Reward sensitivity and the D2 dopamine receptor gene: a case-control study of binge eating disorder. Prog Neuropsychopharmacol Biol Psychiatry 2008; 32(3): 620–8

    Article  PubMed  CAS  Google Scholar 

  74. Strobel A, Spinath FM, Angleitner A, et al. Lack of association between polymorphisms of the dopamine D4 receptor gene and personality. Neuropsychobiology 2003; 47(1): 52–6

    Article  PubMed  Google Scholar 

  75. Gebhardt C, Leisch F, Schussler P, et al. Non-association of dopamine D4 and D2 receptor genes with personality in healthy individuals. Psychiatr Genet 2000; 10(3): 131–7

    Article  PubMed  CAS  Google Scholar 

  76. Tsai SJ, Hong CJ, Yu YW, et al. Association study of catechol-O-methyltransferase gene and dopamine D4 receptor gene polymorphisms and personality traits in healthy young chinese females. Neuropsychobiology 2004; 50(2): 153–6

    Article  PubMed  CAS  Google Scholar 

  77. Oliveri RL, Annesi G, Zappia M, et al. The dopamine D2 receptor gene is a susceptibility locus for Parkinson’s disease. Mov Disord 2000; 15(1): 127–31

    Article  PubMed  CAS  Google Scholar 

  78. Plante-Bordeneuve V, Taussig D, Thomas F, et al. Evaluation of four candidate genes encoding proteins of the dopamine pathway in familial and sporadic Parkinson’s disease: evidence for association of a DRD2 allele. Neurology 1997; 48(6): 1589–93

    Article  PubMed  CAS  Google Scholar 

  79. Grevle L, Guzey C, Hadidi H, et al. Allelic association between the DRD2 TaqI A polymorphism and Parkinson’s disease. Mov Disord 2000; 15(6): 1070–4

    Article  PubMed  CAS  Google Scholar 

  80. Juyal RC, Das M, Punia S, et al. Genetic susceptibility to Parkinson’s disease among South and North Indians: I. Role of polymorphisms in dopamine receptor and transporter genes and association of DRD4 120-bp duplication marker. Neurogenetics 2006; 7(4): 223–9

    CAS  Google Scholar 

  81. Costa-Mallen P, Costa LG, Smith-Weller T, et al. Genetic polymorphism of dopamine D2 receptors in Parkinson’s disease and interactions with cigarette smoking and MAO-B intron 13 polymorphism. J Neurol Neurosurg Psychiatry 2000; 69(4): 535–7

    Article  PubMed  CAS  Google Scholar 

  82. Pastor P, Munoz E, Obach V, et al. Dopamine receptor D2 intronic polymorphism in patients with Parkinson’s disease. Neurosci Lett 1999; 273(3): 151–4

    Article  PubMed  CAS  Google Scholar 

  83. Tan EK, Tan Y, Chai A, et al. Dopamine D2 receptor TaqIA and TaqIB polymorphisms in Parkinson’s disease. Mov Disord 2003; 18(5): 593–5

    Article  PubMed  Google Scholar 

  84. Wang J, Liu ZL, Chen B. Association study of dopamine D2, D3 receptor gene polymorphisms with motor fluctuations in PD. Neurology 2001; 56(12): 1757–9

    Article  PubMed  CAS  Google Scholar 

  85. Jentsch JD, Roth RH, Taylor JR. Role for dopamine in the behavioral functions of the prefrontal corticostriatal system: implications for mental disorders and psychotropic drug action. Prog Brain Res 2000; 126: 433–53

    Article  PubMed  CAS  Google Scholar 

  86. Kringelbach ML. The human orbitofrontal cortex: linking reward to hedonic experience. Nat Rev Neurosci 2005; 6(9): 691–702

    Article  PubMed  CAS  Google Scholar 

  87. Volkow ND, Fowler JS, Wolf AP, et al. Changes in brain glucose metabolism in cocaine dependence and withdrawal. Am J Psychiatry 1991; 148(5): 621–6

    PubMed  CAS  Google Scholar 

  88. Sekine Y, Minabe Y, Ouchi Y, et al. Association of dopamine transporter loss in the orbitofrontal and dorso-lateral prefrontal cortices with methamphetamine-related psychiatric symptoms. Am J Psychiatry 2003; 160(9): 1699–701

    Article  PubMed  Google Scholar 

  89. Reuter J, Raedler T, Rose M, et al. Pathological gambling is linked to reduced activation of the mesolimbic reward system. Nat Neurosci 2005; 8(2): 147–8

    Article  PubMed  CAS  Google Scholar 

  90. Potenza MN, Steinberg MA, Skudlarski P, et al. Gambling urges in pathological gambling: a functional magnetic resonance imaging study. Arch Gen Psychiatry 2003; 60(8): 828–36

    Article  PubMed  Google Scholar 

  91. Brand M, Kalbe E, Labudda K, et al. Decision-making impairments in patients with pathological gambling. Psychiatry Res 2005; 133(1): 91–9

    Article  PubMed  Google Scholar 

  92. Mimura M, Oeda R, Kawamura M. Impaired decision-making in Parkinson’s disease. Parkinsonism Relat Disord 2006; 12(3): 169–75

    Article  PubMed  Google Scholar 

  93. Perretta JG, Pari G, Beninger RJ. Effects of Parkinson disease on two putative nondeclarative learning tasks: probabilistic classification and gambling. Cogn Behav Neurol 2005; 18(4): 185–92

    Article  PubMed  Google Scholar 

  94. Frank MJ, Seeberger LC, O’Reilly RC. By carrot or by stick: cognitive reinforcement learning in parkinsonism. Science 2004; 306(5703): 1940–3

    Article  PubMed  CAS  Google Scholar 

  95. Swainson R, Rogers RD, Sahakian BJ, et al. Probabilistic learning and reversal deficits in patients with Parkinson’s disease or frontal or temporal lobe lesions: possible adverse effects of dopaminergic medication. Neuropsychologia 2000; 38(5): 596–612

    Article  PubMed  CAS  Google Scholar 

  96. Cools R, Barker RA, Sahakian BJ, et al. Enhanced or impaired cognitive function in Parkinson’s disease as a function of dopaminergic medication and task demands. Cereb Cortex 2001; 11(12): 1136–43

    Article  PubMed  CAS  Google Scholar 

  97. Robinson TE, Berridge KC. The psychology and neuro-biology of addiction: an incentive-sensitization view. Addiction 2000; 95Suppl. 2: S91–117

    PubMed  Google Scholar 

  98. Robinson TE, Berridge KC. Addiction. Annu Rev Psychol 2003; 54: 25–53

    Article  PubMed  Google Scholar 

  99. Berke JD, Hyman SE. Addiction, dopamine, and the molecular mechanisms of memory. Neuron 2000; 25(3): 515–32

    Article  PubMed  CAS  Google Scholar 

  100. Evans AH, Pavese N, Lawrence AD, et al. Compulsive drug use linked to sensitized ventral striatal dopamine transmission. Ann Neurol 2006; 59(5): 852–8

    Article  PubMed  CAS  Google Scholar 

  101. Voon V. Repetition repetition, and repetition: compulsive and punding behaviors in Parkinson’s disease. Mov Disord 2004; 19(4): 367–70

    Article  PubMed  Google Scholar 

  102. Robbins T, Mittleman G, O’Brien C, et al. The neuro-psychologicals ignificance of stereotypy induced by stimulant drugs. In: Cooper S, Dourish C, editors. Neuro-biology of stereotyped behaviour. Oxford: Clarendon Press, 1990: 25–63

    Google Scholar 

  103. Silveira-Moriyama L, Evans AH, Katzenschlager R, et al. Punding and dyskinesias. Mov Disord 2006; 21(12): 2214–7

    Article  PubMed  Google Scholar 

  104. Kurlan R. Disabling repetitive behaviors in Parkinson’s disease. Mov Disord 2004; 19(4): 433–7

    Article  PubMed  Google Scholar 

  105. Kimber TE, Thompson PD, Kiley MA. Resolution of dopamine dysregulation syndrome following cessation of dopamine agonist therapy in Parkinson’s disease. J Clin Neurosci 2008; 15(2): 205–8

    Article  PubMed  CAS  Google Scholar 

  106. Miwa H, Morita S, Nakanishi I, et al. Stereotyped behaviors or punding after quetiapine administration in Parkinson’s disease. Parkinsonism Relat Disord 2004; 10(3): 177–80

    Article  PubMed  Google Scholar 

  107. Dodd ML, Klos KJ, Bower JH, et al. Pathological gambling caused by drugs used to treat Parkinson disease. Arch Neurol 2005; 62(9): 1377–81

    Article  PubMed  Google Scholar 

  108. O’Sullivan SS, Gallagher DA, Evans AH, et al. Dopamine dysregulation syndrome, impulse control disorders and subthalamic nucleus deep brain stimulation: a case series and literature review. Mov Disord 2007; 22(16 Suppl.): S163

    Google Scholar 

  109. Avanzi M, Baratti M, Cabrini S, et al. Prevalence of pathological gambling in patients with Parkinson’s disease. Mov Disord 2006; 21(12): 2068–72

    Article  PubMed  Google Scholar 

  110. Grosset KA, Macphee G, Pal G, et al. Problematic gambling on dopamine agonists: not such a rarity. Mov Disord 2006; 21(12): 2206–8

    Article  PubMed  Google Scholar 

  111. Izenwasser S, French D. Tolerance and sensitization to the locomotor-activating effects of cocaine are mediated via independent mechanisms. Pharmacol Biochem Behav 2002; 73(4): 877–82

    Article  PubMed  CAS  Google Scholar 

  112. Blanchet PJ, Calon F, Martel JC, et al. Continuous administration decreases and pulsatile administration increases behavioral sensitivity to a novel dopamine D2 agonist (U-91356A) in MPTP-exposed monkeys. J Pharmacol Exp Ther 1995; 272(2): 854–9

    PubMed  CAS  Google Scholar 

  113. Trujillo KA, Kubota KS, Warmoth KP. Continuous administration of opioids produces locomotor sensitization. Pharmacol Biochem Behav 2004; 79(4): 661–9

    Article  PubMed  CAS  Google Scholar 

  114. Mamikonyan E, Siderowf AD, Duda JE, et al. Long-term follow-up of impulse control disorders in Parkinson’s disease. Mov Disord 2008; 23(1): 75–80

    Article  PubMed  Google Scholar 

  115. Koran LM, Bullock KD, Hartston HJ, et al. Citalopram treatment of compulsive shopping: an open-label study. J Clin Psychiatry 2002; 63(8): 704–8

    Article  PubMed  CAS  Google Scholar 

  116. Courty E, Durif F, Zenut M, et al. Psychiatric and sexual disorders induced by apomorphine in Parkinson’s disease. Clin Neuropharmacol 1997; 20(2): 140–7

    Article  PubMed  CAS  Google Scholar 

  117. Weiss RD. Relapse to cocaine abuse after initiating desipramine treatment. JAMA 1988; 260(17): 2545–6

    Article  PubMed  CAS  Google Scholar 

  118. Nomikos GG, Damsma G, Wenkstern D, et al. Chronic desipramine enhances amphetamine-induced increases in interstitial concentrations of dopamine in the nucleus accumbens. Eur J Pharmacol 1991; 195(1): 63–73

    Article  PubMed  CAS  Google Scholar 

  119. Pallesen S, Molde H, Arnestad HM, et al. Outcome of pharmacological treatments of pathological gambling: a review and meta-analysis. J Clin Psychopharmacol 2007; 27(4): 357–64

    Article  PubMed  Google Scholar 

  120. Iancu I, Lowengrub K, Dembinsky Y, et al. Pathological gambling: an update on neuropathophysiology and pharmacotherapy. CNS Drugs 2008; 22(2): 123–38

    Article  PubMed  CAS  Google Scholar 

  121. Zadikoff C, Munhoz RP, Asante AN, et al. Movement disorders in patients taking anticonvulsants. J Neurol Neurosurg Psychiatry 2007; 78(2): 147–51

    Article  PubMed  CAS  Google Scholar 

  122. Brandt-Christensen M, Kvist K, Nilsson FM, et al. Treatment with antidepressants and lithium is associated with increased risk of treatment with antiparkinson drugs: a pharmacoepidemiological study. J Neurol Neurosurg Psychiatry 2006; 77(6): 781–3

    Article  PubMed  CAS  Google Scholar 

  123. Sofuoglu M, Kosten TR. Novel approaches to the treatment of cocaine addiction. CNS Drugs 2005; 19(1): 13–25

    Article  PubMed  CAS  Google Scholar 

  124. Metman LV, Del Dotto P, LePoole K, et al. Amantadine for levodopa-induced dyskinesias: a 1-year follow-up study. Arch Neurol 1999; 56(11): 1383–6

    Article  PubMed  CAS  Google Scholar 

  125. Kashihara K, Imamura T. Amantadine may reverse punding in Parkinson’s disease: observation in a patient. Mov Disord 2008; 23(1): 129–30

    Article  PubMed  Google Scholar 

  126. Dutra L, Stathopoulou G, Basden SL, et al. A meta-analytic review of psychosocial interventions for substance use disorders. Am J Psychiatry 2008; 165(2): 179–87

    Article  PubMed  Google Scholar 

  127. Carroll KM, Onken LS. Behavioral therapies for drug abuse. Am J Psychiatry 2005; 162(8): 1452–60

    Article  PubMed  Google Scholar 

  128. Stanton MD, Shadish WR. Outcome attrition, and family-couples treatment for drug abuse: a meta-analysis and review of the controlled, comparative studies. Psychol Bull 1997; 122(2): 170–91

    Article  PubMed  CAS  Google Scholar 

  129. Young KS. Cognitive behavior therapy with Internet addicts: treatment outcomes and implications. Cyberpsychol Behav 2007; 10(5): 671–9

    Article  PubMed  Google Scholar 

  130. Oei TP, Gordon LM. Psychosocial factors related to gambling abstinence and relapse in members of gamblers anonymous. J Gambl Stud 2008; 24(1): 91–105

    Article  PubMed  Google Scholar 

  131. Dowling N, Smith D, Thomas T. Treatment of female pathological gambling: the efficacy of a cognitive-behavioural approach. J Gambl Stud 2006; 22(4): 355–72

    Article  PubMed  Google Scholar 

  132. Houeto JL, Mesnage V, Mallet L, et al. Behavioural disorders, Parkinson’s disease and subthalamic stimulation. J Neurol Neurosurg Psychiatry 2002; 72(6): 701–7

    Article  PubMed  CAS  Google Scholar 

  133. Schupbach WM, Chastan N, Welter ML, et al. Stimulation of the subthalamic nucleus in Parkinson’s disease: a 5-year follow up. J Neurol Neurosurg Psychiatry 2005; 76(12): 1640–4

    Article  PubMed  CAS  Google Scholar 

  134. Bandini F, Primavera A, Pizzorno M, et al. Using STN DBS and medication reduction as a strategy to treat pathological gambling in Parkinson’s disease. Parkinsonism Relat Disord 2007; 13(6): 369–71

    Article  PubMed  Google Scholar 

  135. Ardouin C, Voon V, Worbe Y, et al. Pathological gambling in Parkinson’s disease improves on chronic subthalamic nucleus stimulation. Mov Disord 2006; 21(11): 1941–6

    Article  PubMed  Google Scholar 

  136. Smeding HM, Speelman JD, Koning-Haanstra M, et al. Neuropsychological effects of bilateral STN stimulation in Parkinson disease: a controlled study. Neurology 2006; 66(12): 1830–6

    Article  PubMed  CAS  Google Scholar 

  137. Smeding H, Goudriaan A, Foncke E, et al. Pathological gambling after bilateral STN stimulation in Parkinson disease. J Neurol Neurosurg Psychiatry 2007 May; 78(5): 517–9

    Article  PubMed  CAS  Google Scholar 

  138. Morgan JC, DiDonato CJ, Iyer SS, et al. Self-stimulatory behavior associated with deep brain stimulation in Parkinson’s disease. Mov Disord 2006; 21(2): 283–5

    Article  PubMed  Google Scholar 

  139. Lu C, Bharmal A, Suchowersky O. Gambling and Parkinson disease [letter]. Arch Neurol 2006; 63(2): 298

    Article  PubMed  Google Scholar 

  140. Voon V, Potenza MN, Thomsen T. Medication-related impulse control and repetitive behaviors in Parkinson’s disease. Curr Opin Neurol 2007; 20(4): 484–92

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The preparation of this paper was supported by the Reta Lila Weston Trust. The funding organization was not involved in the collection, management, analysis and interpretation of the data, and preparation, review or approval of the manuscript. The authors have no conflicts of interest that are directly relevant to the content of this review.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sean S. O’Sullivan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

O’Sullivan, S.S., Evans, A.H. & Lees, A.J. Dopamine Dysregulation Syndrome. CNS Drugs 23, 157–170 (2009). https://doi.org/10.2165/00023210-200923020-00005

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00023210-200923020-00005

Keywords

Navigation