Skip to main content
Log in

Clinical Pharmacokinetics of Atorvastatin

  • Review Article
  • Published:
Clinical Pharmacokinetics Aims and scope Submit manuscript

Abstract

Hypercholesterolaemia is a risk factor for the development of atherosclerotic disease. Atorvastatin lowers plasma low-density lipoprotein (LDL) cholesterol levels by inhibition of HMG-CoA reductase. The mean dose-response relationship has been shown to be log-linear for atorvastatin, but plasma concentrations of atorvastatin acid and its metabolites do not correlate with LDL-cholesterol reduction at a given dose.

The clinical dosage range for atorvastatin is 10–80 mg/day, and it is given in the acid form. Atorvastatin acid is highly soluble and permeable, and the drug is completely absorbed after oral administration. However, atorvastatin acid is subject to extensive first-pass metabolism in the gut wall as well as in the liver, as oral bioavailability is 14%. The volume of distribution of atorvastatin acid is 381L, and plasma protein binding exceeds 98%. Atorvastatin acid is extensively metabolised in both the gut and liver by oxidation, lactonisation and glucuronidation, and the metabolites are eliminated by biliary secretion and direct secretion from blood to the intestine. In vitro, atorvastatin acid is a substrate for P-glycoprotein, organic anion-transporting polypeptide (OATP) C and H+-monocarboxylic acid cotransporter. The total plasma clearance of atorvastatin acid is 625 mL/min and the half-life is about 7 hours. The renal route is of minor importance (<1%) for the elimination of atorvastatin acid. In vivo, cytochrome P450 (CYP) 3A4 is responsible for the formation of two active metabolites from the acid and the lactone forms of atorvastatin. Atorvastatin acid and its metabolites undergo glucuronidation mediated by uridinediphosphoglucuronyltransferases 1A1 and 1A3.

Atorvastatin can be given either in the morning or in the evening. Food decreases the absorption rate of atorvastatin acid after oral administration, as indicated by decreased peak concentration and increased time to peak concentration. Women appear to have a slightly lower plasma exposure to atorvastatin for a given dose.

Atorvastatin is subject to metabolism by CYP3A4 and cellular membrane transport by OATP C and P-glycoprotein, and drug-drug interactions with potent inhibitors of these systems, such as itraconazole, nelfinavir, ritonavir, cyclosporin, fibrates, erythromycin and grapefruit juice, have been demonstrated. An interaction with gemfibrozil seems to be mediated by inhibition of glucuronidation. A few case studies have reported rhabdomyolysis when the pharmacokinetics of atorvastatin have been affected by interacting drugs. Atorvastatin increases the bioavailability of digoxin, most probably by inhibition of P-glycoprotein, but does not affect the pharmacokinetics of ritonavir, nelfinavir or terfenadine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Table I
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Superko HR, Krauss MR. Coronary artery disease regression: convincing evidence for the benefit of aggressive lipoprotein management. Circulation 1994; 90: 1056–69

    Article  CAS  PubMed  Google Scholar 

  2. Levine GN, Keaney Jr JF, Vita JA. Cholesterol reduction in cardiovascular disease: clinical benefits and possible mechanisms. N Engl J Med 1995; 332: 512–21

    Article  CAS  PubMed  Google Scholar 

  3. Gotto AM. Lipid lowering, regression, and coronary events: a review of the interdisciplinary council on lipids and cardiovascular risk intervention, Seventh Council meeting. Circulation 1995; 92: 647–56

    Article  Google Scholar 

  4. Brown BG, Zhao XQ, Sacco DE, et al. Lipid lowering and plaque regression: new insights into prevention of plaque disruption and clinical events in coronary disease. Circulation 1993; 87: 1781–91

    Article  CAS  PubMed  Google Scholar 

  5. Pedersen TR, Kjekshus J, Berg K, et al. Randomised trial of cholesterol lowering in 4444 patients with coronary heart disease: the Scandinavian Simvastatin Survival Study (4S). Lancet 1994; 344: 1383–9

    Article  Google Scholar 

  6. Shepherd J, Cobbe SM, Ford I, et al. West of Scotland Coronary Prevention Study Group. Prevention of coronary heart disease with pravastatin in men with hypercholesterolemia. N Engl J Med 1995; 333: 1301–7

    Article  CAS  PubMed  Google Scholar 

  7. Sacks FM, Pfeffer MA, Lemeul AM, et al. The effect of pravastatin on coronary events after myocardial infarction in patients with average cholesterol levels. N Engl J Med 1996; 335: 1001–9

    Article  CAS  PubMed  Google Scholar 

  8. Downs JR, Clearfield M, Weis S, et al. Primary prevention of acute coronary events in men and women with average cholesterol levels: results of AFCAPS/TexCAPS. Air Force/Texas Coronary Atherosclerosis Prevention Study. JAMA 1998; 279: 1615–22

    Article  CAS  PubMed  Google Scholar 

  9. Vaughan CJ, Gotto Jr AM, Basson CT. The evolving role of statins in the management of atherosclerosis. J Am Coll Cardiol 1999; 35: 1–10

    Article  Google Scholar 

  10. Christians U, Jacobsen W, Floren LC. Metabolism and drug interactions of 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitors in transplant patients: are the statins mechanistically similar?. Pharmacol Ther 1998; 80: 1–34

    Article  CAS  PubMed  Google Scholar 

  11. Corsini A, Bellosta S, Baetta R, et al. New insights into the pharmacodynamic and pharmacokinetic properties of statins. Pharmacol Ther 1999; 84: 413–28

    Article  CAS  PubMed  Google Scholar 

  12. Ni W, Egashira K, Kataoka C, et al. Antiinflammatory and antiarteriosclerotic actions of HMG-CoA reductase inhibitors in a rat model of chronic inhibition of nitric oxide synthesis. Circ Res 2001 Aug 31; 89(5): 415–21

    Article  CAS  PubMed  Google Scholar 

  13. Cilla Jr DD, Whitfield LR, Gibson DM, et al. Multiple-dose pharmacokinetics, pharmacodynamics, and safety of atorvas-tatin, an inhibitor of HMG-CoA reductase, in healthy subjects. Clin Pharmacol Ther 1996 Dec; 60(6): 687–95

    Article  CAS  PubMed  Google Scholar 

  14. Lindahl A, Ungell A-L, Persson B, et al. Surface activity of fluvastatin and concentration dependent intestinal permeability in the rat. Pharm Res 1999; 16: 97–102

    Article  CAS  PubMed  Google Scholar 

  15. Kantola T, Krivistö KT, Neuvonen PJ. Effect of itraconazole on the pharmacokinetics of atorvastatin. Clin Pharmacol Ther 1998; 64: 58–65

    Article  CAS  PubMed  Google Scholar 

  16. Kearney AS, Crawford LF, Metha SC, et al. The interconversion kinetics, equilibrium and solubilities of the lactone and hydroxyacid forms of the HMG-CoA reductase inhibitor, CI-981. Pharm Res 1993; 10: 1461–5

    Article  CAS  PubMed  Google Scholar 

  17. Ishigami M, Honda T, Takasaki W, et al. A comparison of the effects of 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase inhibitors on the CYP3A4-dependent oxidation of mexazolam in vitro. Drug Metab Dispos 2001; 29: 282–8

    CAS  PubMed  Google Scholar 

  18. Jacobsen W, Kuhn B, Soldner A, et al. Lactonization is the critical first step in the disposition of the 3-hydroxy-3-methylglutaryl-CoA reductase inhibitor atorvastatin. Drug Metab Dispos 2000; 28(11): 1369–78

    CAS  PubMed  Google Scholar 

  19. Prueksaritanont T, Subramanian R, Fang X, et al. Glucuronidation of statins in animals and humans: a novel mechanism of statin lactonization. Drug Metab Dispos 2002; 30: 505–12

    Article  CAS  PubMed  Google Scholar 

  20. Posvar EL, Radulovic LL, Cilla DD, et al. Tolerance and pharmacokinetics of single-dose atorvastatin, a potent inhibitor of HMG-CoA reductase, in healthy subjects. J Clin Pharmacol 1996; 36: 728–31

    Article  CAS  PubMed  Google Scholar 

  21. Radulovic LL, Cilia DD, Posvar EL, et al. Effect of food on the bioavailability of atorvastatin, an HMG-CoA reductase inhibitor. J Clin Pharmacol 1995; 35: 990–4

    Article  CAS  PubMed  Google Scholar 

  22. Shum YY, Huang N, Walter G, et al. Development, validation, and interlaboratory comparison of an HMG-CoA reductase inhibition assay for quantitation of atorvastatin in plasma matrices. Ther Drug Monit 1998; 20: 41–9

    Article  CAS  PubMed  Google Scholar 

  23. Gibson DM, Stern RH, Abel RB, et al. Absolute bioavailability of atorvastatin in man. Pharm Res 1997; 14: S253

    Google Scholar 

  24. Jemal M, Ouyang Z, Chen BC, et al. Quantitation of the acid and lactone forms of atorvastatin and its biotransformation products in human serum by high-performance liquid chromatography with electrospray tandem mass spectrometry. Rapid Commun Mass Spectrom 1999; 13: 1003–15

    Article  CAS  PubMed  Google Scholar 

  25. Lennernäs H, Fager G. Clinical pharmacokinetics and pharmacodynamics of HMG-CoA reductase inhibitors: similarities and dissimilarities. Clin Pharmacokinet 1997; 35: 403–25

    Article  Google Scholar 

  26. Malhotra HS, Goa KL. Atorvastatin: an updated review of its pharmacological properties and use in dyslipidaemia. Drugs 2001; 61: 1835–81

    Article  CAS  PubMed  Google Scholar 

  27. Parker TS, McNamara DJ, Brown CD, et al. Plasma mevalonate as a measure of cholesterol synthesis in man. J Clin Invest 1984; 74: 795–804

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Nawrocki JW, Weiss SR, Davidson MH, et al. Reduction of LDL cholesterol by 25% to 60% in patients with primary hypercholesterolemia by atorvastatin, a new HMG-CoA reductase inhibitor. Arterioscler Thromb Vasc Biol 1995 May; 15(5): 678–82

    Article  CAS  PubMed  Google Scholar 

  29. Stern RH, Gibson DM, Whitfield LR. Cimetidine does not alter atorvastatin pharmacokinetics or LDL-cholesterol reduction. Eur J Clin Pharmacol 1998; 53(6): 475–8

    Article  CAS  PubMed  Google Scholar 

  30. Lea AP, McTavish D. Atorvastatin: a review of its pharmacology and therapeutic potential in the management of hyper-lipidaemias. Drugs 1997 May; 53(5): 828–47

    Article  CAS  PubMed  Google Scholar 

  31. Stern RH, Yang BB, Hounslow NJ, et al. Pharmacodynamics and pharmacokinetic-pharmacodynamic relationships of atorvastatin, an HMG-CoA reductase inhibitor. J Clin Pharmacol 2000 Jun; 40(6): 616–23

    Article  CAS  PubMed  Google Scholar 

  32. Guerin M, Lassel TS, Le Goff W, et al. Action of atorvastatin in combined hyperlipidemia: preferential reduction of cholesteryl ester transfer from HDL to VLDL1 particles. Arterioscler Thromb Vasc Biol 2000 Jan; 20(1): 189–97

    Article  CAS  PubMed  Google Scholar 

  33. Joukhadar C, Klein N, Prinz M, et al. Similar effects of atorvastatin, simvastatin and pravastatin on thrombogenic and inflammatory parameters in patients with hypercholesterolemia. Thromb Haemost 2001 Jan; 85(1): 47–51

    CAS  PubMed  Google Scholar 

  34. Amidon GL, Lennernäs H, Shah V, et al. Theoretical considerations in the correlation of drug product dissolution and in vivo bioavailability: a biopharmaceutical drug classification. Pharm Res 1995; 12: 413–20

    Article  CAS  PubMed  Google Scholar 

  35. Wu X, Whitfield LR, Stewart BH. Atorvastatin transport in the Caco-2 cell model: contributions of P-glycoprotein and proton-monocarboxylic acid co-transporter. Pharm Res 2000; 17: 209–15

    Article  CAS  PubMed  Google Scholar 

  36. Benet LZ, Cummins CL. The drug efflux-metabolism alliance: biochemical aspects. Adv Drug Deliv Rev 2001 Oct 1; 50 Suppl. 1: S3–S11

    Article  CAS  PubMed  Google Scholar 

  37. Igel M, Sudhop T, von Bergmann K. Metabolism and drug interactions of 3-hydroxy-3-methylglutaryl coenzyme A-reductase inhibitors (statins). Eur J Clin Pharmacol 2001 Aug; 57(5): 357–64

    Article  CAS  PubMed  Google Scholar 

  38. Boyd RA, Stern RH, Stewart BH, et al. Atorvastatin coadmin-istration may increase digoxin concentrations by inhibition of intestinal P-glycoprotein-mediated secretion. J Clin Pharmacol 2000 Jan; 40(1): 91–8

    Article  CAS  PubMed  Google Scholar 

  39. Paine MF, Khalighi M, Fisher JM, et al. Characterization of interintestinal and intraintestinal variations in human CYP3A-dependent metabolism. J Pharmacol Exp Ther 1997 Dec; 283(3): 1552–62

    CAS  PubMed  Google Scholar 

  40. Lennernäs H. Human jejunal effective permeability and its correlation to preclinical drug absorption models. J Pharm Pharmacol 1997; 49: 627–38

    Article  PubMed  Google Scholar 

  41. Winiwarter S, Bonham N, Hallberg A, et al. Correlation of human jejunal permeability (in vivo) with experimentally and theoretically derived parameters: a multivariate data analysis approach. J Med Chem 1999; 41: 4939–49

    Article  Google Scholar 

  42. Lindahl A, Sandström R, Ungell A-L, et al. Jejunal permeability and hepatic extraction of fluvastatin in humans. J Clin Pharm Ther 1996; 60: 493–503

    Article  CAS  Google Scholar 

  43. Stern RH, Yang BB, Horton M, et al. Renal dysfunction does not alter the pharmacokinetics or LDL-cholesterol reduction of atorvastatin. J Clin Pharmacol 1997 Sep; 37(9): 816–9

    Article  CAS  PubMed  Google Scholar 

  44. Lin JH, Chiba M, Baillie TA. Is the role of the small intestine in first-pass metabolism overemphasized?. Pharmacol Rev 1999 Jun; 51(2): 135–58

    CAS  PubMed  Google Scholar 

  45. Black AE, Hayes RN, Roth BD, et al. Metabolism and excretion of atorvastatin in rats and dogs. Drug Metab Dispos 1999 Aug; 27(8): 916–23

    CAS  PubMed  Google Scholar 

  46. Lennernäs H, Regårdh CG. Dose-dependent intestinal absorption and significant intestinal excretion (exsorption) of the beta-blocker pafenolol in the rat. Pharm Res 1993; 5: 727–31

    Article  Google Scholar 

  47. Gramatte T, Oertel R. Intestinal secretion of intravenous talinolol is inhibited by luminal R-verapamil. Clin Pharmacol Ther 1999 Sep; 66(3): 239–45

    Article  CAS  PubMed  Google Scholar 

  48. Fagerholm U, Johansson M, Lennernäs H. The correlation between rat and human small intestinal permeability to drugs with different physico-chemical properties. Pharm Res 1996; 13: 1335–41

    Article  Google Scholar 

  49. Chiou WL, Jeong HY, Chung SM, et al. Evaluation of using dog as an animal model to study the fraction of oral dose absorbed of 43 drugs in humans. Pharm Res 2000 Feb; 17(2): 135–40

    Article  CAS  PubMed  Google Scholar 

  50. Fojo AT, Ueda K, Slamon DJ, et al. Expression of a multidrug-resistance gene in human tumors and tissues. Proc Natl Acad Sci U S A 1987; 84(1): 265–9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Prueksaritanont T, Zhao JJ, Ma B, et al. Mechanistic studies on metabolic interactions between gemfibrozil and statins. J Pharmacol Ther 2002; 301: 1042–51

    Article  CAS  Google Scholar 

  52. Strassburg CP, Kneip S, Topp J, et al. Polymorphic gene regulation and interindividual variation fo UDP-glucuronosyl-transferase activity in human small intestine. J Biol Chem 2000; 275: 36164–71

    Article  CAS  PubMed  Google Scholar 

  53. Wu CY, Benet LZ, Hebert MF, et al. Differentiation of absorption and first-pass gut and hepatic metabolism in humans: studies with cyclosporine. Clin Pharmacol Ther 1995; 58(5): 492–7

    Article  CAS  PubMed  Google Scholar 

  54. Paine MF, Shen DD, Kunze KL, et al. First-pass metabolism of midazolam by the human intestine. Clin Pharmacol Ther 1996; 60(1): 14–24

    Article  CAS  PubMed  Google Scholar 

  55. Regardh CG, Edgar B, Olsson R, et al. Pharmacokinetics of felodipine in patients with liver disease. Eur J Clin Pharmacol 1989; 36(5): 473–9

    Article  CAS  PubMed  Google Scholar 

  56. Fromm MF, Busse D, Kroemer HK, et al. Differential induction of prehepatic and hepatic metabolism of verapamil by rifampin. Hepatology 1996; 24(4): 796–801

    Article  CAS  PubMed  Google Scholar 

  57. Sandström R, Knutson L, Knutson T, et al. The effect of ketoconazole on jejunal permeability and CYP 3A4 metabolism of R/S-verapamil in humans. Br J Clin Pharmacol 1999; 48: 180–9

    Article  PubMed  PubMed Central  Google Scholar 

  58. Lilja JJ, Kivisto KT, Neuvonen PJ. Grapefruit juice increases serum concentrations of atorvastatin and has no effect on pravastatin. Clin Pharmacol Ther 1999 Aug; 66(2): 118–27

    Article  CAS  PubMed  Google Scholar 

  59. Mazzu AL, Lasseter KC, Shamblen EC, et al. Itraconazole alters the pharmacokinetics of atorvastatin to a greater extent than either cerivastatin or pravastatin. Clin Pharmacol Ther 2000 Oct; 68(4): 391–400

    Article  CAS  PubMed  Google Scholar 

  60. Le Couteur DG, Martin PF, Pond SM, Bracs P, Black A, Hayes R, Woolf TF, Stern R. Metabolism and excretion of 14C atorvastatin in patients with T-tube drainage [abstract]. Proc Aust Soc Clin Exp Pharmacol Toxicol 1996; 3: 153

    Google Scholar 

  61. Li L, Meier PJ, Ballatori N. Oatp2 mediates bidirectional organic solute transport: a role for intracellular glutathione. Mol Pharmacol 2002; 58: 335–40

    Google Scholar 

  62. Rolan PE. Plasma protein binding displacement interactions -why are they still regarded as clinically important?. Br J Clin Pharmacol 1994; 37: 125–8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Goldstein JL, Brown MS. Regulation of the mevalonate pathway. Nature 1990; 343: 425–30

    Article  CAS  PubMed  Google Scholar 

  64. Yang BB, Smithers JA, Stern RH, Sedman AJ, Olsen SC. Pharmacokinetics and dose proportionality of atorvastatin and its active metabolites [abstract]. Pharm Res 1996; 13 Suppl 1: S437

    Google Scholar 

  65. Ozdemir V, Kalowa W, Tang BK, et al. Evaluation of the genetic component of variability in CYP3A4 activity: a repeated drug administration method. Pharmacogenetics 2000 Jul; 10(5): 373–88

    Article  CAS  PubMed  Google Scholar 

  66. Prueksaritanont T, Tang C, Qiu Y, et al. Effects of fibrates on metabolism of statins in human hepatocytes. Drug Metab Dispos 2002; 30: 1280–7

    Article  CAS  PubMed  Google Scholar 

  67. Hsiang B, Zhut Y, Wang Z, et al. A novel human hepatic organic anion transporting polypeptide (OATP 2). J Biol Chem 1999; 274: 37161–8

    Article  CAS  PubMed  Google Scholar 

  68. Nakai D, Nakagomi R, Furuta Y, et al. Human liver-specific organic anion transporter, LST-1, mediates uptake of pravastatin by human hepatocytes. J Pharm Exp Pharmacol 2001; 297: 861–7

    CAS  Google Scholar 

  69. Brown CDA, Windass A, Bleasby K, et al. Rosuvastatin is a high affinity substrate of hepatic organic anion transport OATP-C [abstract]. Artherosclerosis 2001; 2 Suppl. 2: 90

    Article  Google Scholar 

  70. Gibson DM, Bron NJ, Richens A, et al. Effect of age and gender on pharmacokinetics of atorvastatin in humans. J Clin Pharmacol 1996; 36: 242–6

    Article  CAS  PubMed  Google Scholar 

  71. Cummins CL, Wu CH, Benet LZ. Sex-related differences in the clearance of cytochrome P450 3A4 substrates may be caused by P-glycoprotein. Clin Pharm Ther 2002; 72: 474–89

    Article  CAS  Google Scholar 

  72. Cilla Jr DD, Gibson DM, Whitfield LR, et al. Pharmacodynamic effects and pharmacokinetics of atorvastatin after administration to normocholesterolemic subjects in the morning and evening. J Clin Pharmacol 1996 Jul; 36(7): 604–9

    Article  CAS  PubMed  Google Scholar 

  73. Lins RL, Matthys KE, Verpooten GA, et al. Pharmacokinetics of atorvastatin and its metabolites after single and multiple dosing in hypercholesterolaemic haemodialysis patients. Nephrol Dial Transplant 2003; 18(5): 967–76

    Article  CAS  PubMed  Google Scholar 

  74. Dowling TC, Briglia AE, Fink JC, et al. Characterisation of hepatic cytochrome P450 3A activity in patients with end stage renal disease. Clin Pharmacol Ther 2003; 73: 427–34

    Article  CAS  PubMed  Google Scholar 

  75. Whitfield LR, Stern RH, Sedman AJ, Abel R, Gibson DM. Effect of food on the pharmacodynamics and pharmacokinetics of atorvastatin, an inhibitor of HMG-CoA reductase. Eur J Drug Metab Pharmacokinet 2000 Apr–Jun; 25(2): 97–101

    Article  CAS  PubMed  Google Scholar 

  76. Fleisher D, Li C, Zhou Y, et al. Drug, meal and formulation interactions influencing drug absorption after oral administration: clinical implications. Clin Pharmacokinet 1999 Mar; 36(3): 233–54

    Article  CAS  PubMed  Google Scholar 

  77. Beaird SL. HMG-CoA reductase inhibitors: assessing differences in drug interactions and safety profiles. J Am Pharm Assoc 2000; 40(5): 637–44

    Article  CAS  Google Scholar 

  78. Bogman K, Peyer AK, Torok M, et al. HMG-CoA reductase inhibitors and P-glycoprotein modulation. Br J Pharmacol 2001 Mar; 132(6): 1183–92

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Wang E, Casciano CN, Clement RP, et al. HMG-CoA reductase inhibitors (statins) characterized as direct inhibitors of P-glycoprotein. Pharm Res 2001 Jun; 18(6): 800–6

    Article  CAS  PubMed  Google Scholar 

  80. McDonnell CG, Harte S, Os’Driscoll J, et al. The effects of concurrent atorvastatin therapy on the pharmacokinetics of intravenous midazolam. Anaesthesia 2003; 58: 899–904

    Article  CAS  Google Scholar 

  81. Omar MA, Wilson JP, Cox TS. Rhabdomyolysis and HMG-CoA reductase inhibitors. Ann Pharmacother 2001 Sep; 35(9): 1096–107

    Article  CAS  PubMed  Google Scholar 

  82. Maltz HC, Balog DL, Cheigh JS. Rhabdomyolysis associated with concomitant use of atorvastatin and cyclosporine. Ann Pharmacother 1999 Nov; 33(11): 1176–9

    Article  CAS  PubMed  Google Scholar 

  83. Heerey A, Barry M, Ryan M, Kelly A. The potential for drug interactions with statin therapy in Ireland. Ir J Med Sci 2000 Jul–Sep; 169(3): 176–9

    Article  CAS  PubMed  Google Scholar 

  84. McManus BM, Horley KJ, Wilson JE, et al. Prominence of coronary arterial wall lipids in human heart allografts: implications for pathogenesis of allograft arteriopathy. Am J Pathol 1995 Aug; 147(2): 293–308

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Corpier CL, Jones PH, Suki WN, et al. Rhabdomyolysis and renal injury with lovastatin use: report of two cases in cardiac transplant recipients. JAMA 1988 Jul 8; 260(2): 239–41

    Article  CAS  PubMed  Google Scholar 

  86. Kusus M, Stapleton DD, Lertora JJ, et al. Rhabdomyolysis and acute renal failure in a cardiac transplant recipient due to multiple drug interactions. Am J Med Sci 2000 Dec; 320(6): 394–7

    Article  CAS  PubMed  Google Scholar 

  87. Kobashigawa JA, Moriguchi JD, Ro TK, et al. Atorvastatin for refractory hypercholesterolemia in heart transplant patients [abstract]. J Am Coll Cardiol 1998; 31 Suppl. A: 157A

    Article  Google Scholar 

  88. Wenisch C, Krause R, Fladerer P, et al. Acute rhabdomyolysis after atorvastatin and fusidic acid therapy. Am J Med 2000 Jul; 109(1): 78

    Article  CAS  PubMed  Google Scholar 

  89. Shek A, Ferrill MJ. Statin-fibrate combination therapy. Ann Pharmacother 2001; 35: 908–17

    Article  CAS  PubMed  Google Scholar 

  90. Duell PB, Connor WE, Illingworth DR. Rhabdomyolysis after taking atorvastatin with gemfibrozil. Am J Cardiol 1998 Feb 1; 81(3): 368–9

    Article  CAS  PubMed  Google Scholar 

  91. Lill J, Bauer LA, Horn JR, et al. Cyclosporine-drug interactions and the influence of patient age. Am J Health Syst Pharm 2000 Sep 1; 57(17): 1579–84

    CAS  PubMed  Google Scholar 

  92. Hsyu PH, Schultz-Smith MD, Lillibridge JH, et al. Pharmacokinetic interactions between nelfinavir and 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitors atorvastatin and simvastatin. Antimicrob Agents Chemother 2001 Dec; 45(12): 3445–50

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Fichtenbaum CJ, Gerber JG, Rosenkranz SL, et al. Pharmacokinetic interactions between protease inhibitors and statins in HIV seronegative volunteers: ACTG study A5047. AIDS 2002; 16: 569–77

    Article  CAS  PubMed  Google Scholar 

  94. Acosta EP. Pharmacokinetic enhancement of protease inhibitors. J Acquir Immune Defic Syndr 2002; 29: S11–8

    Article  PubMed  Google Scholar 

  95. DiTusa L, Luzier AB. Potential interaction between troglitazone and atorvastatin. J Clin Pharm Ther 2000 Aug; 25(4): 279–82

    Article  CAS  PubMed  Google Scholar 

  96. Xie W, Yeuh MF, Radominska-Pandya A, et al. Control of steroid, heme, and cacinogen metabolism by nuclear pregnane X receptor and constitutive androstane receptor. Proc Natl Acad Sci USA 2003; 100: 4150–5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Loi CM, Stern RH, Abel R, et al. Effect of troglitazone on pharmacokinetics and pharmacodynamics of atorvastatin [abstract]. Clin Pharmacol Ther 1999; 65: 186

    Google Scholar 

  98. Siedlik PH, Olson SC, Yang BB, et al. Erythromycin coadministration increases plasma atorvastatin concentrations. J Clin Pharmacol 1999 May; 39(5): 501–4

    CAS  PubMed  Google Scholar 

  99. Yang BB, Hounslow NJ, Sedman AJ, et al. Effects of atorvastatin, an HMG-CoA reductase inhibitor, on hepatic oxidative metabolism of antipyrine. J Clin Pharmacol 1996 Apr; 36(4): 356–60

    Article  CAS  PubMed  Google Scholar 

  100. Renders L, Mayer-Kadner I, Koch C, et al. Efficacy and drug interactions of the new HMG-CoA reductase inhibitors cerivastatin and atorvastatin in CsA-treated renal transplant recipients. Nephrol Dial Transplant 2001 Jan; 16(1): 141–6

    Article  CAS  PubMed  Google Scholar 

  101. Stern RH, Smithers JA, Olson SC. Atorvastatin does not produce a clinically significant effect on the pharmacokinetics of terfenadine. J Clin Pharmacol 1998 Aug; 38(8): 753–7

    Article  CAS  PubMed  Google Scholar 

  102. Cohen LH, van Leeuwen RE, van Thiel GC, et al. Equally potent inhibitors of cholesterol synthesis in human hepatocytes have distinguishable effects on different cytochrome P450 enzymes. Biopharm Drug Dispos 2000 Dec; 21(9): 353–64

    Article  CAS  PubMed  Google Scholar 

  103. Hamman MA, Bruce MA, Haehner-Daniels BD, et al. The effect of rifampin administration on the disposition of fexofenadine. Clin Pharmacol Ther 2001 Mar; 69(3): 114–21

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The author has provided no information on sources of funding or on conflicts of interest directly relevant to the content of this review.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hans Lennernäs.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lennernäs, H. Clinical Pharmacokinetics of Atorvastatin. Clin Pharmacokinet 42, 1141–1160 (2003). https://doi.org/10.2165/00003088-200342130-00005

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00003088-200342130-00005

Keywords

Navigation