Skip to main content
Log in

Clinical Pharmacokinetics of Vasodilators

Part II

  • Review Article
  • Drug Disposition
  • Published:
Clinical Pharmacokinetics Aims and scope Submit manuscript

Abstract

Stimulating cardiac β1-adrenoceptors with oxyfedrine causes dilatation of coronary vessels and positive inotropic effects on the myocardium. β1-adrenergic agonists increase coronary blood flow in nonstenotic and stenotic vessels.

The main indication for the use of the phosphodiesterase inhibitors pamrinone, mirinone, enoximone and piroximone is acute treatment of severe congestive heart failure. Theophylline is indicated for the treatment of asthma, chronic obstructive pulmonary disease, apnea in preterm infants ans sleep apnea syndrome.

Severe arterial occlusive disease associated with atherosclerosis can be beneficially affected by elcosanoids. These drugs must be administered parenterally and have a half-life of only a few minutes.

Sublingual or buccal preparations of nitrates are the only prompt method (within 1 or 2 min) of terminating anginal pain, except for biting nifedipine capsules. The short half-life (about 2.5 min) of nitroglycerin (glyceryl trinitrate) makes long term therapy impossible. Tolerance is a problem encountered with longer-acting nitric oxide donors.

Knowledge of the pharmacokinetic properties of vasodilating drugs can prevent a too sudden and severe blood pressure decrease in patients with chronic hypertension. In considering the administration of a second dose, or another drug, the time necessary for the initially administered drug to reach maximal efficacy should be taken into account.

In hypertensive emergencies urapidil, sodium nitroprusside, nitroglycerin, hydralazine and phentolamine are the drugs of choice, with the addition of β-blockers during catecholamine crisis or dissecting aortic aneurysm.

Childhood hypertension is most often treated with angiotensin-converting enzyme (ACE) inhibitors or calcium antagonists, primarily nifedipine. Because of the teratogenic risk involved with ACE inhibitors, extreme caution must be exercised when prescribing for adolescent females.

The propagation of health benefits to breast-fed infants, combined with more women delaying pregnancy until their fourth decade, has entailed an increase in the need for hypertension management during lactation. Low dose hydrochlorothiazide, propranolol, nifendipine and enalapril or captopril do not pose enough of a risk to preclude breastfeeding in this group.

The most frequently used antihypertensive agents during pregnancy are methyldopa, labetalol and calcium channel antagonists. Methyldopa and β-blockers are the drugs of choice for treating mild to moderate hypertension. Prazosin and hydralazine are used to treat moderate to severe hypertension and hydralazine, urapidil or labetalol are used to treat hypertensive emergencies. The use of overly aggressive antihypertensive therapy during pregnancy should be avoided so that adequate uteroplacental blood flow is maintained. Methyldopa is the only drug accepted for use during the first trimester of pregnancy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Cambridge D, Davey MJ, Massingham R. Prazosin, a selective antagonist of postsynaptic α-adrenoreceptors. Br J Pharmacol. 1977; 59: 514–5.

    Google Scholar 

  2. Graham RM, Pettinger WA. Prazosin. N Engl J Med. 1979; 300: 232–6.

    Article  PubMed  CAS  Google Scholar 

  3. Pierpont GL, Franciosa JA, Cohn JN. Effect of prazosin on renal function in congestive heart failure. Clin Pharmacol Ther. 1980; 28: 335–9.

    Article  PubMed  CAS  Google Scholar 

  4. Walker RG, Whitworth JA, Saines D, et al. Prazosin: long term treatment of moderate and severe hypertension and lack of tolerance. Med J Aust. 1981; 2: 146–7.

    PubMed  CAS  Google Scholar 

  5. Jansen H, Baggen RG. Effects of doxazosin and propranolol administration on lipoprotein lipases in cholesterol-fed rats. J Cardiovasc Pharmacol. 1987; 10 Suppl. 9: 16–20.

    Google Scholar 

  6. Dzau VJ. Factors influencing the lipid response to selective alpha-1 inhibition. J Cardiovasc Pharmacol. 1989; 13 Suppl. 2: 50–2.

    Article  Google Scholar 

  7. Huupponen R, Lehtonen A, Vahatalo M. Effect of doxazosin on insulin sensitivity in hypertensive non-insulin dependent diabetic patients. Eur J Clin Pharmacol. 1992; 43: 365–8.

    Article  PubMed  CAS  Google Scholar 

  8. Schaefer SG, Kaan EC, Christen MO, et al. Why imidazoline receptor modulator in the treatment of hypertension? Ann N Y Acad Sci. 1995; 763: 659–72.

    Article  CAS  Google Scholar 

  9. Mitrovic V, Patyna WD, Hitting J, et al. Hemodynamic and neurohumoral effects of moxonidine in patients with essential hypertension. Cardiovasc Drugs Ther. 1991; 5: 967–72.

    Article  PubMed  CAS  Google Scholar 

  10. Ernsberger P, Damon TH, Graff LM, et al. Moxonidine, a centrally acting antihypertensive agent, is a selective ligand for I1-imidazoline sites. J Pharmacol Exp Ther. 1993; 264: 172–82.

    PubMed  CAS  Google Scholar 

  11. Molderings GJ, Göthert M, Christen O, et al. Imidazolrezeptoren: Angriffsort einer neuen Generation von antihypertensiven Arzneimitteln. Dtsch Med Wochenschr. 1992; 117: 67–71.

    Article  PubMed  CAS  Google Scholar 

  12. Carruthers SG. Adverse effects of alpha 1-adrenergic blocking drugs. Drug Saf. 1994; 11: 12–20.

    Article  PubMed  CAS  Google Scholar 

  13. Lipson LG, Moore D, Pope AM, et al. Sexual dysfunction in hypertensive diabetic men. J Cardiovasc Med Special 1981; Suppl: 30–7.

  14. Stanaszek WF, Kellerman D, Brogden RN, et al. Prazosin update: a review of its pharmacological properties and therapeutic use in hypertension and congestive heart failure. Drugs. 1983; 25: 339–84.

    Article  PubMed  CAS  Google Scholar 

  15. Vincent J, Meredith PA, Reid JL, et al. Clinical pharmacokinetics of prazosin. Clin Pharmacokinet. 1985; 10: 144–54.

    Article  PubMed  CAS  Google Scholar 

  16. Arnold SB, Williams RL, Ports TA, et al. Attenuation of prazosin effect on cardiac output in chronic heart failure. Ann Intern Med. 1979; 91: 345–9.

    PubMed  CAS  Google Scholar 

  17. Desch CE, Magorien RD, Triffon DW, et al. Development of pharmacodynamic tolerance to prazosin in congestive heart failure. Am J Cardiol. 1979; 44: 1178.

    Article  PubMed  CAS  Google Scholar 

  18. Elkayam U, Lejemtel TH, Mathur M, et al. Marked early attenuation of hemodynamic effects of oral prazosin therapy in chronic congestive heart failure. Am J Cardiol. 1979; 44: 540–5.

    Article  PubMed  CAS  Google Scholar 

  19. Goldman SA, Johnson LL, Escala E, et al. Improved exercise ejection fraction with long-term prazosin therapy in patients with heart failure. Am J Med. 1980; 68: 36–42.

    Article  PubMed  CAS  Google Scholar 

  20. Bertel O. Long-term therapy with prazosin in severe chronic congestive heart failure. Cardiology. 1980; 65 Suppl. 1: 70–3.

    Article  PubMed  Google Scholar 

  21. Feldman RC, Ball RM, Winchester MA, et al. Beneficial hemodynamic response to chronic prazosin therapy in congestive heart failure. Am Heart J. 1981; 101: 534–40.

    Article  PubMed  CAS  Google Scholar 

  22. Mason DT, Awan NA, DeMaria AN. Afterload reduction in the management of congestive heart failure. Hosp Formul. 1979; 14: 641–52.

    Google Scholar 

  23. Massie B, Chan S. Management of hypotension in patients with congestive heart failure: results of treatment with prazosin. J Cardiovasc Med 1981; Suppl: 60–8.

  24. Davey DA, Dommisse J. The management of hypertension in pregnancy. S Afr Med J. 1980; 58: 551–6.

    PubMed  CAS  Google Scholar 

  25. Welt SI, Dorminy JH, Jelovsek FR, et al. The effect of prophylactic management and therapeutics on hypertensive disease in pregnancy: preliminary studies. Obstet Gynaecol. 1981; 57: 557–65.

    CAS  Google Scholar 

  26. McNeil JJ, Drummer OH, Conway REL, et al. Effect of age on pharmacokinetics of and blood pressure responses to praxosin and terazosin. J Cardiovasc Pharmacol. 1987; 10: 168–75.

    Article  PubMed  CAS  Google Scholar 

  27. Andros E, Detmar-Hanna D, Suteparuk S, et al. The effect of aging on the pharmacokinetics and pharmacodynamic s of prazosin. Eur J Clin Pharmacol. 1996; 50: 41–6.

    Article  PubMed  CAS  Google Scholar 

  28. Hunt BA, Self TH, Lalonde RL, et al. Calcium channel blockers as inhibitors of drug metabolism. Chest. 1989; 96: 393–9.

    Article  PubMed  CAS  Google Scholar 

  29. Fulton BF, Wagstaff AJ, Sorkin EM. Doxazosin: an update of its clinical pharmacology and therapeutic applications in hypertension and benign prostatic hyperplasia. Drugs. 1995; 49(2): 295–320.

    Article  PubMed  CAS  Google Scholar 

  30. Elliott HL, Meredith PA, Reid JL. Pharmacokinetic overview of doxazosin. Am J Cardiol. 1987; 59: 78G–81G.

    Article  PubMed  CAS  Google Scholar 

  31. Scott PJW, Hosie J, Scott MGB. A double-blind and cross-over comparison of once daily doxazosin and placebo with steadystate pharmacokinetics in elderly hypertensive patients. Eur J Clin Pharmacol. 1988; 34: 119–23.

    Article  PubMed  CAS  Google Scholar 

  32. Donnelly R, Elliott HL, Meredith PA, et al. Concentrationeffect relationships and individual responses to doxazosin in essential hypertension. Br J Clin Pharmacol. 1989; 28: 517–26.

    Article  PubMed  CAS  Google Scholar 

  33. Langdon CG, Packard RS. Doxazosin in hypertension: results of a general practice study in 4809 patients. Br J Clin Pract. 1994; 48: 293–8.

    PubMed  CAS  Google Scholar 

  34. Vashi V, Chung M, Dias N, et al. Effect of time of administration on the pharmacokinetics and tolerance of doxazosin in healthy male volunteers. J Clin Pharmacol. 1996; 36: 325–31.

    PubMed  CAS  Google Scholar 

  35. Sennello LT, Sonders RC, Glassman HN, et al. Effect of age on the pharmacokinetics of orally and intravenously administered terazosin. Clin Ther. 1988; 10: 600–7.

    PubMed  CAS  Google Scholar 

  36. Somberg JC, Achari R, Laddu AR. Terazosin: pharmacokinetics and the effect of age and dose on the incidence of adverse events. Am Heart J. 1991; 122: 901–5.

    Article  PubMed  CAS  Google Scholar 

  37. Kirsten R, Weidinger G. Behandlung der essentiellen Hypertonie mit dem α-Antagonisten Bunazosin retard. Arzneimittel Forschung. 1994; 44: 13–6.

    PubMed  CAS  Google Scholar 

  38. Stokes GS. Age-related effects of antihypertensive therapy with alpha-blockers. Rev J Cardiovasc Pharmacol. 1988; 12 Suppl. 8: S109–S115.

    Google Scholar 

  39. Halabi A, Nokhodian A, Kirch W. Bunazosin in patients with impaired hepatic or renal function. Eur J Drug Metab Pharmacokinet. 1993; 18: 309–13.

    Article  PubMed  CAS  Google Scholar 

  40. Chrisp P, Faulds D. Moxonidine: a review of its pharmacology, and therapeutic use in essential hypertension. Drugs. 1992; 44(6): 993–1012.

    Article  PubMed  CAS  Google Scholar 

  41. Trenk D, Wagner F, Jähnchen E, et al. Pharmacokinetics of moxonodine after single and repeated daily doses in healthy volunteers. J Clin Pharmacol. 1987; 27: 988–93.

    PubMed  CAS  Google Scholar 

  42. Theodor R, Weimann H-J, Weber W, et al. Absolute bioavailability of moxonidine. Eur J Drug Metab Pharmacokinet. 1991; 16: 153–9.

    Article  PubMed  CAS  Google Scholar 

  43. Schrader J, Schoel G, Gundlach K, et al. Antihypertensive Wirkdauer und morgendlicher Blutdruckanstieg unter Moxonidin in der ambulanten 24-Stunden-Blutdruckmessung. Nieren- und Hochdruckkrankheiten. 1992; 21: 531–3.

    Google Scholar 

  44. Kirch W, Hutt HJ, Plänitz V. The influence of renal function on clinical pharmacokinetics of moxonidine. Clin Pharmacokinet. 1988; 15: 245–53.

    Article  PubMed  CAS  Google Scholar 

  45. Klink F, Endell W. Klinische Untersuchung über den Übertritt von Moxonidin vom Blut in die Muttermilch bei Hochdruck-Patientinnen. BDF Report. 1988; 200: 28–31.

    Google Scholar 

  46. Frisk-Holmberg M, Plänitz V. A selective alpha2-adrenoceptor agonist in arterial essential hypertension: clinical experience with moxonidine. Curr Ther Res Clin Exp. 1987; 42: 138–46.

    Google Scholar 

  47. Mangiameli S, Privitera A, Jonte G, et al. Moxonidine versus nifedipine retard in the treatment of mild to moderate hypertension. Z Allgemeinmed. 1992; 68: 862–6.

    Google Scholar 

  48. Ollivier JP, Christen MO, Schäfer SG. Moxonidine: a second generation of centrally acting drugs. J Cardiovasc Pharmacol. 1992; 20 Suppl. 4: S3I–S36.

    Article  Google Scholar 

  49. Plänitz V. Intraindividual comparison of moxonidine and prazosin in hypertensive patients. Eur J Clin Pharmacol. 1986; 29: 645–50.

    Article  PubMed  Google Scholar 

  50. Plänitz V. Comparison of moxonidine and clonidine HCI in treating patients with hypertension. J Clin Pharmacol. 1987; 27: 46–51.

    Article  PubMed  Google Scholar 

  51. Prichard BNC, Simmons R, Rooks MJ, et al. A double-blind comparison of moxonidine and atenolol in the management of patients with mild to moderate hypertension. J Cardiovasc Pharmacol. 1992; 20 Suppl. 4: S45–9.

    Article  Google Scholar 

  52. Lowenthal DT, Matzek KM, MacGregor TR. Clinical pharmacokinetics of clonidine. Clin Pharmacokinet. 1988; 14: 287–310.

    Article  PubMed  CAS  Google Scholar 

  53. Dollery CT, Davies DS, Draffan GH, et al. Clinical pharmacology and pharmacokinetics of clonidine. Clin Pharmacol Ther. 1976; 19: 11–7.

    PubMed  CAS  Google Scholar 

  54. Arndts D, Doevendans J, Kirsten R, et al. New aspects of the pharmacokinetics and pharmacodynamics of clonidine in man. Eur J Clin Pharmacol. 1983; 25: 21–30.

    Article  Google Scholar 

  55. Ramage AG. Are drugs that act both on serotonin receptors and alpha 1-adrenoreceptors more potent hypotensive agents than those that act only on alpha 1-adrenoceptors? J Cardiovasc Pharmacol 1988; 11 Suppl. 1: S30–4.

    Article  PubMed  Google Scholar 

  56. Haenni A, Lithell H. Urapidil treatment decreases plasma fibrinogen concentration in essentail hypertension. Metabolism. 1996; 45: 1221–9.

    Article  PubMed  CAS  Google Scholar 

  57. Kirsten R, Nelson K, Molz KH, et al. Pharmacodynamics and pharmacokinetics of urapidil in hypertensive patients: a crossover study comparing infusion with an infusion-capsule combination. Eur J Clin Pharmacol. 1987; 32: 61–7.

    Article  PubMed  CAS  Google Scholar 

  58. Kirsten R, Nelson K, Molz KH, et al. Influence of food intake on the bioavailability of urapidil in healthy volunteers. Int J Clin Pharmacol Ther Toxicol. 1989; 27: 298–301.

    PubMed  CAS  Google Scholar 

  59. Storck J, Kirsten R. Binding of urapidil to human serum albumin: dependency on free fatty acid concentration. Int J Clin Pharmacol Ther Toxicol. 1991; 29: 204–9.

    PubMed  CAS  Google Scholar 

  60. Kirsten R, Nelson K, Steinijans VW, et al. Clinical pharmacokinetics of urapidil. Clin Pharmacokinet. 1988; 14: 129–40.

    Article  PubMed  CAS  Google Scholar 

  61. Bristow MR, Gilbert EM, Abraham WT, et al. Carvedilol produces dose-related improvements in left ventricular function and survivalin subjects with chronic heart failure. Circulation. 1996; 94: 2807–16.

    Article  PubMed  CAS  Google Scholar 

  62. Yue TL, Cheng HY, Lysko PG, et al. Carvedilol, a new vasodilator and beta-adrenoceptor antagonist, is an antioxidant and free radical scavenger. J Pharmacol Exp Ther. 1992; 263: 92–8.

    PubMed  CAS  Google Scholar 

  63. Sung CP, Arleth AT, Ohlstein EH. Carvedilol inhibits vascular smooth muscle cell proliferation. J Cardiovasc Pharmacol. 1993; 21: 221–7.

    Article  PubMed  CAS  Google Scholar 

  64. Hoffman BB, Lefkowitz RJ. Catecholamines, sympathomimetic drugs, and adrenergic receptor antagonists. In: Hardman JG, Limbird LE, Molinoff PB, editors. The pharmacological basis of therapeutics. 9th ed. New York: McGraw-Hill, 1996: 199–248.

    Google Scholar 

  65. Ehmer B, van der Does R, Rudorf J. Influence of carvedilol on blood glucose and glycohaemoglobin A, in non-insulin-dependent diabetics. Drugs. 1988; 36 Suppl. 6: 136–40.

    Article  PubMed  Google Scholar 

  66. Stienen U, Meyer-Sabellek W. Hemodynamic and metabolic effects of carvedilol: a metaanalysis approach. Clin Invest Med 1992; 70 Suppl.: 65–72.

    Google Scholar 

  67. Morgan T. Clinical pharmacokinetics and pharmacodynamics of carvedilol. Clin Pharmacokinet. 1994; 26: 335–46.

    Article  PubMed  CAS  Google Scholar 

  68. Deetjen A, Schaefer RM, Heidland A. Carvedilol in chronic haemodialysis patients. Hochdruck. 1992; 12: 44–5.

    Google Scholar 

  69. Neugebauer G, Akpan W, von Möllendorff E, et al. Pharmacokinetics and disposition of carvedilol in humans. J Cardiovasc Pharmacol. 1987; 10 Suppl. 11: 85–8.

    Google Scholar 

  70. Masumura H, Miki S, Kaifu Y, et al. Pharmacokinetics and efficacy of carvedilol in hypertensive patients with chronic renal failure and hemodialysis patients. J Cardiovasc Pharmacol. 1992; 19 Suppl. 1: S102–S107.

    Article  PubMed  Google Scholar 

  71. Morgan TO, Anderson A, Cripps J, et al. The use of carvedilol in elderly hypertensive patients. Eur J Clin Pharmacol 1990; 38 Suppl. 2:S129–S133.

    Article  PubMed  Google Scholar 

  72. De Mey C, Brendel E, Enterlin E. Carvedilol increases the systemic bioavailability of oral digoxin. Br J Clin Pharmacol. 1990; 29: 486–90.

    Article  PubMed  Google Scholar 

  73. Gales MA. Oral antihypertensives for hypertensive urgencies. Ann Pharmacother. 1994; 28: 352–8.

    PubMed  CAS  Google Scholar 

  74. el-Quarmalawi AM, Morsy AH, al-Fadly A, et al. Labetalol vs. methyldopa in the treatment of pregnancy-induced hypertension. Int J Gynaecol Obstet. 1995; 49: 125–30.

    Article  Google Scholar 

  75. Gold EH, Chang W, Cohen M, et al. Synthesis and comparison of some cardiovascular properties of the stereoisomers of labetalol. J Med Chem. 1988; 25: 1363–70.

    Article  Google Scholar 

  76. Baum T, Watkins RW, Sybertz EJ, et al. Antihypertensive and hemodynamic actions of SCH 19927, the RR-isomer and labetalol. J Pharmacol Exp Ther. 1981; 218: 444–52.

    PubMed  CAS  Google Scholar 

  77. Donnelly R, Macphee GJ. Clinical pharmacokinetics and kineticdynamic relationships of dilevalol and labetalol. Clin Pharmacokinet. 1991; 21: 95–109.

    Article  PubMed  CAS  Google Scholar 

  78. Kramer WG, Nagabhushan N, Affrime MB, et al. Pharmacokinetics and bioavailability of dilevalol in normotensive volunteers. J Clin Pharmacol. 1988; 28: 644–8.

    PubMed  CAS  Google Scholar 

  79. McNeil JJ, Louis WJ. Clinical pharmacokinetics of labetalol. Clin Pharmacokinet. 1983; 9: 157–67.

    Article  Google Scholar 

  80. Kelly JG, Laher MS, Donohue J, et al. The pharmacokinetics of dilevalol in renal impairment. J Hum Hypertens. 1990; 4 Suppl. 2: 59–62.

    PubMed  Google Scholar 

  81. Luke DR, Awni WM, Halstenson CE, et al. Bioavailability of labetalol in patients with end-stage renal disease. Ther Drug Monit. 1992; 14: 203–8.

    Article  PubMed  CAS  Google Scholar 

  82. Rogers RC, Sibai BM, Whybrew WD. Labetalol pharmacokinetics in pregnancy-induced hypertension. Am J Obstet Gynecol. 1990; 162: 362–6.

    PubMed  CAS  Google Scholar 

  83. Munshi UK, Deorari AK, Paul VK, et al. Effects of maternal labetalol on the newborn infant. Indian Pediatr. 1992; 29: 1507–12.

    PubMed  CAS  Google Scholar 

  84. Haraldsson A, Geven W. Half-life of maternal labetalol in a premature infant. Pharm Weekbl Sci. 1989; 11: 229–31.

    Article  PubMed  CAS  Google Scholar 

  85. Miller K. Pharmacological management of hypertension in pediatric patients: a comprehensive review of the efficacy, safety and dosage guidelines of the available agents. Drugs. 1994; 48: 868–87.

    Article  PubMed  CAS  Google Scholar 

  86. Elliott HL, Macphee GJ, Meredith PA. The influence of age on the pharmacokinetics and antihypertensive responses to dilevalol. J Hum Hypertens. 1990; 4 Suppl. 2: 45–8.

    PubMed  Google Scholar 

  87. Rocci ML, Vlasses PH, Cressman MD, et al. Pharmacokinetics and pharmacodynamics of labetalol in elderly and young hypertensive patients following single and multiple doses. Pharmacotherapy. 1990; 10: 92–9.

    PubMed  Google Scholar 

  88. Macphee GJ, Howie CA, Meredith PA, et al. The effects of age on the pharmacokinetics, antihypertensive efficacy and general tolerability of dilevalol. Br J Clin Pharmacol. 1991; 32: 591–7.

    Article  PubMed  CAS  Google Scholar 

  89. Rocci ML, Valiquett T, Sirgo MA. Effects of age on the elimination of labetalol. Clin Pharmacokinet. 1989; 17: 452–7.

    Article  PubMed  Google Scholar 

  90. Duncan L, Bateman DN. Sexual function in women. Do antihypertensive drugs have an impact? Drug Saf. 1993; 8: 225–34.

    CAS  Google Scholar 

  91. Bianco S. Prevention of exercise-induced asthma by indoramin. BMJ. 1974; 4: 18.

    Article  PubMed  CAS  Google Scholar 

  92. Norbury HM, Franklin RA, Marrott PK, et al. Pharmacokinetics of oral indoramin in elderly and middle-aged female volunteers. Eur J Clin Pharmacol. 1984; 27: 247.

    Article  PubMed  CAS  Google Scholar 

  93. Pierce DM, Abrams SM, Franklin RA. Pharmacokinetics and systemic availability of the antihypertensive agent indoramin and its metabolite 6-hydroxyindoramin in healthy subjects. Eur J Clin Pharmacol. 1987; 32: 619–23.

    Article  PubMed  CAS  Google Scholar 

  94. Pierce DM, Abrams SM, Franklin RA. Intra- and inter- subject variation in the pharmacokinetics of indoramin and its 6-hydroxylated metabolite. Eur J Clin Pharmacol. 1988; 32: 195–8.

    Article  Google Scholar 

  95. Pierce DM, Abrams SM, Franklin RA. Intra- and inter-subject variation in the pharmacokinetics of indoramin and its 6-hydroxylated metabolite. Eur J Clin Pharmacol. 1988; 35(2): 195–8.

    Article  PubMed  CAS  Google Scholar 

  96. Draffan GH, Lewis PJ, Firmin JL, et al. Pharmacokinetics of indoramin in man. Br J Clin Pharmacol. 1976; 3: 489–95.

    Article  PubMed  CAS  Google Scholar 

  97. Bauer JH, Jones LB, Gaddy P. Effects of indoramin therapy on BP, renal function, and body fluid composition. Arch Intern Med. 1984; 144: 308.

    Article  PubMed  CAS  Google Scholar 

  98. Morrison G, Spar B, Walker BR, et al. The acute and chronic effects of indoramin on renal function, hemodynamics, and transport. J Cardiovasc Pharmacol. 1986; 8 Suppl. 2: S25–29.

    Article  PubMed  CAS  Google Scholar 

  99. Krone W, Nagele H. Influence of adrenergic drugs on cholesterol metabolism. Eur J Clin Invest. 1983; 13: A17.

    Google Scholar 

  100. Shanks RG. The clinical pharmacology of indoramin. J Cardiovasc Pharmacol. 1986; 8 Suppl. 2: S8–S15.

    Article  PubMed  Google Scholar 

  101. Martinez TI, Auriemo CR, Machado AM, et al. Effects of indoramin and metoprolol on plasma lipids and lipoproteins. J Cardiovasc Pharmacol. 1986; 8 Suppl. 2: S76–S79.

    Article  PubMed  Google Scholar 

  102. Kaski JC, Araujo L, Maseri A. Effects of oxyfedrine on regional myocardial blood flow in patients with coronary artery disease. Cardiovasc Drugs Ther. 1991; 5: 991–6.

    Article  PubMed  CAS  Google Scholar 

  103. Fananapazir L, Bray C. Comparison of oxyfedrine and atenolol in angina pectoris — a double-blind study. Br J Clin Pharmacol. 1985; 20: 405–10.

    Article  PubMed  CAS  Google Scholar 

  104. Parratt JR. The hemodynamic effects of prolonged oral administration of oxyfedrine, a partial agonist at beta adrenoceptors: comparison with propranolol. Br J Pharmacol. 1974; 51: 5–13.

    Article  PubMed  CAS  Google Scholar 

  105. Schamhardt HC, Verdouw PD, van der Hoek TM, et al. Regional myocardial blood flow and segmental wall function after oxyfedrine administration in the ischaemic porcine heart. Cardiovasc Res. 1980; 14: 451–7.

    Article  PubMed  CAS  Google Scholar 

  106. Wetzelsberger N, Birkel M, Fuder H, et al. Relative bioavailability of DL-oxyfedrine HC1 after single-dose oral administration of tablets as compared to equimolar solutions. Meth Find Exp Clin Pharmacol. 1995; 17: 185–91.

    CAS  Google Scholar 

  107. Lindner J, Bauch K, Dempe A. Zur Beeinflussung des Kohlenhydrat- und Fettstoffwechsels durch Myofedrin. Medicamentum. 1980; 21: 41–5.

    Google Scholar 

  108. Scholz H. Inotropic drugs and their mechanism of action. J Am Coll Cardiol. 1984; 4: 389–97.

    Article  PubMed  CAS  Google Scholar 

  109. Borow KM, Come PC, Neumann A, et al. Physiological assessment of the inotropic, vasodilator and afterload reducing effects of milrinone in subjects without cardiac disease. Am J Cardiol. 1985; 55: 1204.

    Article  PubMed  CAS  Google Scholar 

  110. Tanaka K, Takano T. Effects of intravenous amrinone on heart failure complicated by acute myocardial infarction: comparative study with dopamine and dobutamine. Jpn Circ J. 1986; 50: 652–58.

    Article  PubMed  CAS  Google Scholar 

  111. Harada K, Ohashi K, Kumagai Y, et al. Comparison of venodilatory effect of amrinone and theophylline in human subjects. J Clin Pharmacol. 1995; 35: 1067–70.

    PubMed  CAS  Google Scholar 

  112. Rocci Jr ML, Wilson H. The pharmacokinetics and pharmacodynamics of newer inotropic agents. Clin Pharmacokinet. 1987; 13: 91–109.

    Article  PubMed  Google Scholar 

  113. Edelson J, Park GB, Angellotti J, et al. Dose proportionality of amrinone. Clin Pharmacol Ther. 1983; 34: 190–4.

    Article  PubMed  CAS  Google Scholar 

  114. Steinberg C, Notterman DA. Pharmacokinetics of cardiovascular drugs in children. Inotropes and vasopressors. Clin Pharmacokinet. 1994; 27: 345–67.

    Article  PubMed  CAS  Google Scholar 

  115. Park GB, Kershner RP, Angellotti J, et al. Oral bioavailability and intravenous pharmacokinetics of amrinone in humans. J Pharm Sci. 1983; 72: 817–9.

    Article  PubMed  CAS  Google Scholar 

  116. Kullberg MP, Freeman GB, Biddlecome C, et al. Amrinone metabolism. Clin Pharmacol Ther. 1981; 29: 394–401.

    Article  PubMed  CAS  Google Scholar 

  117. Wilson H, Rocci Jr ML, Weber KT. Pharmacokinetics of oral amrinone in patients with chronic cardiac failure. Clin Pharmacol Ther. 1982; 31: 282.

    Google Scholar 

  118. Larijani GE, Rocci Jr ML, Wilson H. Protein binding of amrinone in normal volunteers and in patients with chronic cardiac failure. Drug Intell Clin Pharm. 1984; 18: 500, 1984.

    Google Scholar 

  119. Levy JH, Bailey JM. Amrinone: pharmacokinetics and pharmacodynamics. J Cardiothorac Vasc Anesth. 1989; 3: 10–4.

    CAS  Google Scholar 

  120. Hamilton RA, Kowalsky SF, Wright EM, et al. Effect of the acetylator phenotype on amrinone pharmacokinetics. Clin Pharmacol Ther. 1986; 40: 615–9.

    Article  PubMed  CAS  Google Scholar 

  121. Lawless S, Restaino I, Azin S, et al. Effect of continuous arteriovenous haemofiltration on pharmacokinetics of amrinone. Clin Pharmacokinet. 1993; 25: 80–2.

    Article  PubMed  CAS  Google Scholar 

  122. Lawless S, Burckart G, Diven W, et al. Amrinone in neonates and infants after cardiac surgery. Crit Care Med. 1989; 17: 751–4.

    Article  PubMed  CAS  Google Scholar 

  123. Allen-Webb EM, Ross MP, Pappas JB, et al. Age-related amrinone pharmacokinetics in a pediatric population. Crit Care Med. 1994; 22: 1016–24.

    Article  PubMed  CAS  Google Scholar 

  124. Harris MN, Daborn AK, O’Dwyer JP. Milrinone and the pulmonary vascular system. Eur J Anaesthes 1992; 5 Suppl.: 27–30.

    Google Scholar 

  125. Butterworth JF, Hines RL, Royster RL, et al. Apharmacokinetic and pharmacodynamic evaluation of milrinone in adults undergoing cardiac surgery. Anesthes Analges. 1995; 81: 783–92.

    CAS  Google Scholar 

  126. Bailey JM, Levy JH, Kikura M. Pharmacokinetics of intravenous milrinone in patients undergoing cardiac surgery. Anesthesiol. 1994; 81: 616–22.

    Article  CAS  Google Scholar 

  127. Shipley JB, Tolman D, Hastillo A, et al. Review: milrinone: basic and clinical pharmacology and acute and chronic management. Am J Med Sci. 1996; 311: 286–91.

    Article  PubMed  CAS  Google Scholar 

  128. Prielipp RC, MacGregor DA, Butterworth JF, et al. Pharmacodynamics and pharmacokinetics of milrinone administration to increase oxygen delivery in critically ill patients. Chest. 1996; 109: 1291–301.

    Article  PubMed  CAS  Google Scholar 

  129. Stroshane RM, Koss RF, Biddlecome CE, et al. Oral and intravenous pharmacokinetics of milrinone in human volunteers. J Pharm Sci. 1984; 73: 1438.

    Article  PubMed  CAS  Google Scholar 

  130. Wilson H, Larijani GE, Likoff M, et al. The pharmacokinetics of milrinone in patients with chronic cardiac failure. Clin Pharmacol Ther. 1984; 35: 283.

    Google Scholar 

  131. Benotti JR, Lesko LJ, McCue JE, et al. Pharmacokinetics and pharmacodynamics of milrinone in chronic congestive heart failure. Am J Cardiol. 1985; 56: 685.

    Article  PubMed  CAS  Google Scholar 

  132. Edelson J, Stroshane RM, Benziger DP, et al. Pharmacokinetics of the bipyridines, amrinone and milrinone. Circulation. 1985; 73 Suppl. 3: 145–52.

    Google Scholar 

  133. Larsson R, Liedholm H, Andersson KE, et al. Pharmacokinetics and effects on blood pressure of a single oral dose of milrinone in healthy subjects and in patients with renal impairment. Eur J Clin Pharmacol. 1986; 29: 549–53.

    Article  PubMed  CAS  Google Scholar 

  134. Young RA, Ward A. Milrinone: a preliminary review of its pharmacological properties and therapeutic use. Drugs. 1988; 36: 158–92.

    Article  PubMed  CAS  Google Scholar 

  135. Woolfrey SG, Hegbrant J, Thysell H, et al. Dose regimen adjustment for milrinone in congestive heart failure patients with moderate and severe renal failure. J Pharm Pharmacol. 1995; 47: 651–5.

    Article  PubMed  CAS  Google Scholar 

  136. Chang AC, Atz AM, Wernovsky G, et al. Milrinone: systemic and pulmonary hemodynamic effects in neonates after cardiac surgery. Crit Care Med. 1995; 23: 1907–14.

    Article  PubMed  CAS  Google Scholar 

  137. Gilbert EM, Hershberger RE, Wiechmann RJ, et al. Pharmacological and hemodynamic effects of combined beta-agonist stimulation and phosphodiesterase inhibition in the failing human heart. Chest. 1995; 108: 1524–32.

    Article  PubMed  CAS  Google Scholar 

  138. Jondeau G, Dubourg O, Delorme G, et al. Oral enoximone as a substitute for intravenous catecholamine support in end-stage congestive heart failure. Eur Heart J. 1994; 15: 242–6.

    Article  PubMed  CAS  Google Scholar 

  139. Casella G, Cantelli I, Pavesi PC, et al. Comparative hemodynamic effects of intravenous digoxin and enoximone in severe chronic heart failure. Cardiology. 1994; 85: 303–10.

    Article  PubMed  CAS  Google Scholar 

  140. Park JW, Heinzler R, Wirtz JH, et al. Low-dose enoximone therapy in pre-transplant patients: hemodynamic, echocardiographic, and neurohumoral findings. Z Kardiol. 1994; 83 Suppl. 2: 49–53.

    PubMed  Google Scholar 

  141. Hachenberg T. Enoximone in the postoperative phase of heart surgery. Z Kardiol. 1994; 83 Suppl. 2: 63–8.

    PubMed  Google Scholar 

  142. el-Banayosy A, Doring B, Korner MM, et al. New avenues in therapy of postoperative low output syndrome. Zeitschr Kardiol. 1994; 83 Suppl. 2: 69–74.

    Google Scholar 

  143. Okerholm RA, Chan KY, Lang JE, et al. Biotransformation and pharmacokinetic overview of enoximone and its sulfoxide metabolite. Am J Cardiol. 1987; 60: 21c–26c.

    Article  PubMed  CAS  Google Scholar 

  144. Uretsky BF, Generalovich T, Verbalis JG, et al. MDL 17,043 therapy in severe congestive heart failure characterization of the early and late hemodynamic; pharmacokinetic, hormonal and clinical response. J Am Coll Cardiol. 1985; 5: 1414–21.

    Article  PubMed  CAS  Google Scholar 

  145. Gibelin P, Garraffo R, Sbirrazzuoli V, et al. Treatment of chronic cardiac insufficiency with intravenous bolus enoximone. Study of a pharmacokinetic-hemodynamic relation. Arch Mal Coeur Vaiss. 1990; 83: 75–81.

    PubMed  Google Scholar 

  146. Dieterich HA, Lang JF, Okerholm RA, et al. Bioavailability of 150mg enoximone capsules in fasting and non-fasting conditions. Naunyn Schmiedebergs Arch Pharmacol 1986; 332 Suppl.: R93.

    Article  Google Scholar 

  147. Mitrovic V, Petrovic O, Bahavar H, et al. Antischemic and hemodynamic effects of an oral single dose of 150 mg of the phosphodiesterase inhibitor enoximone in patients with coronary artery disease — relation to plasma concentration. Cardiovasc Drugs Ther. 1991; 5: 689–96.

    Article  PubMed  CAS  Google Scholar 

  148. Morita S, Sawai Y, Heeg JF, et al. Pharmacokinetics of enoximone after various intravenous administrations to healthy volunteers. J Pharm Sci. 1995; 84: 152–7.

    Article  PubMed  CAS  Google Scholar 

  149. Burns AM, Park GR. Prolonged action of enoximone in renal failure. Anaesthesia. 1991; 46: 864–5.

    Article  PubMed  CAS  Google Scholar 

  150. Trenk D, Jahnchen E. Clinical pharmacological aspects of therapy with enoximone. Z Kardiol. 1994; 83 Suppl. 2: 7–13.

    PubMed  Google Scholar 

  151. Hausdorf G. Experience with phosphodiesterase inhibitors in pediatric cardiac surgery. Eur J Anaesthesiol 1993; 8 Suppl.: 25–30.

    CAS  Google Scholar 

  152. Innes PA, Frazer RS, Booker PD, et al. Comparison of the haemodynamic effects of dobutamine with enoximone after open heart surgery in small children. Br J Anaesth. 1994; 72: 77–81.

    Article  PubMed  CAS  Google Scholar 

  153. Zickmann B, Boldt J, Knothe C, et al. Anesthesia for heart transplantation in newborn and suckling infants. Special aspects of the hypoplastic left heart syndrome. Anaesthesist. 1995; 44: 250–6.

    Article  PubMed  CAS  Google Scholar 

  154. Dage RC, Kariya T, Hsieh CP, et al. Pharmacology of enoximone. Am J Cardiol. 1987; 60: 10C–14C.

    Article  PubMed  CAS  Google Scholar 

  155. Belz GG, Meinicke T, Schäfer-Korting M. The relationship between pharmacokinetics and pharmacodynamics of enoximone in healthy men. Eur J Clin Pharmacol. 1988; 35: 631–5.

    Article  PubMed  CAS  Google Scholar 

  156. Baumann PC, Meyer BJ, Maggiorini M, et al. Hemodynamic effects and concentration-effect relationship of a graded infusion of piroximone in patients with severe heart failure. J Cardiovasc Pharmacol. 1993; 21: 489–95.

    Article  PubMed  CAS  Google Scholar 

  157. Saal JP, Habbal R, Estagnasic P. Effects of piroximone on the right ventricular function in severe heart failure patients. Intensive Care Med. 1994; 20: 341–7.

    Article  PubMed  CAS  Google Scholar 

  158. Okerholm RA, Kecky FJ, Weiner DL, et al. The pharmacokinetics of a new cardiotonic agent, MDL 19, 205, 4-ethyl-1,3-dihydro-5-(4-pyridinyl)-2H-imidazol-2-one. FASEB J. 1983; 42: 1131.

    Google Scholar 

  159. Mitrovic V, Schmidt D, Liebrich A, et al. Hemodynamic and neurohumoral effects of the new phosphodiesterase III inhibitor piroximone in patients with heart failure. Eur Heart J 1991; 12 Suppl.: 288.

    Google Scholar 

  160. Axelroth RJ, DeMarco T, Dae M, et al. Hemodynamic and clinical evaluation of piroximone, a new inotrope-vasodilator agent, in severe congestive heart failure. J Am Coll Cardiol. 1987; 9: 1124–30.

    Article  Google Scholar 

  161. Fauvel JP, Bernard N, Laville M, et al. Pharmacokinetics of piroximone after oral and intravenous administration to patients with renal insufficiency. Br J Clin Pharmacol. 1995; 39: 187–9.

    Article  PubMed  CAS  Google Scholar 

  162. Patel A, Caldicott LD, Skoyles JR, et al. Comparison of the haemodynamic effects of enoximone and piroximone in patients after cardiac surgery. Br J Anaesth. 1993; 71: 869–72.

    Article  PubMed  CAS  Google Scholar 

  163. Taburet AM, Schmit B. Pharmacokinetic optimisation of asthma treatment. Clin Pharmacokinet. 1994; 26: 396–418.

    Article  PubMed  CAS  Google Scholar 

  164. Jenne JW, Chick TW, Miller BA, et al. Effect of congestive heart failure on the elimination of theophylline. J Allergy Clin Immunol. 1974; 53: 80.

    Google Scholar 

  165. Piafsky KM, Sitar DS, Rangno RE, et al. Theophylline kinetics in acute pulmonary edema. Clin Pharmacol Ther. 1977; 21: 310–6.

    PubMed  CAS  Google Scholar 

  166. Woo OF, Koup JR, Kramer M, et al. Acute intoxication with theophylline while on chronic therapy. Vet Hum Toxicol. 1980; 22: 48–51.

    Google Scholar 

  167. Piafsky KM, Sitar DS, Rangno RE, et al. Theophylline disposition in patients with hepatic cirrhosis. N Engl J Med. 1977; 296: 1495–7.

    Article  PubMed  CAS  Google Scholar 

  168. Staib AH, Schuppan D, Lissner R, et al. Pharmacokinetics and metabolism of theophylline in patients with liver diseases. Int J Clin Pharmacol Ther Toxicol. 1980; 18: 500–2.

    PubMed  CAS  Google Scholar 

  169. Baselt RC, Albertson TE. Markedly prolonged theophylline half-life in liver failure. J Anal Toxicol. 1982; 6: 62–3.

    PubMed  CAS  Google Scholar 

  170. Mühlberg W, Platt D, Bauer M, et al. Pharmakokinetik und Pharmakodynamik von Theophyllin bei multimorbiden geriatrischen Patienten. Klin Wochenschr. 1987; 65: 551–7.

    Article  PubMed  Google Scholar 

  171. Nafziger AN, Bertino JS. Sex-related differences in theophylline pharmacokinetics. Eur J Clin Pharmacol. 1989; 37: 97–100.

    PubMed  CAS  Google Scholar 

  172. Zahorska-Markiewicz B, Waluga M, Zielinski M, et al. Pharmacokinetics of theophylline in obesity. Int J Clin Pharmacol Ther Toxicol. 1996; 34: 393–5.

    CAS  Google Scholar 

  173. Rizzo A, Mirabella A, Bonanno A. Theophylline pharmacokinetics after intramuscular administration. J Asthma. 1990; 27: 165–9.

    Article  PubMed  CAS  Google Scholar 

  174. Kraan J, Jonkman JH, Kroeter GH, et al. The pharmacokinetics of theophylline and enprofylline in patients with liver cirrhosis and in patients with chronic renal disease. Eur J Clin Pharmacol. 1988; 35: 357–62.

    Article  PubMed  CAS  Google Scholar 

  175. Leakey TE, Elias-Jones AC, Coates PE, et al. Pharmacokinetics of theophylline and ist metabolites during acute renal failure. A case report. Clin Pharmacokinet. 1991; 21: 400–8.

    Article  PubMed  CAS  Google Scholar 

  176. Kaukel E, Raedler A. Plasma-Theophyllin-Spiegel bei Hämodialyse-pflichtigen Patienten. Atemw Lungenkrkh. 1982; 8: 280–2.

    Google Scholar 

  177. Gardner MJ, Schatz M, Cousind L, et al. Longitudinal effects of pregnancy on the pharmacokinetics of theophylline. Eur J Clin Pharmacol. 1987; 32: 289–95.

    Article  PubMed  CAS  Google Scholar 

  178. Labovitz E, Spector SH. Placental theophylline transfer in pregnant asthmatics. JAMA. 1982; 247: 786–8.

    Article  PubMed  CAS  Google Scholar 

  179. Ruegger M, Medici TC. Astmatherapie und Schwangerschaft. Dtsch Med Wochenschr. 1984; 109: 753–4.

    Article  PubMed  CAS  Google Scholar 

  180. Reinhardt D, Richter O, Brandenburg G. Pharmacokinetics of drugs from the breast-feeding mother passing into the body of the infant, using theophylline as an example. Monatsschr Kinderheilkd. 1983; 131: 66–70.

    PubMed  CAS  Google Scholar 

  181. Lee TC, Charles BG, Steer PA, et al. Theophylline population pharmacokinetics from routine monitoring data in very premature infants with apnoea. Br J Clin Pharmacol. 1996; 41: 191–200.

    Article  PubMed  CAS  Google Scholar 

  182. Haley Th J. Metabolism and pharmacokinetics of theophylline in human neonates, children, and adults. Drug Metab Rev. 1983; 14: 195–335.

    Google Scholar 

  183. Dothey CI, Tserng KY, Kaw S, et al. Maturational changes of theophylline pharmacokinetics in preterm infants. Clin Pharmacol Ther. 1989; 45: 461–8.

    Article  PubMed  CAS  Google Scholar 

  184. Sidhu J, Triggs E, Charles B, et al. Individualizing aminophylline doses in premature infants using bioelectrical impedance: a non-invasive approach. J Paediatr Child Health. 1993; 29: 113–8.

    Article  PubMed  CAS  Google Scholar 

  185. Driscoll MS, Ludden TM, Casto DT, et al. Evaluation of theophylline pharmacokinetics in a pediatric population using mixed effects models. J Pharmacokinet Biopharm. 1989; 17: 141–68.

    PubMed  CAS  Google Scholar 

  186. Moore ES, Faix RG, Banagale RC, et al. The population pharmacokinetics of theophylline in neonates and young infants. J Pharmacokinet Biopharm. 1989; 17: 47–66.

    PubMed  CAS  Google Scholar 

  187. Karlsson MO, Thomson AH, McGovern EM, et al. Population pharmacokinetics of rectal theophylline in neonates. Ther Drug Monit. 1991; 13: 195–200.

    Article  PubMed  CAS  Google Scholar 

  188. Berdel D, von Berg A, Reinhardt D, et al. Pharmacokinetics and pharmacodynamics of twice-daily unequal administration of theophylline retard pellets in children of various age groups. Pneumologie. 1991; 45 Suppl. 4: 863–6.

    PubMed  Google Scholar 

  189. Nahata MC, Serafini D, Edwards R. Theophylline pharmacokinetics in patients with bronchopulmonary dysplasia. J Clin Pharm Ther. 1989; 14: 225–9.

    Article  PubMed  CAS  Google Scholar 

  190. Vichyanond P, Aranyanark N, Visitsuntorn N, et al. Theophylline pharmacokinetics in Thai children. Asian Pac J Allergy Immunol. 1994; 12: 137–43.

    PubMed  CAS  Google Scholar 

  191. Franco TG, Powell DA, Nahata MC. Pharmacokinetics of theophylline in infants with bronchiolitis. Eur J Clin Pharmacol. 1982; 23: 123–7.

    Article  Google Scholar 

  192. Micali G, Bhatt RH, Distefano G, et al. Evaluation of transdermal theophylline pharmacokinetics in neonates. Pharmacotherapy. 1993; 13: 386–90.

    PubMed  CAS  Google Scholar 

  193. Mühlberg W, Platt D, Bauer M, et al. Pharmacokinetics and pharmacodynamics of theophylline in geriatric patients with multiple diseases. Klin Wochenschr. 1987; 65: 551–7.

    Article  PubMed  Google Scholar 

  194. Au WYW, Dutt AK, De Soyza N. Theophylline kinetics in chronic obstructive airway disease in the elderly. Clin Pharmacol Ther. 1985; 37: 472–8.

    Article  PubMed  CAS  Google Scholar 

  195. Troger U, Meyer FP Influence of endogenous and exogenous effectors on the pharmacokinetics of theophylline. Focus on biotransformation. Clin Pharmacokinet. 1995; 28: 287–324.

    Article  PubMed  CAS  Google Scholar 

  196. Upton RA. Pharmacokinetic interactions between theophylline and other medication (parts I and II). Clin Pharmacokinet. 1991; 20: 66–80, 135–50.

    Article  PubMed  CAS  Google Scholar 

  197. Nix DE, Norman A, Schentag JJ. Effect of lomefloxacin on theophylline pharmacokinetics. Antimicrob Agents Chemother. 1989; 33: 1006–8.

    Article  PubMed  CAS  Google Scholar 

  198. Ruff F, Santais MC, Callens E, et al. Effect of temafloxacin on the pharmacokinetics of theophylline. Am J Med. 1991; 91: 76S–80S.

    Article  PubMed  CAS  Google Scholar 

  199. Bratel T, Billing B, Dahlqvist R. Felodipine reduces the absorption of theophylline in man. Eur J Clin Pharmacol. 1989; 36: 481–5.

    Article  PubMed  CAS  Google Scholar 

  200. Charansonney OL, Spriet A. Pentoxifylline and intermittent claudication: critical analysis of clinical trials. Review Therapie. 1995; 50: 73–8.

    CAS  Google Scholar 

  201. Ernst E. Pentoxifylline for intermittent claudication: a critical review. Angiology. 1994; 45: 339–45.

    Article  PubMed  CAS  Google Scholar 

  202. Scheffler P, de la Hamette D, Gross J, et al. Intensive vascular training in stage IIb of peripheral arterial occlusive disease: the additive effects of intravenous pentoxifylline during training. Circulation. 1994; 90: 818–22.

    Article  PubMed  CAS  Google Scholar 

  203. Koretsune Y, Kodama K, Nanto S, et al. Acute effects of intravenous trapidil on hemodynamics, coronary circulation and myocardial metabolism in man. Jpn Circ J. 1983; 47: 391–9.

    Article  PubMed  CAS  Google Scholar 

  204. Kawamura T, Kitani T, Okajima Y, et al. Effect of trapidil on prostacyclin generation of arterial wall. Prostaglandins Med. 1980; 5: 113–21.

    Article  PubMed  CAS  Google Scholar 

  205. Weiss M, Sziegoleit W, Pönicke K, et al. Bioavailability of trapidil tablets. Drugs Exp Clin Res. 1989; 39: 1137–8.

    CAS  Google Scholar 

  206. Gehrke A, Leidreiter B, Bornschein I. Zur Serumproteinbindung von Trapidil. Pharmazie. 1976; 31: 579–80.

    PubMed  CAS  Google Scholar 

  207. Nieder J, Claus P, Augustin W. Effect of trapidil in prevention of pre-eclampsia and fetal retardation. Zentralbl Gynaekol. 1995; 117: 23–8.

    CAS  Google Scholar 

  208. Krause W, Krais Th. Pharmacokinetics and pharmacodynamics of the prostacyclin analogue iloprost in man. Eur J Clin Pharmacol. 1986; 30: 61–8.

    Article  PubMed  CAS  Google Scholar 

  209. Krause W, Krais Th. Pharmacokinetics and pharmacodynamics of radio-labeled Iloprost in elderly volunteers. Eur J Clin Pharmacol. 1987; 32: 597–605.

    Article  PubMed  CAS  Google Scholar 

  210. Hildebrand M, Krause W, Oberender HA, et al. Pharmacokinetics of iloprost in patients with severe peripheral arterial occlusive disease. Eicosanoids. 1990; 3: 145–8.

    PubMed  CAS  Google Scholar 

  211. Hildebrand M, Krause W, Fabian H, et al. Pharmacokinetics of iloprost in patients with chronic renal failure and on maintenance haemodialysis. Int J Clin Pharmacol Res. 1990; 10: 285–92.

    PubMed  CAS  Google Scholar 

  212. Hildebrand M, Krause W, Angeli P, et al. Pharmacokinetics of iloprost in patients with hepatic dysfunction. Int J Pharmacol Ther Toxicol. 1990; 28: 430–4.

    CAS  Google Scholar 

  213. Schror K. Aspirin and platelets: the antiplatelet action of aspirin and its role in thrombosis treatment and prophylaxis. Semin Thromb Hemost. 1997; 23(4): 349–56.

    Article  PubMed  CAS  Google Scholar 

  214. Scheffler P, de la Hamette D, Leipnitz G. Therapeutic efficacy of intravenously applied prostaglandin E1. Vasa 1989; 28 Suppl.: 19–25.

    PubMed  CAS  Google Scholar 

  215. Golub M, Zia P, Matsuno M, et al. Metabolism of prostaglandin A1 and E1 in man. J Clin Invest. 1975; 56: 1404–10.

    Article  PubMed  CAS  Google Scholar 

  216. Creutzig A, Caspary L. Prostanoids in therapy of peripheral arterial occlusive disease. Therapie. 1991; 46: 241–5.

    PubMed  CAS  Google Scholar 

  217. Heidrich H, Breddin HK, Rudofsky G, et al. Cardiopulmonary effects and safety of prostaglandin E1: a review. Int J Angiol. 1994; 3: 160–8.

    Article  Google Scholar 

  218. Rudofsky G. Intravenöse und intraarterialle Prostaglandin E1 Behandlung bei Patienten im Stadium IIb einer arteriellen Verschlußkrankheit. Vasa 1988; 23 Suppl.: 121.

    PubMed  CAS  Google Scholar 

  219. Thadani U. Role of nitrates in angina pectoris. Am J Cardiol. 1992; 70: 43B–53B.

    Article  PubMed  CAS  Google Scholar 

  220. Unger P, Leone A, Staroukine M, et al. Hemodynamic response to molsidomine in patients with ischemic cardiomyopathy tolerant to isosorbide dinitrate. J Cardiovasc Pharmacol. 1991; 18: 888–94.

    Article  PubMed  CAS  Google Scholar 

  221. Wagner F, Gohlke-Bärwoff C, Trenk D, et al. Differences in the antiischaemic effects of molsodomine and isosorbide dinitrate (ISDN) during acute and short-term administration in stable angina pectoris. Eur Heart J. 1991; 12: 994–9.

    PubMed  CAS  Google Scholar 

  222. Engelmann L, Gottschild D. Zum hämodynamischen Wirkungsprofil von Pentaerytrithyltetranitrat. Z Gesamte Inn Med. 1981; 36: 244–6.

    PubMed  CAS  Google Scholar 

  223. Bultas J, Karetova D. Does chronic nitrate therapy induce tolerance to short-acting ones? Sbornik Lekarsky. 1993; 94: 71–5.

    PubMed  CAS  Google Scholar 

  224. Oates JA. Antihypertensive agents and the drug therapy of hypertension. In: Hardman JG, Limbird LE, Molinoff PB, et al., editors. The pharmacological basis of therapeutics. 9th ed. New York: McGraw-Hill, 1996: 781–808.

    Google Scholar 

  225. Bogaert MG. Pharmacokinetics of organic nitrates in man: an overview. Eur Heart J 1988; 9 Suppl. A: 33–7.

    Article  PubMed  CAS  Google Scholar 

  226. Bogaert MG. Clinical pharmacokinetics of organic nitrates. Clin Pharmacokinet. 1983; 8: 410–21.

    Article  PubMed  CAS  Google Scholar 

  227. Vogt D, Trenk D, Bonn R, et al. Pharmacokinetics and haemodynamic effects of ISDN following different dosage forms and routes of administration. Eur J Clin Pharmacol. 1994; 46: 319–24.

    Article  PubMed  CAS  Google Scholar 

  228. Taylor T, Chasseaud LF, Doyle E, et al. Isosorbide dinitrate pharmacokinetics. Drug Res. 1982; 32: 1329–33.

    CAS  Google Scholar 

  229. Bogaert MG, Rosseel MT, Boelaert J, et al. Fate of isosorbide dinitrate and mononitrates in patients with renal failure. Eur J Clin Pharmacol. 1981; 21: 73–6.

    Article  PubMed  CAS  Google Scholar 

  230. Bauer H, Laufen H, Franz HE. Isosorbide dinitrate in plasma and dialysate during haemodialysis. Eur J Clin Pharmacol. 1986; 30: 187–90.

    Article  PubMed  CAS  Google Scholar 

  231. Bogaert MG, Rosseel MT, Elewaut A. Fate of orally given isosorbide dinitrate in cirrhotic patients. Int J Clin Pharmacol Ther Toxicol. 1984; 22: 491–2.

    PubMed  CAS  Google Scholar 

  232. Bogaert MG, Rosseel MT. Fate of orally given isosorbide dinitrate in man: factors of variability. Z Kardiol. 1983; 72 Suppl. 3: 11–3.

    PubMed  Google Scholar 

  233. Schneeweiss A, Weiss M. Advances in nitrate therapy. 2nd ed. Berlin: Springer, 1990.

    Book  Google Scholar 

  234. Abshagen U. Pharmacokinetics of isosorbide mononitrate. Am J Cardiol. 1992; 70: 61G–66G.

    Article  PubMed  CAS  Google Scholar 

  235. Fung HL. Pharmacokinetics and pharmacodynamics of organic nitrates. Am J Cardiol. 1987; 60: 4H–9H.

    Article  PubMed  CAS  Google Scholar 

  236. Taylor T, Taylor IW, Chassseaud LF, et al. Pharmacokinetics and metabolism of organic nitrate vasodilators. Prog Drug Metabolism. 1987; 10: 207–336.

    CAS  Google Scholar 

  237. Evers J, Krakamp B, Klimkait W, et al. Pharmacokinetics of 5-ISMN in renal insufficiency. Herz/Kreisl 1984; 16 Suppl.: 9–12.

    Google Scholar 

  238. Evers J, Krakamp B, Klimkait W, et al. Pharmacokinetics of isosorbide-5-nitrate in renal failure. Eur J Clin Pharmacol. 1986; 30: 349–50.

    Article  PubMed  CAS  Google Scholar 

  239. Evers J, Bonn R, Boertz A, et al. Pharmacokinetics of isosorbide-5-nitrate during haemodialysis and peritoneal dialysis. Eur J Clin Pharmacol. 1987; 32: 503–5.

    Article  PubMed  CAS  Google Scholar 

  240. Steudel HC, Volkenandt M, Steudel AT. Pharmacokinetics of isosorbide-5-mononitrate after oral and intravenous administration in patients with liver cirrhosis. Z Kardiol. 1983; 72 Suppl. 3: 24–8.

    PubMed  CAS  Google Scholar 

  241. Akpan W, Endele R, Neugebauer G, et al. Pharmacokinetics of IS-5-MN after oral and intravenous administration in patients with hepatic failure. In: Cohn JN, Rittinghausen R, editors. Mononitrates. Berlin: Springer, 1985; 86–91.

    Chapter  Google Scholar 

  242. Nakashima E, Rigod JF, Lin ET, et al. Pharmacokinetics of nitroglycerin and its dinitrate metabolites over a thirtyfold range of oral doses. Clin Pharmacol Ther. 1990; 47: 592–8.

    Article  PubMed  Google Scholar 

  243. Abshagen U. Clinical pharmacology of antianginal drugs. In: Abshagen U, editor. Handbook of experimental pharmacology. Vol. 76. Berlin, Heidelberg: Springer Verlag, 1985.

    Google Scholar 

  244. Kwon HR, Green P, Curry SH. Pharmacokinetics of nitroglycerin and ist metabolites after administration of sustainedrelease tablets. Biopharm Drug Dispos. 1992; 13: 141–52.

    Article  PubMed  CAS  Google Scholar 

  245. Thadani U, Whitsett T. Relationship of pharmacokinetic and pharmacodynamic properties of the organic nitrates. Clin Pharmacokinet. 1988; 15: 32–43.

    Article  PubMed  CAS  Google Scholar 

  246. Abrams J. Update on nitroglycerin and nitrates. Drug Ther. 1992; 67: 82–4.

    Google Scholar 

  247. Habbab MA, Haft JA. Heparin resistance induced by intravenous nitroglycerin. Arch Intern Med. 1987; 147: 857–60.

    Article  PubMed  CAS  Google Scholar 

  248. Pizzulli L, Nitsch J, Lüderitz B. Hemmung der Heparinwirkung durch Glyceroltrinitrat. Dtsch Med Wochenschr. 1988; 113: 1837–40.

    Article  PubMed  CAS  Google Scholar 

  249. Gonzalez ER, Jones HD, Graham S, et al. Assessment of the drug interaction between intravenous nitroglycerin and heparin. Ann Pharmacother. 1992; 26: 1512–4.

    PubMed  CAS  Google Scholar 

  250. Berk SI, Grunwald A, Pal S, et al. Effect of intravenous nitroglycerin on heparin dosage requirements in coronary artery disease. Am J Cardiol. 1993; 72: 393–6.

    Article  PubMed  CAS  Google Scholar 

  251. Bassenge E. Pharmakologische Basis der Therapie mit Molsidomin. Herz. 1982; 5: 296–306.

    Google Scholar 

  252. Schulz W, Kober G, Bernauer R, et al. Active and passive changes in coronary diameter after vasodilation with SIN-1, the active metabolite of molsidomine. Am Heart J. 1985; 109: 694–9.

    Article  PubMed  CAS  Google Scholar 

  253. Chassoux G. Molsidomine and lipid metabolism J Cardiovasc Pharmacol 1989; 14 Suppl. 11: S137–8.

    PubMed  Google Scholar 

  254. Rosenkranz B, Winkelmann BR, Parnham MJ. Clinical pharmacokinetics of molsidomine. Clin Pharmacokinet. 1996; 30: 372–84.

    Article  PubMed  CAS  Google Scholar 

  255. Bergstrand R, Vedin A, Wilhelmsson C, et al. Intravenous and oral administration of molsidomine, a pharmacodynamic and pharmacokinetic study. Eur J Clin Pharmacol. 1984; 27: 203–8.

    Article  PubMed  CAS  Google Scholar 

  256. Ostrowski J, Gaul G, Voegele D, et al. Pharmacokinetics of an extended-release dosage form of molsidomine in patients with coronary heart disease. Eur J Clin Pharmacol. 1985; 28: 611–3.

    Article  PubMed  CAS  Google Scholar 

  257. Meinertz T, Brandstätter A, Trenk D, et al. Relationship between pharmacokinetics and pharmacodynamics of molsidomine and its metabolites in humans. Am Heart J. 1985; 109: 644–8.

    Article  PubMed  CAS  Google Scholar 

  258. Spreux-Varoquaux O, Doll J, Grandjean N, et al. Pharmacokinetics of molesidomine and its active metabolite, linsidomine, in patients with liver cirrhosis. Br J Clin Pharmacol. 1991; 32(3): 399–401.

    Article  PubMed  CAS  Google Scholar 

  259. Wiemer M, Pizzulli L, Reichert H, et al. Gibt es eine Wechselwirkung zwischen Heparin und Molsidomin? Z Kardiol 1992; 81 Suppl. 1: 104.

    Google Scholar 

  260. Kojda G, Stein D, Kottenberg E, et al. In vivo effects of pentaerythrityl-tetranitrate and isosorbide-5-mononitrate on the development of atherosclerosis and endothelial dysfunction in cholesterol-fed rabbits. J Cardiovasc Pharmacol. 1995; 25: 763–73.

    Article  PubMed  CAS  Google Scholar 

  261. Schneider HT, Stalleicken D. Pentaerithrityltetranitrat. Darmstadt: Steinkopf Verlag, 1995.

    Book  Google Scholar 

  262. Weber W, Michaelis K, Luckow V, et al. Pharmacokinetics and bioavailability of pentaerithrityl tetranitrate and two of its metabolites. Drug Res. 1995; 45: 781–4.

    CAS  Google Scholar 

  263. Haustein KO, Winkler U, Löffler A, et al. Absorption and bioavailability of pentaerithrityl-tetranitrate. Int J Clin Pharmacol Ther Toxicol. 1995; 33: 95–102.

    CAS  Google Scholar 

  264. Ivankovich AD, Braverman B, Stephens TS, et al. Sodium thiosulfate in humans: relation to sodium nitroprusside toxicity. Anesthesiology. 1983; 58: 11–7.

    Article  PubMed  CAS  Google Scholar 

  265. Schulz V. Clinical pharmacokinetics of nitroprusside, cyanide, thiosulphate and thiocyanate. Clin Pharmacokinet. 1984; 9: 239–51.

    Article  PubMed  CAS  Google Scholar 

  266. Bodigheimer K, Nowak F, Schoenborn W. Pharmacokinetics and thyrotoxicity of the sodium nitroprusside metabolite thiocyanate. Dtsch Med Wochenschr. 1979; 104: 939–43.

    Article  PubMed  CAS  Google Scholar 

  267. Kirsten R, Nelson K, Kirsten D, et al. Clinical pharmacokinetics of vasodilators: part I. Clin Pharmacokinet. 1998; 34: 457–82.

    Article  PubMed  CAS  Google Scholar 

  268. Urquhart J. A call for a new discipline. Pharm Technol. 1987; 11: 16–7.

    Google Scholar 

  269. Girvin B, Johnston GD. The implications of noncompliance with antihypertensive medication. Drugs. 1996; 52: 186–95.

    Article  PubMed  CAS  Google Scholar 

  270. Hirschl MM. Guidelines for the drug treatment of hypertensive crises. Drugs. 1995; 50: 991–1000.

    Article  PubMed  CAS  Google Scholar 

  271. Müller FB, Laragh JH. Issues, goals, and guidelines for choosing first-line and combination antihypertensive drug therapy. In: Hypertensive pathophysiology, diagnosis, and management. Laragh JH, Brenner BM, editors. New York: Raven Press Ltd, 1990: 2107–15.

    Google Scholar 

  272. Roccella EJ, For the National High Blood Pressure Education Program Working Group on Hypertension Control in Children and Adolescents. Update on the 1987 task force report on high blood pressure in children and adolescents: a working group report from the national high blood pressure education program. Pediatrics. 1996; 98: 649–58.

    Google Scholar 

  273. Okada M, Inoue H, Nakamura Y, et al. Excretion of diltiazem in human milk. N Engl J Med. 1985; 312: 992–3.

    Article  PubMed  CAS  Google Scholar 

  274. Begg EJ, Atkinson HC, Darlow BA. Guide to safety of drugs in breastfeeding. In: Speight TM, Holford NHG, editors. Averys Drug Treatment. 4th ed. Auckland: Adis International Press, 1997: 1701–23.

    Google Scholar 

  275. Ellsworth A. Pharmacotherapy of hypertension while breastfeeding. J Hum Lact. 1994; 10: 121–4.

    Article  PubMed  CAS  Google Scholar 

  276. Campbell N, Paddock V, Sundaram R. Alteration of methyldopa absorption, metabolism, and blood pressure control caused by ferrous sulphate and ferrous glucuronate. Clin Pharmacol Ther. 1988; 43: 381–6.

    Article  PubMed  CAS  Google Scholar 

  277. Knott C. The treatment of hypertension in pregnancy: clinical pharmacokinetic considerations. Clin Pharmacokinet. 1991; 21: 233–41.

    Article  PubMed  CAS  Google Scholar 

  278. Boutroy MJ, Vert P, de Ligny BH, et al. Captopril administration in pregnancy impairs fetal angiotensin converting enzyme activity and neonatal adaptation. Lancet. 1984; 2: 935–6.

    Article  PubMed  CAS  Google Scholar 

  279. Fiochi R, Lijnen P, Fagard R, et al. Captopril during pregnancy. Lancet. 1984; 2: 1153.

    Article  Google Scholar 

  280. Lindheimer MD, Katz AI. Preeclampsia: pathophysiology, diagnosis, and management. Ann Rev Med. 1989; 40: 233–50.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kirsten, R., Nelson, K., Kirsten, D. et al. Clinical Pharmacokinetics of Vasodilators. Clin Pharmacokinet 35, 9–36 (1998). https://doi.org/10.2165/00003088-199835010-00002

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00003088-199835010-00002

Keywords

Navigation