Skip to main content
Log in

Pharmacokinetic-Pharmacodynamic Relationship of the Selective Serotonin Reuptake Inhibitors

  • Review Article
  • Pharmacokinetic-Pharmacodynamic Relationships
  • Published:
Clinical Pharmacokinetics Aims and scope Submit manuscript

Summary

The recently introduced antidepressants, the selective serotonin reuptake inhibitors (SSRIs) [citalopram, fluoxetine, fluvoxamine, paroxetine and sertraline], are known for their clinical efficacy, good tolerability and relative safety. They differ from each other in chemical structure, metabolism and pharmacokinetic properties. Therapeutic drug monitoring of these compounds is not widely used, as the plasma concentration ranges within which clinical response with minimal adverse effects appears to be optimal are not clearly defined.

Almost all recent assays developed for the quantitative determination of SSRIs and their metabolites in blood are based either on the separation of SSRIs by high performance liquid chromatography (HPLC) or gas chromatography (GC). Citalopram and fluoxetine have been introduced as racemic compounds. There are some differences in the pharmacological profile, metabolism and pharmacokinetics between the enantiomers of the parent compounds and their demethylated metabolites. Stereoselective chromatographic methods for their analysis in blood are now available.

With regard to the SSRIs presently available, no clearcut plasma concentration-clinical effectiveness relationship in patients with depression has been shown, nor any threshold which defines toxic concentrations. This may be explained by their low toxicity and use at dosages where serious adverse effects do not appear.

SSRIs vary widely in their qualitative and quantitative interaction with cytochrome P450 (CYP) isozymes in the liver. CYP2D6 is inhibited by SSRIs, in order of decreasing potency paroxetine, norfluoxetine, fluoxetine, sertraline, citalopram and fluvoxamine. This may have clinical consequences with some but not all SSRIs, when they are taken with tricyclic antidepressants. Except for citalopram and paroxetine, little is known about the enzymes which control the biotransformation of the SSRIs.

There have been many reports on marked pharmacokinetic interactions between fluoxetine and tricyclic antidepressants. Fluoxetine has a stronger effect on their hydroxylation than on their demethylation. Interactions observed between fluoxetine and alprazolam, midazolam and carbamazepine seem to occur on the level of CYP3A.

Fluvoxamine strongly inhibits the N-demethylation of some tricyclic antidepressants of the tertiary amine type and of clozapine. This may lead to adverse effects but augmentation with fluvoxamine can also improve response in very rapid metabolisers, as it increases the bioavailability of the comedication. Fluvoxamine inhibits with decreasing potency, CYP1A2, CYP2C19, CYP2D6 and CYP1A1, but it is also an inhibitor of CYP3A. Fluoxetine and fluvoxamine have shown to increase methadone plasma concentrations in dependent patients.

Some authors warn about a combination of monoamine oxidase (MAO) inhibitors with SSRIs, as this could lead to a serotonergic syndrome. Studies with healthy volunteers suggest, however, that a combination of moclobemide and SSRIs, such as fluvoxamine, should not present serious risks in promoting a serotonin syndrome. A combination of moclobemide and fluvoxamine has successfully been used in refractory depression, but more studies are needed, including plasma-concentration monitoring, before this combined treatment can be recommended.

Paroxetine is a substrate of CYP2D6, but other enzyme(s) could also be involved. Its pharmacokinetics are linear in poor metabolisers of sparteine, and non-linear in extensive metabolisers. Due to its potent CYP2D6 inhibiting properties, comedication with this SSRI can lead to an increase of tricyclic antidepressants in plasma, as shown with amitriptyline and trimipramine. CYP3A has been claimed to be involved in the biotransformation of sertraline to norsertraline. Clinical investigations (with desipramine) confirmed in vitro findings that CYP2D6 inhibition by sertraline is only moderate.

The SSRIs are known to be effective and generally well tolerated antidepressants. None of the SSRIs has had a clearcut plasma concentration-clinical effectiveness relationship demonstrated. Therefore, therapeutic drug monitoring may be useful in situations where poor compliance is suspected and in special populations (elderly patients, patients with liver or renal disease, etc.). However, there are only a few case reports which describe such situations. More studies are needed to clarify the role of CYP isozymes in the metabolism of SSRIs, especially of fluoxetine, fluvoxamine and sertraline.

Knowledge has increased on the role of the CYP isozymes CYP2D6, CYP2C19, CYP1A2 and CYP3A in the interactions which have been observed between SSRIs and other drugs. The risk of interaction with negative clinical consequences is highest with fluoxetine, paroxetine and fluvoxamine, and of little clinical significance with citalopram and sertraline, but in some situations, a combination treatment may favour clinical response. More studies on the combined use of reversible MAO-inhibitors and SSRIs are needed, including plasmaconcentration monitoring.

The effect of other drugs on the metabolism and pharmacokinetics of SSRIs has been poorly investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Luo H, Richardson JS. A pharmacological comparison of citalopram, a bicyclic serotonin selective uptake inhibitor, with traditional tricyclic antidepressants. Int Clin Psycho-pharmacol 1993; 8: 3–12

    CAS  Google Scholar 

  2. Harris MG, Benfield P. Fluoxetine: a review of its pharmacodynamic and pharmacokinetic properties, and therapeutic use in older patients with depressive illness. Drugs Aging 1995; 6: 64–84

    PubMed  CAS  Google Scholar 

  3. Gram LF. Drug therapy: fluoxetine. N Engl J Med 1994; 331: 1354–61

    PubMed  CAS  Google Scholar 

  4. Wilde MI, Plosker GL, Benfield P. Fluvoxamine: an updated review of its pharmacology, and therapeutic use in depressive illness. Drugs 1993; 46: 895–924

    PubMed  CAS  Google Scholar 

  5. Dechant KL, Clissold SP. Paroxetine: a review of its pharmacodynamic and pharmacokinetic properties, and therapeutic potential in depressive illness. Drugs 1991; 41: 225–53

    PubMed  CAS  Google Scholar 

  6. Holliday SM, Plosker GL. Paroxetine: a review of its pharmacology, therapeutic use in depression and therapeutic potential in diabetic neuropathy. Drugs Aging 1993; 3: 278–99

    PubMed  CAS  Google Scholar 

  7. Murdoch D, McTavish D. Sertraline: a review of its pharmacodynamic and pharmacokinetic properties, and therapeutic potential in depression and obsessive-compulsive disorder. Drugs 1992; 44: 604–24

    PubMed  CAS  Google Scholar 

  8. Perucca E, Gatti G, Spina E. Clinical pharmacokinetics of fluvoxamine. Clin Pharmacokinet 1994; 27: 175–90

    PubMed  CAS  Google Scholar 

  9. Goodnick PJ. Pharmacokinetic optimisation of therapy with newer antidepressants. Clin Pharmacokinet 1994; 27: 307–30

    PubMed  CAS  Google Scholar 

  10. Altamura AC, Moro AR, Percudani M. Clinical pharmacokinetics of fluoxetine. Clin Pharmacokinet 1994; 26: 201–14

    PubMed  CAS  Google Scholar 

  11. Baumann P, Larsen F. The pharmacokinetics of citalopram. Rev Contemp Pharmacother 1995; 6: 287–95

    CAS  Google Scholar 

  12. Preskorn SH. Pharmacokinetics of antidepressants: why and how they are relevant to treatment. J Clin Psychiatry 1993; 54 Suppl. 9: 14–34

    Google Scholar 

  13. Preskorn S. Targeted pharmacotherapy in depression management: comparative pharmacokinetics of fluoxetine, paroxetine and sertraline. Int Clin Psychopharmacol 1994; 9 Suppl. 3: 13–9

    Google Scholar 

  14. Van Harten J. Clinical pharmacokinetics of selective serotonin reuptake inhibitors. Clin Pharmacokinet 1993; 24: 203–20

    PubMed  Google Scholar 

  15. Preskorn SH, Magnus RD. Inhibition of hepatic P-450 isoenzymes by serotonin selective reuptake inhibitors: in vitro and in vivo findings and their implications for patient care. Psychopharmacol Bull 1994; 30: 251–9

    PubMed  CAS  Google Scholar 

  16. Brøsen K. The pharmacogenetics of the selective serotonin reuptake inhibitors. Clin Invest 1993; 71: 1002–9

    Google Scholar 

  17. Preskorn SH, Magnus R. The clinically relevant pharmacology of selective serotonin reuptake inhibitors. Clin Pharmacokinet 1996; Suppl. In press

  18. Sacchetti E, Conte G, Guarneri L. Are SSRI antidepressants a clinically homogenous class of compounds? Lancet 1994; 344: 126–7

    PubMed  CAS  Google Scholar 

  19. Eap CB, Baumann P. Analytical methods for the quantitative determination of SSRIs for therapeutic drug monitoring purposes in patients. J Chromatogr B Biomed Appl. In press

  20. Matsui E, Hoshino M, Matsui A, et al. Simultaneous determination of citalopram and its metabolites by high-performance liquid chromatography with column switching and fluorescence detection by direct plasma injection. J Chromatogr B Biomed Appl 1995; 668: 299–307

    PubMed  CAS  Google Scholar 

  21. Rochat B, Amey M, van Gelderen H, et al. Determination of the enantiomers of citalopram, its demethylated and propionic acid metabolites in human plasma by chiral HPLC. Chirality 1995; 7: 389–95

    PubMed  CAS  Google Scholar 

  22. Rochat B, Amey M, Baumann P. Analysis of enantiomers of citalopram and its demethylated metabolites in plasma of depressive patients using chiral reverse-phase liquid chromatography. Ther Drug Monit 1995; 17: 273–9

    PubMed  CAS  Google Scholar 

  23. Dixit V, Nguyen H, Dixit VM. Solid-phase extraction of fluoxetine and norfluoxetine from serum with gas chromatography-electron-capture detection. J Chromatogr B Biomed Appl 1991; 563: 379–84

    CAS  Google Scholar 

  24. Lantz RJ, Farid KZ, Koons J, et al. Determination of fluoxetine and norfluoxetine in human plasma by capillary gas chromatography with electron-capture detection. J Chromatogr B Biomed Appl 1993; 614: 175–9

    CAS  Google Scholar 

  25. Norman TR, Gupta RK, Burrows GD, et al. Relationship between antidepressant response and plasma concentrations of fluoxetine and norfluoxetine. Int Clin Psychopharmacol 1993; 8: 25–9

    PubMed  CAS  Google Scholar 

  26. Kelly MW, Perry PJ, Holstad SG, et al. Serum fluoxetine and norfluoxetine concentrations and antidepressant response. Ther Drug Monit 1989; 11: 165–70

    PubMed  CAS  Google Scholar 

  27. El-Yazigi A, Raines DA. Concurrent liquid chromatographic measurement of fluoxetine, amitriptyline, imipramine, and their active metabolites norfluoxetine, nortriptyline, and desipramine in plasma. Ther Drug Monit 1993; 15: 305–9

    PubMed  CAS  Google Scholar 

  28. Thomare P, Wang K, Van Der Meersch-Mougeot V, et al. Sensitive micromethod for column liquid chromatographic determination of fluoxetine and norfluoxetine in human plasma. J Chromatogr B Biomed Appl 1992; 583: 217–21

    CAS  Google Scholar 

  29. Orsulak PJ, Kenney JT, Debus JR, et al. Determination of the antidepressant fluoxetine and its metabolite norfluoxetine in serum by reversed-phase HPLC, with ultraviolet detection. Clin Chem 1988; 34: 1875–8

    PubMed  CAS  Google Scholar 

  30. Greenblatt DJ, Preskorn SH, Cotreau MM, et al. Fluoxetine impairs clearance of alprazolam but not of clonazepam. Clin Pharmacol Ther 1992; 52: 479–86

    PubMed  CAS  Google Scholar 

  31. Wong SHY, Dellafera SS, Fernandes R, et al. Determination of fluoxetine and norfluoxetine by high-performance liquid chromatography. J Chromatogr 1990; 499: 601–8

    PubMed  CAS  Google Scholar 

  32. Nichols JH, Charlson JR, Lawson GM. Automated HPLC assay of fluoxetine and norfluoxetine in serum. Clin Chem 1994; 40: 1312–6

    PubMed  CAS  Google Scholar 

  33. Suckow RF, Zhang MF, Cooper TB. Sensitive and selective liquid-chromatographic assay of fluoxetine and norfluoxetine in plasma with fluorescence detection after precolumn derivatization. Clin Chem 1992; 38: 1756–61

    PubMed  CAS  Google Scholar 

  34. Amitai Y, Kennedy E, DeSandre P, et al. Red cell and plasma concentrations of fluoxetine and norfluoxetine. Vet Hum Toxicol 1993; 35: 134–6

    PubMed  CAS  Google Scholar 

  35. Torok-Both GA, Baker GB, Coutts RT, et al. Simultaneous determination of fluoxetine and norfluoxetine enantiomers in biological samples by gas chromatography with electron-capture detection. J Chromatogr B Biomed Appl 1992; 579: 99–106

    CAS  Google Scholar 

  36. Eap CB, Gaillard N, Powell K, et al. Simultaneous determination of plasma levels of fluvoxamine and of the enantiomers of fluoxetine and norfluoxetine by gas chromatography-mass spectrometry. J Chromatogr B Biomed Appl 1996; 682: 265–72

    PubMed  CAS  Google Scholar 

  37. Potts BD, Parli CJ. Analysis of the enantiomers of fluoxetine and norfluoxetine in plasma and tissue using chiral derivatization and normal-phase liquid chromatography. J Liq Chromatogr 1992; 15: 665–81

    CAS  Google Scholar 

  38. Peyton AL, Carpenter R, Rutkowski K. The stereospecific determination of fluoxetine and norfluoxetine enantiomers in human plasma by high-pressure liquid chromatography (HPLC) with fluorescence detection. Pharm Res 1991; 8: 1528–32

    PubMed  CAS  Google Scholar 

  39. Hurst HE, Jones DR, Jarboe CH, et al. Determination of clovoxamine concentration in human plasma by electron capture gas chromatography. Clin Chem 1981; 27: 1210–2

    PubMed  CAS  Google Scholar 

  40. Foglia JP, Birder LA, Perel JM. Determination of fluvoxamine in human plasma by high-performance liquid chromatography with ultraviolet detection. J Chromatogr B Biomed Appl 1989; 495: 295–302

    CAS  Google Scholar 

  41. Van Der Meersch-Mougeot V, Diquet B. Sensitive one-step extraction procedure for column liquid chromatographic determination of fluvoxamine in human and rat plasma. J Chromatogr B Biomed Appl 1991; 567: 441–9

    Google Scholar 

  42. Belmadani A, Combourieu I, Bonini M, et al. High performance liquid chromatography with ultraviolet detection used for laboratory routine determination of fluvoxamine in human plasma. Hum Exp Toxicol 1995; 14: 34–7

    PubMed  CAS  Google Scholar 

  43. Wong SHY, Kranzler HR, DellaFera S, et al. Determination of fluvoxamine concentration in plasma by reversed-phase liquid chromatography. Biomed Chromatogr 1994; 8: 278–82

    PubMed  CAS  Google Scholar 

  44. Pullen RH, Fatmi AA. Determination of fluvoxamine in human plasma by high-performance liquid chromatography with fluorescence detection. J Chromatogr B Biomed Appl 1992; 574: 101–7

    CAS  Google Scholar 

  45. Pommery J, Lhermitte M. High performance liquid chromatography determination of fluvoxamine in human plasma. Biomed Chromatogr 1989; 3: 177–9

    PubMed  CAS  Google Scholar 

  46. Härtter S, Wetzel H, Hiemke C. Automated determination of fluvoxamine in plasma by column-switching high-performance liquid chromatography. Clin Chem 1992; 38: 2082–6

    PubMed  Google Scholar 

  47. Schweitzer C, Spahn H, Mutschier E. Fluorimetric determination of fluvoxamine of clovoxamine in human plasma after thin-layer chromatographic or high-performance liquid chromatographic separation. J Chromatogr B Biomed Appl 1986; 382: 405–11

    CAS  Google Scholar 

  48. Petersen EN, Bechgaard E, Sortwell RJ, et al. Potent depletion of 5HT from monkey whole blood by a new 5HT uptake inhibitor, paroxetine (FG 7051). Eur J Pharmacol 1978; 52: 115–9

    PubMed  CAS  Google Scholar 

  49. Brett MA, Dierdorf H-D, Zussman BD, et al. Determination of paroxetine in human plasma, using high-performance liquid chromatography with fluorescence detection. J Chromatogr B Biomed Appl 1987; 419: 438–44

    CAS  Google Scholar 

  50. Gupta RN. Column liquid chromatographic determination of paroxetine in human serum using solid-phase extraction. J Chromatogr B Biomed Appl 1994; 661: 362–5

    PubMed  CAS  Google Scholar 

  51. Härtter S, Hermes B, Szegedi A, et al. Automated determination of paroxetine and its main metabolite by column switching and on-line high-performance liquid chromatography. Ther Drug Monit 1994; 16: 400–6

    PubMed  Google Scholar 

  52. Danish University Antidepressant Group. Paroxetine: a selective serotonin reuptake inhibitor showing better tolerance, but weaker antidepressant effect than clomipramine in a controlled multicenter study. J Affect Disord 1990; 18: 289–99

    Google Scholar 

  53. Tremaine LM, Joerg EA. Automated gas chromatography-electron-capture assay for the selective serotonin uptake blocker sertraline. J Chromatogr B Biomed Appl 1989; 496: 423–9

    CAS  Google Scholar 

  54. Gupta RN, Dziurdzy SA. Therapeutic monitoring of sertraline. Clin Chem 1994; 40: 498–9

    PubMed  CAS  Google Scholar 

  55. Rogowsky D, Marr M, Long G, et al. Determination of sertraline and desmethylsertraline in human serum using copolymeric bonded-phase extraction, liquid chromatography and gas chromatography-mass spectrometry. J Chromatogr B Biomed Appl 1994; 655: 138–41

    PubMed  CAS  Google Scholar 

  56. Wilner KD, Preskorn SH. The pharmacokinetics of sertraline. Clin Pharmacokinet 1996; Suppl. In press

  57. Fredricson Overø K. Preliminary studies of the kinetics of citalopram in man. Eur J Clin Pharmacol 1978; 14: 69–73

    Google Scholar 

  58. Gottlieb P, Wandall T, Fredricson Overø K. Initial, clinical trial of a new, specific 5-HT reuptake inhibitor, citalopram (Lu 10-171). Acta Psychiatr Scand 1980; 62: 236–44

    PubMed  CAS  Google Scholar 

  59. Kragh-Sørensen P, Fredricson Overø K, Petersen OL, et al. The kinetics of citalopram: single and multiple dose studies in man. Acta Pharmacol Toxicol 1981; 48: 53–60

    Google Scholar 

  60. Pedersen OL, Kragh-Sørensen P, Bjerre M, et al. Citalopram, a selective serotonin reuptake inhititor: clinical antidepressive and long-term effect: a phase II study. Psychopharmacology 1982; 77: 199–204

    PubMed  CAS  Google Scholar 

  61. Fredricson Overø K. Kinetics of citalopram in man: plasma levels in patients. Prog Neuropsychopharmacol Biol Psychiatry 1982; 6: 311–8

    PubMed  Google Scholar 

  62. Øyehaug E, Østensen ET, Salvesen B. High-performance liquid chromatographic determination of citalopram and four of its metabolites in plasma and urine samples from psychiatric patients. J Chromatogr B Biomed Appl 1984; 308: 199–208

    Google Scholar 

  63. Christensen P, Thomsen HY, Pedersen OL, et al. Orthostatic side effects of clomipramine and citalopram during treatment for depression. Psychopharmacology 1985; 86: 383–5

    PubMed  CAS  Google Scholar 

  64. Bjerkenstedt L, Flyckt L, Fredricson Overø K, et al. Relationship between clinical effects, serum drug concentration and serotonin uptake inhibition in depressed patients treated with citalopram: a double-blind comparison of three dose levels. Eur J Clin Pharmacol 1985; 28: 553–7

    PubMed  CAS  Google Scholar 

  65. de Wilde J, Mertens C, Fredricson Overø K, et al. Citalopram versus mianserin: a controlled double-blind trial in depressed patients. Acta Psychiatr Scand 1985; 72: 89–96

    PubMed  Google Scholar 

  66. Fredricson Overø K, Toft B, Christophersen L, et al. Kinetics of citalopram in elderly patients. Psychopharmacology 1985; 86: 253–7

    Google Scholar 

  67. Beving H, Bjerkenstedt L, Malmgren R, et al. The effects of citalopram (Lu 10-171) on the serotonin (5-HT) uptake kinetics in platelets from endogenously depressed patients. J Neural Transm 1985; 61: 95–104

    PubMed  CAS  Google Scholar 

  68. Danish University Antidepressant Group (DUAG). Citalopram: clinical effect profile in comparison with clomipramine.A controlled multicenter study. Psychopharmacology 1986; 90: 131–8

    Google Scholar 

  69. Lader M, Melhuish A, Frcka G, et al. The effects of citalopram in single and repeated doses and with alcohol on physiological and psychological measures in healthy subjects. Eur J Clin Pharmacol 1986; 31: 183–90

    PubMed  CAS  Google Scholar 

  70. Dufour H, Bouchacourt M, Thermoz P, et al. Citalopram: a highly selective 5-HT uptake inhibitor in the treatment of depressed patients. Int Clin Psychopharmacol 1987; 2: 225–37

    PubMed  CAS  Google Scholar 

  71. Naranjo CA, Sellers EM, Sullivan JT, et al. The serotonin uptake inhibitor citalopram attenuates ethanol intake. Clin Pharmacol Ther 1987; 41: 266–74

    PubMed  CAS  Google Scholar 

  72. Bouchard JM, Delaunay J, Delisle J-P, et al. Citalopram versus maprotiline: a controlled clinical multicentre trial in depressed patients. Acta Psychiatr Scand 1987; 76: 583–92

    PubMed  CAS  Google Scholar 

  73. Montgomery SA, Rasmussen JGC, Tanghøj P. A 24-week study of 20mg citalopram, 40mg citalopram, and placebo in the prevention of relapse of major depression. Int Clin Psychopharmacol 1993; 8: 181–8

    PubMed  CAS  Google Scholar 

  74. van Bemmel AL, Van Den Hoofdakker RH, Beersma DGM, et al. Changes in sleep polygraphic variables and clinical state in depressed patients during treatment with citalopram. Psychopharmacology 1993; 113: 225–30

    PubMed  Google Scholar 

  75. Uehlinger C, Nil R, Amey M, et al. Citalopram-lithium combination treatment of elderly depressed patients: a pilot study. Int J Ger Psychiatry 1995; 10: 281–7

    Google Scholar 

  76. Baumann P, Nil R, Souche A, et al. A double-blind placebo controlled study of citalopram with and without lithium in the treatment of therapy-resistent depressive patients. J Clin Psychopharmacol 1996; 16: 307–14

    PubMed  CAS  Google Scholar 

  77. American Psychiatric Association. Diagnostic and statistical manual of mental disorders. 3rd ed. Washington, DC: American Psychiatric Association, 1980

    Google Scholar 

  78. Hyttel J, Bøgesø KP, Perregaard J, et al. The pharmacological effect of citalopram resides in the (S)-(+)- enantiomer J Neural Transm Gen Sect 1992; 88: 157–60

    PubMed  CAS  Google Scholar 

  79. Seifritz E, Baumann P, Müller MJ, et al. Neuroendocrine effects of a 20-mg citalopram infusion in healthy males: a placebocontrolled evaluation as 5-HT function probe. Neurophsychopharmacy 1996; 14: 253–63

    CAS  Google Scholar 

  80. Pirker W, Asenbaum S, Kasper S, et al. β-CIT SPECT demonstrates blockade of 5HT-uptake sites by citalopram in the human brain in vivo. J Neural Transm Gen Sect 1995; 100: 247–56

    PubMed  CAS  Google Scholar 

  81. Wong DT, Fuller RW, Robertson DW. Fluoxetine and its two enantiomers as selective serotonin uptake inhibitors. Acta Pharm Nord 1990; 2: 171–9

    PubMed  CAS  Google Scholar 

  82. Wong DT, Bymaster FP, Reid LR, et al. Norfluoxetine enantiomers as inhibitors of serotonin uptake in rat brain. Neuro-psychopharmacology 1993; 8: 337–44

    CAS  Google Scholar 

  83. Beasley Jr CM, Bosomworth JC, Wernicke JF. Fluoxetine: relationships among dose, response, adverse events, and plasma concentrations in the treatment of depression. Psychopharmacol Bull 1990; 26: 18–24

    PubMed  Google Scholar 

  84. Fava M, Rosenbaum JF, Cohen L, et al. High-dose fluoxetine in the treatment of depressed patients not responsive to a standard dose of fluoxetine. J Affect Disord 1992; 25: 229–34

    PubMed  CAS  Google Scholar 

  85. Keck Jr PE, McElroy SL. Ratio of plasma fluoxetine to norfluoxetine concentrations and associated sedation. J Clin Psychiatry 1992; 53: 127–9

    PubMed  Google Scholar 

  86. Nelson JC, Mazure CM, Bowers Jr MB, et al. A preliminary, open study of the combination of fluoxetine and desipramine for rapid treatment of major depression. Arch Gen Psychiatry 1991; 48: 303–7

    PubMed  CAS  Google Scholar 

  87. Schwartz EM, Markovitz PJ. Fluoxetine responsivity mediated by serum levels, not dose [letter]. J Clin Psychopharmacol 1993; 13: 363–4

    PubMed  CAS  Google Scholar 

  88. Ceccherini-Nelli A, Guidi L. Fluoxetine: the relationship between response, adverse events, and plasma concentrations in the treatment of bulimia nervosa. Int Clin Psychopharmacol 1993; 8: 311–3

    PubMed  CAS  Google Scholar 

  89. Goff DC, Midha KK, Sarid-Segal O, et al. A placebo-controlled trial of fluoxetine added to neuroleptic in patients with schizophrenia. Psychopharmacology 1995; 117: 417–23

    PubMed  CAS  Google Scholar 

  90. Stevens JC, Wrighton SA. Interaction of the enantiomers of fluoxetine and norfluoxetine with human liver cytochromes P450. J Pharmacol Exp Ther 1993; 266: 964–71

    PubMed  CAS  Google Scholar 

  91. Baumann P, Rochat B. Comparative pharmacokinetics of selective serotonin reuptake inhibitors: a look behind the mirror. Int Clin Psychopharmacol 1995; 10 Suppl. 1: 15–21

    Google Scholar 

  92. Asberg M, Crönholm B, Sjöqvist F, et al. Relationship between plasma level and therapeutic effect of nortriptyline. BMJ 1971; 3: 331–4

    PubMed  CAS  Google Scholar 

  93. Hendrickse WA, Roffwarg HP, Grannemann BD, et al. The effects of fluoxetine on the polysomnogram of depressed outpatients: a pilot study. Neuropsychopharmacology 1994; 10: 85–91

    PubMed  CAS  Google Scholar 

  94. Fluoxetine Bulimia Nervosa Collaborative Study Group. Fluoxetine in the treatment of bulimia nervosa: a multicenter, placebo-controlled, double-blind trial. Arch Gen Psychiatry 1992; 49: 139–47

    Google Scholar 

  95. Miner CM, Davidson JRT, Potts NLS, et al. Brain fluoxetine measurements using fluorine magnetic resonance spectroscopy in patients with social phobia. Biol Psychiatry 1995; 38: 696–8

    PubMed  CAS  Google Scholar 

  96. Kasper S, Dötsch M, Kick H, et al. Plasma concentrations of fluvoxamine and maprotiline in major depression: implications on therapeutic efficacy and side effects. Eur Neuro-psychopharmacol 1993; 3: 13–21

    CAS  Google Scholar 

  97. Martin PR, Adinoff B, Lane E, et al. Fluvoxamine treatment of alcoholic amnestic disorder. Eur Neuropsychopharmacol 1995; 5: 27–33

    PubMed  CAS  Google Scholar 

  98. Martin PR, Adinoff B, Eckardt MJ, et al. Effective pharmacotherapy of alcoholic amnestic disorder with fluvoxamine. Arch Gen Psychiatry 1989; 46: 617–21

    PubMed  CAS  Google Scholar 

  99. Peyre F, Verdoux H, Bourgeois M. Fluvoxamine. Etude de la relation posologies-taux plasmatiques sur un groupe de 80 déprimés hospitalisés. Encephale 1992; 18: 76–8

    PubMed  Google Scholar 

  100. Spigset O, Öhman R. A case of fluvoxamine intoxication demonstrating nonlinear elimination pharmacokinetics. J Clin Psychopharmacol 1996; 16: 254–5

    PubMed  CAS  Google Scholar 

  101. Tasker TCG, Kaye CM, Zussman BD, et al. Paroxetine plasma levels: lack of correlation with efficacy or adverse events. Acta Psychiatr Scand 1989; 80 Suppl. 350: 152–5

    CAS  Google Scholar 

  102. Lund Laursen A, Mikkelsen PL, Rasmussen S, et al. Paroxetine in the treatment of depression: a randomized comparison with amitriptyline. Acta Psychiatr Scand 1985; 71: 249–55

    Google Scholar 

  103. Kuhs H, Schlake H-P, Rolf LH, et al. Relationship between parameters of serotonin transport and antidepressant plasma levels or therapeutic response in depressive patients treated with paroxetine and amitriptyline. Acta Psychiatr Scand 1992; 85: 364–9

    PubMed  CAS  Google Scholar 

  104. Sprouse J, Clarke T, Reynolds L, et al. Comparison of the effects of sertraline and its metabolite desmethylsertraline on blockade of central 5-HT reuptake in vivo. Neuropsychopharmacology 1996; 14: 225–31

    PubMed  CAS  Google Scholar 

  105. DeVane CL. Pharmacogenetics and drug metabolism of newer antidepressant agents. J Clin Psychiatry 1994; 55 Suppl. 12: 38–45

    Google Scholar 

  106. Crewe HK, Lennard MS, Tucker GT, et al. The effect of selective serotonin re-uptake inhibitors on cytochrome P4502D6 (CYP2D6) activity in human liver microsomes. Br J Clin Pharmacol 1992; 34: 262–5

    PubMed  CAS  Google Scholar 

  107. Von Moltke LL, Greenblatt DJ, Court MH, et al. Inhibition of alprazolam and desipramine hydroxylation in vitro by paroxetine and fluvoxamine: comparison with other selective serotonin reuptake inhibitor antidepressants. J Clin Psychopharmacol 1995; 15: 125–31

    PubMed  CAS  Google Scholar 

  108. Preskorn SH. Drug-drug interaction: Dr DeVane Replies. J Clin Psychiatry 1996; 57: 223–7

    PubMed  CAS  Google Scholar 

  109. Brøsen K. Are pharmacokinetic drug interactions with the SSRIs an issue? Int Clin Psychopharmacol 1996; 11 Suppl. 1: 23–7

    PubMed  Google Scholar 

  110. Nemeroff CB, DeVane CL, Pollock BG. Newer antidepressants and the cytochrome P450 system. Am J Psychiatry 1996; 153: 311–20

    PubMed  CAS  Google Scholar 

  111. Riesenman C. Antidepressant drug interactions and the cytochrome P450 system: a critical appraisal. Pharmacotherapy 1995; 15(6 Pt 2): 845–995

    Google Scholar 

  112. Shen WW. Cytochrome P450 monooxygenases and interactions of psychotropic drugs: a five-year update. Int J Psychiatry Med 1995; 25: 277–90

    PubMed  CAS  Google Scholar 

  113. Von Moltke LL, Greenblatt DJ, Schmider J, et al. Metabolism of drugs by cytochrome P450 3A isoforms: implications for drug interactions in psychopharmacology. Clin Pharmacokinet 1995; 29 Suppl. 1: 33–44

    Google Scholar 

  114. Flockhart DA. Drug interactions and the cytochrome P450 sistem: the role of cytochrome P450 2C19. Clin Pharmacokinet 1995; 29 Suppl. 1: 45–52

    Google Scholar 

  115. Brøsen K. Drug interactions and the cytochrome P450 systems: the role of cytochrome P450 1A2. Clin Pharmacokinet 1995; 29 Suppl. 1: 20–5

    PubMed  Google Scholar 

  116. Gram LF, Hansen MGJ, Sindrup SH, et al. Citalopram: interaction studies with levomepromazine, imipramine, and lithium. Ther Drug Monit 1993; 15: 18–24

    PubMed  CAS  Google Scholar 

  117. Baettig D, Bondolfi G, Montaldi S, et al. Tricyclic antidepressant plasma levels after augmentation with citalopram: a case study. Eur J Clin Pharmacol 1993; 44: 403–5

    PubMed  CAS  Google Scholar 

  118. Neuvonen PJ, Pohjola-Sintonen S, Tacke U, et al. Five fatal cases of serotonin syndrome after moclobemide-citalopram or moclobemide-clomipramine overdoses. Lancet 1993; 342: 1419

    PubMed  CAS  Google Scholar 

  119. Preskorn SH, Alderman J, Chung M, et al. Pharmacokinetics of desipramine coadministered with sertraline or fluoxetine. J Clin Psychopharmacol 1994; 14: 90–8

    PubMed  CAS  Google Scholar 

  120. Bergstrom RF, Peyton AL, Lemberger L. Quantification and mechanism of the fluoxetine and tricyclic antidepressant interaction. Clin Pharmacol Ther 1992; 51: 239–48

    PubMed  CAS  Google Scholar 

  121. El-Yazigi A, Chaleby K, Gad A, et al. Steady-state kinetics of fluoxetine and amitriptyline in patients treated with a combination of these drugs as compared with those treated with amitriptyline alone. J Clin Pharmacol 1995; 35: 17–21

    PubMed  CAS  Google Scholar 

  122. Bertschy G, Vandel S, Perault MC. Un cas d’interaction métabolique: amitriptyline, fluoxétine, antituberculeux. Therapie 1994; 49: 509–12

    PubMed  CAS  Google Scholar 

  123. Lemberger L, Rowe H, Bosomworth JC, et al. The effect of fluoxetine on the pharmacokinetics and psychomotor responses of diazepam. Clin Pharmacol Ther 1988; 43: 412–9

    PubMed  CAS  Google Scholar 

  124. Lasher TA, Fleishaker JC, Steenwyk RC, Antal EJ. Pharmacokinetic pharmacodynamic evaluation of the combined administration of alprazolam and fluoxetine. Psychopharmacology 1991; 104: 323–7

    PubMed  CAS  Google Scholar 

  125. Wright CE, Lasher-Sisson TA, Steenwyk RC, et al. A pharmacokinetic evaluation of the combined administration of triazolam and fluoxetine. Pharmacotherapy 1992; 12: 103–6

    PubMed  CAS  Google Scholar 

  126. Grimsley SR, Jann MW, Carter JG, et al. Increased carbamazepine plasma concentrations after fluoxetine coadministration. Clin Pharmacol Ther 1991; 50: 10–5

    PubMed  CAS  Google Scholar 

  127. Spina E, Avenoso A, Pollicino AM, et al. Carbamazepine coadministration with fluoxetine or fluvoxamine. Ther Drug Monit 1993; 15: 247–50

    PubMed  CAS  Google Scholar 

  128. Batki SL, Manfredi LB, Jacob P, III., et al. Fluoxetine for cocaine dependence in methadone maintenance: quantitative plasma and urine cocaine/benzoylecgonine concentrations. J Clin Psychopharmacol 1993; 13: 243–50

    PubMed  CAS  Google Scholar 

  129. Bertschy G, Eap CB, Powell K, et al. Fluoxetine addition to methadone in addicts: pharmacokinetic aspects. Ther Drug Monit 1996; 18: 570–2

    PubMed  CAS  Google Scholar 

  130. Eggert AE, Crismon ML, Dorson PG. Lack of effect of fluoxetine on plasma clozapine concentrations. J Clin Psychiatry 1994; 55: 454–5

    PubMed  CAS  Google Scholar 

  131. Centorrino F, Baldessarini RJ, Kando J, et al. Serum concentrations of clozapine and its major metabolites: effects of cotreatment with fluoxetine or valproate. Am J Psychiatry 1994; 151: 123–5

    PubMed  CAS  Google Scholar 

  132. Centorrino F, Baldessarini RJ, Frankenburg FR, et al. Serum levels of clozapine and norclozapine in patients treated with selective serotonin reuptake inhibitors. Am J Psychiatry 1996; 153: 820–2

    PubMed  CAS  Google Scholar 

  133. Breuel H-P, Müller-Oerlinghausen B, Nickelsen T, et al. Pharmacokinetic interactions between lithium and fluoxetine after single and repeated fluoxetine administration in young healthy volunteers. Int J Clin Pharmacol Ther 1995; 33: 415–9

    PubMed  CAS  Google Scholar 

  134. Salama AA, Shafey M. A case of severe lithium toxicity induced by combined fluoxetine and lithium carbonate. Am J Psychiatry 1989; 146: 278

    PubMed  CAS  Google Scholar 

  135. Bertschy G, Vandel S, Vandel B, et al. Fluvoxamine-tricyclic antidepressant interaction: an accidental finding. Eur J Clin Pharmacol 1991; 40: 119–20

    PubMed  CAS  Google Scholar 

  136. Vandel S, Bertschy G, Baumann P, et al. Fluvoxamine and fluoxetine: interaction studies with amitriptyline, clomipramine, and neuroleptics in phenotyped patients. Pharmacol Res 1995; 31: 347–53

    PubMed  CAS  Google Scholar 

  137. Härtter S, Arand M, Oesch F, et al. Non-competitive inhibition of clomipramine N-demethylation by fluvoxamine. Psychopharmacology 1995; 117: 149–53

    PubMed  Google Scholar 

  138. Seifritz E, Holsboer-Trachsler E, Hemmeter U, et al. Increased trimipramine plasma levels during fluvoxamine comedication. Eur Neuropsychopharmacol 1994; 4: 15–20

    PubMed  CAS  Google Scholar 

  139. Spina E, Pollicino AM, Avenoso A, et al. Effect of fluvoxamine on the pharmacokinetics of imipramine and desipramine in healthy subjects. Ther Drug Monit 1993; 15: 243–6

    PubMed  CAS  Google Scholar 

  140. Conus P, Bondolfi G, Eap CB, et al. Pharmacokinetic fluvoxamine: clomipramine interaction with favorable therapeutic consequences in therapy-resistant depressive patient. Pharmaco-psychiatry 1996; 29: 108–10

    CAS  Google Scholar 

  141. Szegedi A, Wiesner J, Hiemke C. Improved efficacy and fewer side effects under clozapine treatment after addition of fluvoxamine. J Clin Psychopharmacol 1995; 15: 141–3

    PubMed  CAS  Google Scholar 

  142. Jerling M, Lindström L, Bondesson U, et al. Fluvoxamine inhibition and carbamazepine induction of the metabolism of clozapine: evidence from a therapeutic drug monitoring service. Ther Drug Monit 1994; 16: 368–74

    PubMed  CAS  Google Scholar 

  143. Hiemke C, Weigmann H, Härtter S, et al. Elevated levels of clozapine in serum after addition of fluvoxamine. J Clin Psychopharmacol 1994; 14: 279–81

    PubMed  CAS  Google Scholar 

  144. Dumortier G, Lochu A, Colen de Melo P, et al. Elevated clozapine plasma concentrations after fluvoxamine initiation. Am J Psychiatry 1996; 153: 738–9

    PubMed  CAS  Google Scholar 

  145. DeQuardo JR, Roberts M. Elevated clozapine levels after fluvoxamine initiation. Am J Psychiatry 1996; 153: 840–1

    PubMed  CAS  Google Scholar 

  146. Stevens I, Gaertner HJ. Plasma level measurement in a patient with clozapine intoxication. J Clin Psychopharmacol 1996; 16: 86–7

    PubMed  CAS  Google Scholar 

  147. Koponen HJ, Leinonen E, Lepola U. Fluvoxamine increases the clozapine serum levels significantly. Eur Neuropsychopharmacol 1996; 6: 69–71

    PubMed  CAS  Google Scholar 

  148. Wallnöfer A, Guentert TW, Eckernäs SA, et al. Moclobemide and fluvoxamine co-administration: a prospective study in healthy volunteers to investigate the potential development of the ‘serotonin syndrome’. Hum Psychopharmacol 1995; 10: 25–31

    Google Scholar 

  149. Ebert D, Albert R, May A, et al. Combined SSRI-RIMA treatment in refractory depression: safety data and efficacy. Psychopharmacology 1995; 119: 342–4

    PubMed  CAS  Google Scholar 

  150. Bertschy G, Baumann P, Eap CB, et al. Probable metabolic interaction between methadone and fluvoxamine in addict patients. Ther Drug Monit 1994; 16: 42–5

    PubMed  CAS  Google Scholar 

  151. Van Harten J, Stevens LA, Raghoebar M, et al. Fluvoxamine does not interact with alcohol or potentiate alcohol-related impairement of cognitive function. Clin Pharmacol Ther 1992; 52: 427–35

    PubMed  Google Scholar 

  152. Linnoila M, Stapleton JM, George DT, et al. Effects of fluvoxamine, alone and in combination with ethanol, on psychomotor and cognitive performance and on autonomic nervous system reactivity in healthy volunteers. J Clin Psychopharmacol 1993; 13: 175–80

    PubMed  CAS  Google Scholar 

  153. Daniel DG, Randolph C, Jaskiw G, et al. Coadministration of fluvoxamine increases serum concentrations of haloperidol. J Clin Psychopharmacol 1994; 14: 340–3

    PubMed  CAS  Google Scholar 

  154. Bonnet P, Vandel S, Nezelof S, et al. Carbamazepine, fluvoxamine. Is there a pharmacokinetic interaction? Therapie 1992; 47: 165

    PubMed  CAS  Google Scholar 

  155. Cottencin O, Regnaut N, Thevenon-Gignac C, et al. Interaction carbamazépine-fluvoxamine. Conséquences sur le taux plasmatique de carbamazépine. Encephale 1995; 21: 141–5

    PubMed  CAS  Google Scholar 

  156. Fleishaker JC, Hulst LK. A pharmacokinetic and pharmacodynamic evaluation of the combined administration of alprazolam and fluvoxamine. Eur J Clin Pharmacol 1994; 46: 35–9

    PubMed  CAS  Google Scholar 

  157. Perucca E, Gatti G, Cipolla G, et al. Inhibition of diazepam metabolism by fluvoxamine: a pharmacokinetic study in normal volunteers. Clin Pharmacol Ther 1994; 56: 471–6

    PubMed  CAS  Google Scholar 

  158. Bloomer JC, Woods FR, Haddock RE, et al. The role of cytochrome P4502D6 in the metabolism of paroxetine by human liver microsomes. Br J Clin Pharmacol 1992; 33: 521–3

    PubMed  CAS  Google Scholar 

  159. Lydiard RB, Anton RF, Cunningham T. Interactions between sertraline and tricyclic antidepressants. Am J Psychiatry 1993; 150: 1125–6

    PubMed  CAS  Google Scholar 

  160. Barros J, Asnis G. An interaction of sertraline and desipramine. Am J Psychiatry 1993; 150: 1751

    PubMed  CAS  Google Scholar 

  161. Bakish D, Hooper CL, West DL, et al. Moclobemide and specific serotonin re-uptake inhibitor combination treatment of resistant anxiety and depressive disorders. Hum Psychopharmacol 1995; 10: 105–9

    Google Scholar 

  162. Sindrup SH, Brøsen K, Hansen MGJ, et al. Pharmacokinetics of citalopram in relation to the sparteine and the mephenytoin oxidation polymorphisms. Ther Drug Monit 1993; 15: 11–7

    PubMed  CAS  Google Scholar 

  163. Leinonen E, Lepola U, Koponen H, et al. The effect of age and concomitant treatment with other psychoactive drugs on serum concentrations of citalopram measured with a non-enantioselective method. Ther Drug Monit 1996; 18: 111–7

    PubMed  CAS  Google Scholar 

  164. Skjelbo E, Brøsen K. Inhibitors of imipramine metabolism by human liver microsomes. Br J Clin Pharmacol 1992; 34: 256–61

    PubMed  CAS  Google Scholar 

  165. Lemoine A, Gautier JC, Azoulay D, et al. Major pathway of imipramine metabolism is catalyzed by cytochromes P-450 1A2 and P-450 3A4 in human liver. Mol Pharmacol 1993; 43: 827–32

    PubMed  CAS  Google Scholar 

  166. Schmider J, Greenblatt DJ, Von Moltke LL, et al. N-Demethylation of amitriptyline in vitro: role of cytochrome P-450 3A (CYP3A) isoforms and effect of metabolic inhibitors. J Pharmacol Exp Ther 1995; 275: 592–7

    PubMed  CAS  Google Scholar 

  167. Baumann P, Jonzier-Perey M, Koeb L, et al. Amitriptyline pharmacokinetics and clinical response: II. Metabolic polymorphism assessed by hydroxylation of debrisoquine and mephenytoin. Int Clin Psychopharmacol 1986; 1: 102–12

    PubMed  CAS  Google Scholar 

  168. Breyer-Pfaff U, Pfandl B, Nill K, et al. Enantioselective amitriptyline metabolism in patients phenotyped for two cytochrome P450 isozymes. Clin Pharmacol Ther 1992; 52: 350–8

    PubMed  CAS  Google Scholar 

  169. Mellström B, Säwe J, Bertilsson L, et al. Amitriptyline metabolism: association with debrisoquin hydroxylation in non-smokers. Clin Pharmacol Ther 1986; 39: 369–71

    PubMed  Google Scholar 

  170. Bertilsson L, Henthorn TK, Sanz E, et al. Importance of genetic factors in the regulation of diazepam metabolism: relationship to S-mephenytoin, but not debrisoquin, hydroxylation phenotype. Clin Pharmacol Ther 1989; 45: 348–55

    PubMed  CAS  Google Scholar 

  171. Yasumori T, Nagata K, Yang SK, et al. Cytochrome P450 mediated metabolism of diazepam in human and rat: involvement of human CYP2C in N-demethylation in the substrate concentration-dependent manner. Pharmacogenetics 1993; 3: 291–301

    PubMed  CAS  Google Scholar 

  172. Andersson T, Miners JO, Veronese ME, et al. Diazepam metabolism by human liver microsomes is mediated by both S-mephenytoin hydroxylase and CYP3A isoforms. Br J Clin Pharmacol 1994; 38: 131–7

    PubMed  CAS  Google Scholar 

  173. Von Moltke LL, Greenblatt DJ, Cotreau-Bibbo MM, et al. Inhibitors of alprazolam metabolism in vitro: effect of serotonin-reuptake-inhibitor antidepressants, ketoconazole and quinidine. Br J Clin Pharmacol 1994; 38: 23–31

    CAS  Google Scholar 

  174. Ring BJ, Binkley SN, Roskos L, et al. Effect of fluoxetine, norfluoxetine, sertraline and desmethyl sertraline on human CYP3A catalyzed 1′-hydroxy midazolam formation in vitro. J Pharmacol Exp Ther 1995; 275: 1131–5

    PubMed  CAS  Google Scholar 

  175. Ketter TA, Flockhart DA, Post RM, et al. The emerging role of cytochrome P450 3A in psychopharmacology. J Clin Psychopharmacol 1995; 15: 387–98

    PubMed  CAS  Google Scholar 

  176. Fischer V, Vogels B, Maurer G, et al. The antipsychotic clozapine is metabolized by the polymorphic human microsomal and recombinant cytochrome P450 2D6. J Pharmacol Exp Ther 1992; 260: 1355–60

    PubMed  CAS  Google Scholar 

  177. Kingsbury SJ, Puckett KM. Effects of fluoxetine on serum clozapine levels. Am J Psychiatry 1995; 152: 473

    PubMed  CAS  Google Scholar 

  178. Centorrino F, Baldessarini RJ, Kando JC, et al. Clozapine and metabolites: concentrations in serum and clinical findings during treatment of chronically psychotic patients. J Clin Psychopharmacol 1994; 14: 119–25

    PubMed  CAS  Google Scholar 

  179. Van Harten J. Overview of the pharmacokinetics of fluvoxamine. Clin Pharmacokinet 1995; 29 Suppl. 1: 1–9

    Google Scholar 

  180. Wagner W, Vause EW. Fluvoxamine: a review of global drug-drug interaction data. Clin Pharmacokinet 1995; 29 Suppl. 1: 26–32

    Google Scholar 

  181. Rasmussen BB, Mäenpää J, Pelkonen O, et al. Selective serotonin reuptake inhibitors and theophylline metabolism in human liver microsomes: potent inhibition by fluvoxamine. Br J Clin Pharmacol 1995; 39: 151–9

    PubMed  CAS  Google Scholar 

  182. Brøsen K, Skjelbo E, Rasmussen BB, et al. Fluvoxamine is a potent inhibitor of cytochrome P4501A2. Biochem Pharmacol 1993; 45: 1211–4

    PubMed  Google Scholar 

  183. Jensen KG, Poulsen HE, Doehmer J, et al. Kinetics and inhibition by fluvoxamine of phenacetin O-deethylation in V79 cells expressing human CYP1A2. Pharmacol Toxicol 1995; 76: 286–8

    PubMed  CAS  Google Scholar 

  184. Lejoyeux M, Adès J, Rouillon F. Serotonin syndrome: incidence, symptoms and treatment. CNS Drugs 1994; 2: 132–43

    Google Scholar 

  185. Fritze J, Unsorg B, Lanczik M. Interaction between carbamazepine and fluvoxamine. Acta Psychiatr Scand 1991; 84: 583–4

    PubMed  CAS  Google Scholar 

  186. Sindrup SH, Brøsen K, Gram LF, et al. The relationship between paroxetine and the sparteine oxidation polymorphism. Clin Pharmacol Ther 1992; 51: 278–87

    PubMed  CAS  Google Scholar 

  187. Brøsen K, Hansen JG, Nielsen KK, et al. Inhibition by paroxetine of desipramine metabolism in extensive but not in poor metabolizers of sparteine. Eur J Clin Pharmacol 1993; 44: 349–55

    PubMed  Google Scholar 

  188. Sindrup SH, Brøsen K, Gram LF. Pharmacokinetics of the selective serotonin reuptake inhibitor paroxetine: nonlinearity and relation to the sparteine oxidation polymorphism. Clin Pharmacol Ther 1992; 51: 288–95

    PubMed  CAS  Google Scholar 

  189. Leinonen E, Koponen HJ, Lepola U. Paroxetine increases serum trimipramine concentration: a report of two cases. Hum Psychopharmacol 1995; 10: 345–7

    Google Scholar 

  190. Eap CB, Laurian S, Souche A, et al. Influence of quinidine on the pharmacokinetics of trimipramine and on its effect on the waking EEG of healthy volunteers: a pilot study on two subjects. Neuropsychobiology 1992; 25: 214–20

    PubMed  CAS  Google Scholar 

  191. Rochat B, Amey M, Gillet M, et al. Identification of three cytochrome P450 isozymes involved in N-demethylation of citalopram enantiomers in human liver microsomes. Pharmacogentics. In press

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pierre Baumann.

Additional information

Dedicated to Professor Chr. Müller for his 75th birthday

Rights and permissions

Reprints and permissions

About this article

Cite this article

Baumann, P. Pharmacokinetic-Pharmacodynamic Relationship of the Selective Serotonin Reuptake Inhibitors. Clin-Pharmacokinet 31, 444–469 (1996). https://doi.org/10.2165/00003088-199631060-00004

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00003088-199631060-00004

Keywords

Navigation