Skip to main content
Log in

Comparative Tolerability of Sulphonylureas in Diabetes Mellitus

  • Review Article
  • Published:
Drug Safety Aims and scope Submit manuscript

Abstract

The sulphonylurea drugs have been the mainstay of oral treatment for patients with diabetes mellitus since they were introduced. In general, they are well tolerated, with a low incidence of adverse effects, although there are some differences between the drugs in the incidence of hypoglycaemia. Over the years, the drugs causing the most problems with hypoglycaemia have been chlorpropamide and glibenclamide (glyburide), although this is a potential problem with all sulphonylureas because of their action on the pancreatic β cell, stimulating insulin release.

Other specific problems have been reported with chlorpropamide that occur only rarely, if at all, with other sulphonylureas. Hyponatraemia secondary to inappropriate antidiuretic hormone activity, and increased flushing following the ingestion of alcohol, have been well described.

The progressive β cell failure with time results in eventual loss of efficacy, as these agents depend on a functioning β cell and are ineffective in the absence of insulin-producing capacity. Differences in this secondary failure rate have been reported, with chlorpropamide and gliclazide having lower failure rates than glibenclamide or glipizide. The reasons for this are unclear, but the more abnormal pattern of insulin release produced by glibenclamide may be partly responsible and, indeed, may explain the increased risk of hypoglycaemia with this agent.

Previously reported increased mortality associated with tolbutamide therapy has not been substantiated, and more recent data have shown no increased mortality from sulphonylurea treatment. Indeed, benefit from glycaemic control, regardless of the agent used — insulin or sulphonylurea — was reported by the United Kingdom Prospective Diabetes Study. Nevertheless, there is still ongoing controversy in view of the experimental evidence, mainly from animal studies, of potential adverse effects on the heart from sulphonylureas, but these are difficult to extrapolate into clinical situations. Most of these studies have been carried out with glibenclamide, which makes comparison of possible risk difficult.

Other cardiovascular risk factors may be modified by gliclazide, which seems unique among the sulphonylureas in this respect. Its reported haemobiological and free radical scavenging activity probably resides in the azabicyclo-octyl ring structure in the side chain. Reduced progression or improvement in retinopathy has been reported in comparative trials with other sulphonylureas, and the effect is unrelated to improvements in glycaemia.

There are differences between the sulphonylureas in some adverse effects, risk of hypoglycaemia, failure rates and actions on vascular risk factors. As a group of drugs, they are very well tolerated, but differences in overall tolerability can be identified.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Table I
Table II

Similar content being viewed by others

References

  1. Levin R, Duncan GG. Symposium on clinical and experimental effects of sulphonylureas in diabetes mellitus [editorial]. Metabolism 1956; 5: 721–6

    Google Scholar 

  2. Shen S-W, Bressler R. Clinical pharmacology of oral antidiabetic agents: part 1. N Engl J Med 1973; 296: 493–7

    Google Scholar 

  3. Shen S-W, Bressler R. Clinical pharmacology of oral antidiabetic agents: part 2. N Engl J Med 1973; 296: 787–93

    Google Scholar 

  4. Jackson JE, Bressler R. Clinical pharmacology of sulphonylurea hypoglycaemic agents: part 2. Drugs 1981; 22: 295–320

    Article  PubMed  CAS  Google Scholar 

  5. Gerich JE. Oral hypoglycaemic agents. N Engl J Med 1989; 321: 1231–45

    Article  PubMed  CAS  Google Scholar 

  6. Melander A, Bitzen P-O, Faber O, et al. Sulphonylurea antidiabetic drugs: an update of their clinical pharmacology and rational therapeutic use. Drugs 1989; 37: 58–72

    Article  PubMed  CAS  Google Scholar 

  7. Marchetti P, Navalesi R. Pharmacokinetic-pharmacodynamic relationships of oral hypoglycaemic agents: an update. Clin Pharmacokinet 1989; 16: 100–28

    Article  PubMed  CAS  Google Scholar 

  8. Kilo C, Miller JP, Williamson JR. The crux of the UGDP: spurious results and biologically inappropriate data analysis. Diabetologia 1980; 18: 179–185

    Article  PubMed  CAS  Google Scholar 

  9. Leibowtz G, Cerasi E. Sulphonylurea treatment of NIDDM patients with cardiovascular disease: a mixed blessing? Diabetologia 1996; 39: 503–514

    Article  Google Scholar 

  10. Vegh A, Papp JG. Haemodynamic and other effects of sulphonylurea drugs on the heart. Diabetes Res Clin Pract 1996; 31Suppl.: S43–53

    Article  PubMed  CAS  Google Scholar 

  11. Koltai MZ. Influence of hypoglycaemic sulphonylureas on the electro-physiological parameters of the heart. Diabetes Res Clin Pract 1996; 31Suppl.: S15–20

    Article  PubMed  CAS  Google Scholar 

  12. Smits P, Thien T. Cardiovascular effects of sulphonylurea derivatives: implications for the treatment of NIDDM? Diabetologia 1995; 38: 116–21

    Article  PubMed  CAS  Google Scholar 

  13. Bijlstra PJ, Lutterman JA, Russel FGM, et al. Interaction of sulphonylurea derivatives with vascular ATP-sensitive potassium channels in humans. Diabetologia 1996; 39: 1083–90

    Article  PubMed  CAS  Google Scholar 

  14. Cook DL. The B-cell response to oral hypoglycaemic agents. Diabetes Res Clin Pract 1995; 28Suppl.: S81–9

    Article  PubMed  CAS  Google Scholar 

  15. Kramer W, Muller G, Girbig F, et al. The molecular interaction of sulphonylureas with B-cell ATP-sensitive K+-channels. Diabetes Res Clin Pract 1995; 28Suppl.: S67–S80

    Article  PubMed  CAS  Google Scholar 

  16. Henquin JC. The fiftieth anniversary of hypoglycaemic sulphonamides: how did the mother compound work? Diabetologia 1992; 35: 907–12

    Article  PubMed  CAS  Google Scholar 

  17. Taylor JA. Pharmacokinetics and biotransformation of chlorpropamide in man. Clin Pharmacol Ther 1972; 13: 710–18

    PubMed  CAS  Google Scholar 

  18. Seltzer HS. Drug induced hypoglycaemia, a review based on 473 cases. Diabetes 1972; 21: 955–66

    PubMed  CAS  Google Scholar 

  19. Agarwall RC, Kumar D, Miller LV. Chlorpropamide-induced hypoglycaemia [abstract]. Diabetes 1970; 19Suppl: 376

    Google Scholar 

  20. Petitpierre B, Perrin L, Reidhardt M, et al. Behaviour of chlorpropamide in renal insufficiency and under the effect of associated drug therapy. Int J Clin Pharmacol 1972; 6: 120–4

    PubMed  CAS  Google Scholar 

  21. Harrower ADB. Pharmacokinetics of oral antihyperglycaemic agents in patients with renal insufficiency. Clin Pharmacokinet 1996; 2: 111–9

    Article  Google Scholar 

  22. Balant L, Fabre JM, Loutan L, et al. Does 4-trans-hydroxyglibenclamide show hypoglycaemic activity? Arzneimittel Forschung 1979; 29: 162–3

    PubMed  CAS  Google Scholar 

  23. Fabre J, Balant L, Loutan L, et al. Hypoglycaemic activity of the main metabolite of glibenclamide: influence of renal insufficiency [abstract]. Kidney Int 1978; 13: 435

    Google Scholar 

  24. Pearson JG, Antal EJ, Raehl CC, et al. Pharmacokinetic disposition of 14C-glyburide in patients with varying renal function. Clin Pharmacol Ther 1986; 39: 318–24

    Article  PubMed  CAS  Google Scholar 

  25. Jönsson A, Rydberg T, Ekberg G, et al. Slow elimination of glyburide in NIDDM subjects. Diabetes Care 1994; 17: 142–5

    Article  PubMed  Google Scholar 

  26. Rydberg T, Jönsson A, Røder M, et al. Hypoglycaemic activity of glyburide (glibenclamide) metabolites in humans. Diabetes Care 1994; 17: 1026–30

    Article  PubMed  CAS  Google Scholar 

  27. Seltzer HS. Drug-induced hypoglycaemia, a review of 1418 cases. Endocrinol Metab Clin North Am 1989; 18; 163–83

    PubMed  CAS  Google Scholar 

  28. Asplund K, Wiholm BE, Lithner F. Glibenclamide-associated hypoglycaemia: a report on 57 cases. Diabetologia 1982; 24: 412–7

    Google Scholar 

  29. van Staa T, Abenhaim L, Monette J. Rates of hypoglycaemia in users of sulphonylureas. J Clin Epidemiol 1997; 50(6): 735–41

    Article  PubMed  Google Scholar 

  30. Jennings AM, Wilson RM, Ward JD. Symptomatic hypoglycaemia in NDDM patients treated with oral hypoglycaemic agents. Diabetes Care 1989; 12: 203–8

    Article  PubMed  CAS  Google Scholar 

  31. Berger W, Caduff F, Pasquel M, et al. The relatively frequent incidence of severe sulfonylurea-induced hypoglycaemia in the last 25 years in Switzerland: results of 2 surveys in Switzerland in 1969 and 1984 [in German]. Schweiz Med Wochenschr 1986; 116: 145–51

    PubMed  CAS  Google Scholar 

  32. Clarke BF, Campbell IW. Long-term comparative trial of glibenclamide and chlorpropamide in diet-failed maturity-onset diabetes. Lancet 1975; I: 246–8

    Article  Google Scholar 

  33. Multicentre Study. UK prospective study of therapies of maturity onset diabetes. Diabetologia 1983; 24; 404–11

    Google Scholar 

  34. Krentz AJ, Ferner RE, Clifford JB. Comparative tolerability profiles of oral antidiabetic agents. Drug Saf 1994; 11(4): 223–41

    Article  PubMed  CAS  Google Scholar 

  35. O’Donovan CJ. Analysis of long-term experience with tolbutamide (Orinase) in the management of diabetes. Curr Ther Res 1959; 1: 69–75

    PubMed  Google Scholar 

  36. Pannekoek JH. Insulin, glucagon and oral hypoglycaemic drugs. In: Dukes E, editor. Myler’s side effects of drugs. Amsterdam; Excerpta Medica, 1976; Vol. 8: 904–27

    Google Scholar 

  37. Gunderson K, Molony BA, Crim JA, et al. Micronase (glyburide): a clinical overview. In: Rifkin H, editor. Micronase, pharmacology and clinical evaluation. Amsterdam; Excerpta Medica, 1975: 254–64

    Google Scholar 

  38. Emanueli A, Molari E, Irola LC, et al. Glipizide, a new sulphonylurea in the treatment of diabetes mellitus: summary of clinical experience in 1064 cases. Arzneimittel Forschung 1972; 22: 1881–5

    PubMed  CAS  Google Scholar 

  39. Cerdeno VM, Persigli AG, Calvert J, et al. Clinical evaluation of glipizide: results of a multicentre study in Spain. Rev Iber Endocrinol 1975; 22: 43–60

    PubMed  CAS  Google Scholar 

  40. Schneider J. An overview of the safety and tolerance of glimepiride. Horm Metab Res 1996; 28: 413–8

    Article  PubMed  CAS  Google Scholar 

  41. Schneider J, Chaikin P. Glimepiride safety: results of placebo-controlled, dose-regimen, and active-controlled trials. Postgrad Med 1997; Special Report: 33–44

    Google Scholar 

  42. Langtry HD, Balfour JA. Glimepiride - a review of its use in the management of type 2 diabetes mellitus. Drugs 1998; 55(4): 563–84

    Article  PubMed  CAS  Google Scholar 

  43. Moses AM, Numann P, Miller M. Mechanism of chlorpropamide-induced anti-diuresis in man: evidence for release of ADH and enhancement of peripheral action. Metabolism 1973; 22: 59–66

    Article  PubMed  CAS  Google Scholar 

  44. Piters K. Chlorpropamide-induced hyponatraemia. J Clin Endocr Metab 1976; 43: 1085–7

    Article  PubMed  CAS  Google Scholar 

  45. Kadowaki T, Hagura R, Kajinuma H, et al. Chlorpropamide-induced hyponatraemia: incidence and risk factors. Diabetes Care 1983; 6(5): 468–70

    Article  PubMed  CAS  Google Scholar 

  46. Moses AM, Miller M. Drug-induced dilutional hyponatraemia. N Engl J Med 1974; 291: 1234–9

    Article  PubMed  CAS  Google Scholar 

  47. Leslie RDG, Pyke DA. Chlorpropamide-alcohol flushing: a dominantly inherited trait associated with diabetes. BMJ 1978; 2: 1519–21

    Article  PubMed  CAS  Google Scholar 

  48. Johnston C, Wiles PG, Pyke DA. Chlorpropamide-alcohol flush: the case in favour. Diabetologia 1984; 26: 1–5

    Article  PubMed  CAS  Google Scholar 

  49. Hillson RM, Hockaday TDR. Chlorpropamide-alcohol flush: a critical re-appraisal. Diabetologia 1984; 26: 6–11

    PubMed  CAS  Google Scholar 

  50. Waldhaus W. To flush or not to flush?: comments on the chlorpropamide-alcohol flush. Diabetologia 1984; 26: 12–4

    Google Scholar 

  51. Groop L, Eriksson CJP, Huupponen R, et al. Roles of chlorpropamide, alcohol and acetaldehyde in determining the chlorpropamide-alcohol flush. Diabetologia 1984; 26: 23–8

    Article  Google Scholar 

  52. Jerntorp P, Almer LO, Ohlin H, et al. Plasma chlorpropamide: a critical factor in chlorpropamide-alcohol flush. Eur J Clin Pharmacol 1983; 24(2): 237–42

    Article  PubMed  CAS  Google Scholar 

  53. Congret JI, Vendrell J, Esmatjes E, et al. Gliclazide alcohol flush [letter]. Diabetes Care 1989; 12(1): 44

    Google Scholar 

  54. Ohlin H, Jerntorp P, Bergstrom B, et al. Chlorpropamidealcohol flushing, aldehyde dehydrogenase activity, and diabetic complications. Br Med J (Clin Res Ed) 1982; 285(6345): 838–40

    Article  CAS  Google Scholar 

  55. Karam JH, Sanz N, Salamon E, et al. Selective unresponsiveness of pancreatic p-cells to acute sulphonylurea stimulation during sulphonylurea therapy in NIDDM. Diabetes 1986; 35: 1314–20

    Article  PubMed  CAS  Google Scholar 

  56. Clarke BF, Campbell IW. Long-term comparative trial of glibenclamide and chlorpropamide in diet-failed, maturity onset diabetics. Lancet 1975; I(7901): 246–52

    Article  Google Scholar 

  57. Matthews DR, Cull CA, Stratton IM, et al. UKPDS 26: sulphonylurea failure in non-insulin-dependent diabetic patients over six years. Diabet Med 1998; 15: 297–303

    Article  PubMed  CAS  Google Scholar 

  58. Harrower ADB, Wong C. Comparison of secondary failure rate between three second generation sulphonylureas. Diabetes Res 1990; 13: 19–21

    PubMed  CAS  Google Scholar 

  59. Gregorio F, Ambrosi F, Cristallini S, et al. Therapeutical concentrations of tolbutamide, glibenclamide, gliclazide and gliquidone at different glucose levels: in vitro effects on pancreatic A- and B-cell function. Diabetes Res Clin Pract 1992; 18: 197–206

    Article  PubMed  CAS  Google Scholar 

  60. Groop L, Groop P-H, Stenman S, et al. Comparison of pharmacokinetics, metabolic effects and mechanisms of action of glyburide and glipizide during long-term treatment. Diabetes Care 1987; 10(6): 671–7

    Article  PubMed  CAS  Google Scholar 

  61. University Group Diabetes Program. A study of the effects of hypoglycaemic agents on vascular complications in patients with adult-onset diabetes: sections I and II. Diabetes 1970; 19 Suppl 2.: 747–830

  62. Brady PA, Terzic A. The sulphonylurea controversy: more questions from the heart. J Am Coll Cardiol 1998; 31(5): 950–6

    Article  PubMed  CAS  Google Scholar 

  63. Soler N, Bennett M, Lamb P, et al. Coronary care for myocardial infarction. Lancet 1974; I: 475–7

    Article  Google Scholar 

  64. Czyzyk A, Krolewski A, Szablowska S, et al. Clinical course of myocardial infarction among diabetic patients. Diabetes Care 1980; 3: 526–9

    Article  Google Scholar 

  65. Kereiakes DJ. Myocardial infarction in the diabetic patient. Clin Cardiol 1985; 8: 446–50

    Article  PubMed  CAS  Google Scholar 

  66. Garratt KN, Brady PA, Hassinger NL, et al. Sulphonylurea drugs increase early mortality in patients with diabetes mellitus after direct angioplasty for acute myocardial infarction. J Am Coll Cardiol 1999; 33: 119–24

    Article  PubMed  CAS  Google Scholar 

  67. Harrower ADB, Clarke BF. Experience of coronary care in diabetes. BMJ 1976; 1: 126–8

    Article  PubMed  CAS  Google Scholar 

  68. Yudkin J, Oswald G. Determinants of hospital admission and case fatality in diabetic patients with myocardial infarction. Diabetes Care 1988; 11: 351–8

    Article  PubMed  CAS  Google Scholar 

  69. Ohneda A, Maruhama Y, Itabashi H, et al. Vascular complications and long-term administration of oral hypoglycaemic agents in patients with diabetes mellitus. Tohoku J Exp Med 1978; 124: 205–22

    Article  PubMed  CAS  Google Scholar 

  70. Jarrett RJ, Chlouverakis C, Boyns DR. The effect of treatment of moderate hyperglycaemia on the incidence of arterial disease. Postgrad Med J 1968; Suppl.: 960–5

    Google Scholar 

  71. Paasikivi J, Wahlberg F. Preventive tolbutamide treatment and arterial disease in mild hyperglycaemia. Diabetologia 1971; 7: 323–7

    Article  PubMed  CAS  Google Scholar 

  72. Knowler WC, Sartor G, Melander A, et al. Glucose tolerance and mortality, including a substudy of tolbutamide treatment. Diabetologia 1997; 40: 680–6

    Article  PubMed  CAS  Google Scholar 

  73. United Kingdom Prospective Diabetes Study 33. Intensive blood glucose control with sulphonylureas or insulin compared with conventional treatment and risk of complications in patients with type 2 diabetes. Lancet 1998: 352; 837–53

  74. Noma A. ATP-regulated K+ channels in cardiac muscle. Nature 1983; 305: 147–8

    Article  PubMed  CAS  Google Scholar 

  75. Standen NB, Quayle JM, Davis NW, et al. Hyperpolarizing vasodilators activate ATP-sensitive K+ channels in arterial smooth muscle. Science 1989; 245: 177–80

    Article  PubMed  CAS  Google Scholar 

  76. Cole WC, McPherson CD, Sontag D. ATP-regulated K+ channels protect the myocardium against ischaemia/reperfusion damage. Circ Res 1991; 69: 571–81

    Article  PubMed  CAS  Google Scholar 

  77. Terzic A, Jahangir A, Kurachi Y. Cardiac ATP-sensitive K+ channels: regulation by intracellular nucleotides and K+ channel-opening drugs. Am J Physiol 1995; C525–45

    Google Scholar 

  78. Alekseev AE, Brady PA, Terzic A. Ligand-sensitive state of cardiac ATP-sensitive K+ channels: basis for channel opening. J Gen Physiol 1998; 111(2): 381–94

    Article  PubMed  CAS  Google Scholar 

  79. Brady PA, Zhang S, Lopez JR, et al. Dual effect of glyburide, an antagonist of KATP channels, on metabolic inhibition-induced Ca2+ loading incardiomyocytes. Eur J Pharmacol 1996; 308(3): 343–9

    Article  PubMed  CAS  Google Scholar 

  80. Engler RL, Yellon DM. Sulphonylurea KATP blockade in type 2 diabetes and preconditioning in cardiovascular disease: time for reconsideration. Circulation 1996; 94(9): 2297–301

    Article  PubMed  CAS  Google Scholar 

  81. Brady PA, Alekseev AE, Terzic A. Operative condition-dependent response of cardiac ATP-sensitive K+ channels toward sulphonylureas. Circ Res 1998; 82(2): 272–8

    Article  PubMed  CAS  Google Scholar 

  82. Tomai F, Crea F, Gaspardone A, et al. Ischaemic pre-conditioning during coronary angioplasty is prevented by glibenclamide, a selective ATP-sensitive K+ channel blocker. Circulation 1994; 90: 700–5

    Article  PubMed  CAS  Google Scholar 

  83. Cacciapuoti F, Spiezia R, Bianchi U, et al. Effectiveness of glibenclamide on myocardial ischaemic ventricular arrhythmias in non-insulin-dependent diabetes mellitus. Am J Cardiol 1991; 67: 843–7

    Article  PubMed  CAS  Google Scholar 

  84. Almer LO. Effect of chlorpropamide and gliclazide on plasminogen activator activity in vascular walls in patients with maturity onset diabetes. Thromb Res 1984; 35: 19–25

    Article  PubMed  CAS  Google Scholar 

  85. Gram J, Jespersen J. Increased fibrinolytic potential induced by gliclazide in types I and II diabetic patients. Am J Med 1991; 90: 62S–6S

    Article  PubMed  CAS  Google Scholar 

  86. Jennings PE, Scott NA, Santabadi AR, et al. Effects of gliclazide on platelet reactivity and free radicals in type 2 diabetic patients: clinical assessments. Metabolism 1992; 41: 36–9

    Article  PubMed  CAS  Google Scholar 

  87. Gribble FM, Tucker SJ, Seino S, et al. Tissue specificity of sulphonylureas studies on cloned cardiac and β-cell KATP channels. Diabetes 1998; 47: 1412–8

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Harrower, A.D.B. Comparative Tolerability of Sulphonylureas in Diabetes Mellitus. Drug-Safety 22, 313–320 (2000). https://doi.org/10.2165/00002018-200022040-00004

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00002018-200022040-00004

Keywords

Navigation