Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter August 6, 2014

Netherton syndrome: defective kallikrein inhibition in the skin leads to skin inflammation and allergy

  • Laetitia Furio

    Laetitia Furio is a post-doctoral fellow at University Paris Descartes-Paris Sorbonne Cité at Imagine Institute in Paris, France. She completed her PhD on cutaneous immunology in 2008. In 2010, she joined Alain Hovnanian’s group to work on a severe genetic skin disease called Netherton syndrome (NS). To better understand NS pathophysiology, she has been developing and characterizing several new murine models for NS and has performed detailed clinical and biological investigations of a large cohort of NS patients.

    and Alain Hovnanian

    Alain Hovnanian is full professor of Dermatology and Genetics at the new ‘Institut Hospitalo-Universitaire’ (IHU) at Necker hospital in Paris. He runs a translational clinic on genetic skin diseases of children and adults at Necker hospital for Sick Children. He is the director of a diagnostic and research laboratory at INSERM UMR 1163 on genetic skin diseases at the Imagine Institute for genetic diseases.The central theme of his research. is the development of translational research to improve the understanding and treatment of severe genetic skin diseases. Following the identification of the SPINK5 gene encoding the LEKTI protease inhibitor as the defective gene in Netherton syndrome (NS), his group has developed several murine models for NS in order to dissect the roles of proteases and their inhibitors in the biological cascades involved in the disease. This work has placed epidermal kallikreins at the center of skin inflammation and allergy in NS and has led to the identification of new therapeutic targets. Currently, his research aims at improving our understanding on NS and other inflammatory skin diseases in order to design innovative and efficient therapies. He has published over 200 research articles, review articles and book chapters. Photograph: Copyright © Laurent Attias/Fondation Imagine.

    EMAIL logo
From the journal Biological Chemistry

Abstract

Netherton syndrome (NS) is an orphan genetic skin disease with a profound skin barrier defect and severe allergic manifestations. NS is caused by loss of function mutations in SPINK5 encoding lympho-epithelial Kazal-type inhibitor (LEKTI), a secreted multi-domain serine protease inhibitor expressed in stratified epithelia. Studies in mouse models and in NS patients have established that unopposed kallikrein 5 activity triggers stratum corneum detachment and activates PAR-2 signaling, leading to the autonomous production of pro-allergic and pro-inflammatory mediators. This emerging knowledge on NS pathogenesis has highlighted a central role for protease regulation in skin homeostasis but also in the complexity of the disease, and holds the promise of new specific treatments.


Corresponding author: Alain Hovnanian, University Paris Descartes, Sorbonne Paris Cité, Paris, France; INSERM UMR 1163, Laboratory of Genetic skin diseases, Imagine Institute, 24 boulevard Montparnasse, F-7505 Paris, France; and Department of Genetics, Paris, France, e-mail:

About the authors

Laetitia Furio

Laetitia Furio is a post-doctoral fellow at University Paris Descartes-Paris Sorbonne Cité at Imagine Institute in Paris, France. She completed her PhD on cutaneous immunology in 2008. In 2010, she joined Alain Hovnanian’s group to work on a severe genetic skin disease called Netherton syndrome (NS). To better understand NS pathophysiology, she has been developing and characterizing several new murine models for NS and has performed detailed clinical and biological investigations of a large cohort of NS patients.

Alain Hovnanian

Alain Hovnanian is full professor of Dermatology and Genetics at the new ‘Institut Hospitalo-Universitaire’ (IHU) at Necker hospital in Paris. He runs a translational clinic on genetic skin diseases of children and adults at Necker hospital for Sick Children. He is the director of a diagnostic and research laboratory at INSERM UMR 1163 on genetic skin diseases at the Imagine Institute for genetic diseases.The central theme of his research. is the development of translational research to improve the understanding and treatment of severe genetic skin diseases. Following the identification of the SPINK5 gene encoding the LEKTI protease inhibitor as the defective gene in Netherton syndrome (NS), his group has developed several murine models for NS in order to dissect the roles of proteases and their inhibitors in the biological cascades involved in the disease. This work has placed epidermal kallikreins at the center of skin inflammation and allergy in NS and has led to the identification of new therapeutic targets. Currently, his research aims at improving our understanding on NS and other inflammatory skin diseases in order to design innovative and efficient therapies. He has published over 200 research articles, review articles and book chapters. Photograph: Copyright © Laurent Attias/Fondation Imagine.

References

Alef, T., Torres, S., Hausser, I., Metze, D., Tursen, U., Lestringant, G.G., and Hennies, H.C. (2009). Ichthyosis, follicular atrophoderma, and hypotrichosis caused by mutations in ST14 is associated with impaired profilaggrin processing. J. Invest. Dermatol. 129, 862–869.10.1038/jid.2008.311Search in Google Scholar PubMed

Allen, A., Siegfried, E., Silverman, R., Williams, M.L., Elias, P.M., Szabo, S.K., and Korman, N.J. (2001). Significant absorption of topical tacrolimus in 3 patients with Netherton syndrome. Arch. Dermatol. 137, 747–750.Search in Google Scholar

Basel-Vanagaite, L., Attia, R., Ishida-Yamamoto, A., Rainshtein, L., Ben Amitai, D., Lurie, R., Pasmanik-Chor, M., Indelman, M., Zvulunov, A., Saban, S., et al., (2007). Autosomal recessive ichthyosis with hypotrichosis caused by a mutation in ST14, E., encoding type II transmembrane serine protease matriptase. Am. J. Hum. Genet. 80, 467–477.Search in Google Scholar

Beljan, G., Traupe, H., Metze D., and Sunderkotter, C. (2003). [Comel-Netherton syndrome with bacterial superinfection]. Hautarzt 54, 1198–1202.10.1007/s00105-003-0572-8Search in Google Scholar PubMed

Bennett, K., Callard, R., Heywood, W., Harper, J., Jayakumar, A., Clayman, G.L., Di, W.L., and Mills, K. (2010). New role for LEKTI in skin barrier formation: label-free quantitative proteomic identification of caspase 14 as a novel target for the protease inhibitor LEKTI. J. Proteome Res. 9, 4289–4294.10.1021/pr1003467Search in Google Scholar PubMed

Bennett, K., Heywood, W., Di, W.L., Harper, J., Clayman, G.L., Jayakumar, A., Callard R., and Mills, K. (2012). The identification of a new role for LEKTI in the skin: the use of protein ‘bait’ arrays to detect defective trafficking of dermcidin in the skin of patients with Netherton syndrome. J. Proteomics 75, 3925–3937.10.1016/j.jprot.2012.04.045Search in Google Scholar PubMed

Bens, G., Boralevi, F., Buzenet C., and Taieb, A. (2003). Topical treatment of Netherton’s syndrome with tacrolimus ointment without significant systemic absorption. Br. J. Dermatol. 149, 224–226.10.1046/j.1365-2133.2003.05443.xSearch in Google Scholar PubMed

Bitoun, E., Micheloni, A., Lamant, L., Bonnart, C., Tartaglia-Polcini, A., Cobbold, C., Al Saati, T., Mariotti, F., Mazereeuw-Hautier, J., Boralevi, F., et al., (2003). LEKTI proteolytic processing in human primary keratinocytes, M., tissue distribution and defective expression in Netherton syndrome. Hum. Mol. Genet. 12, 2417–2430.Search in Google Scholar

Bonnart, C., Deraison, C., Lacroix, M., Uchida, Y., Besson, C., Robin, A., Briot, A., Gonthier, M., Lamant, L., Dubus, P., et al. (2010). Elastase 2 is expressed in human and mouse epidermis and impairs skin barrier function in Netherton syndrome through filaggrin and lipid misprocessing. J. Clin. Invest. 120, 871–882.10.1172/JCI41440Search in Google Scholar PubMed PubMed Central

Borgoño, A.C., Michael, I.P., Komatsu, N., Jayakumar, A., Kapadia, R., Clayman, G.L., Sotiropoulou, G., and Diamandis, E.P. (2007). A potential role for multiple tissue kallikrein serine proteases in epidermal desquamation. J. Biol. Chem. 282, 3640–3652.10.1074/jbc.M607567200Search in Google Scholar PubMed

Brattsand, M., Stefansson, K., Lundh, C., Haasum, Y., and Egelrud, T. (2005). A proteolytic cascade of kallikreins in the stratum corneum. J. Invest. Dermatol. 124, 198–203.10.1111/j.0022-202X.2004.23547.xSearch in Google Scholar PubMed

Brattsand, M., Stefansson, K., Hubiche, T., Nilsson S.K., and Egelrud, T. (2009). SPINK9: a selective, skin-specific Kazal-type serine protease inhibitor. J. Invest. Dermatol. 129, 1656–1665.10.1038/jid.2008.448Search in Google Scholar PubMed

Briot, A., Deraison, C., Lacroix, M., Bonnart, C., Robin, A., Besson, C., Dubus, P., and Hovnanian, A. (2009). Kallikrein 5 induces atopic dermatitis-like lesions through PAR2-mediated thymic stromal lymphopoietin expression in Netherton syndrome. J. Exp. Med. 206, 1135–1147.10.1084/jem.20082242Search in Google Scholar PubMed PubMed Central

Briot, A., Lacroix, M., Robin, A., Steinhoff, M., Deraison, C., and Hovnanian, A. (2010). Par2 inactivation inhibits early production of TSLP, but not cutaneous inflammation, in Netherton syndrome adult mouse model. J. Invest. Dermatol. 130, 2736–2742.10.1038/jid.2010.233Search in Google Scholar PubMed

Buddenkotte, J., Stroh, C., Engels, I.H., Moormann, C., Shpacovitch, V.M., Seeliger, S., Vergnolle, N., Vestweber, D., Luger, T.A., Schulze-Osthoff, K., et al. (2005). Agonists of proteinase-activated receptor-2 stimulate upregulation of intercellular cell adhesion molecule-1 in primary human keratinocytes via activation of NF-κB. J. Invest. Dermatol. 124, 38–45.10.1111/j.0022-202X.2004.23539.xSearch in Google Scholar PubMed

Candi, E., Schmidt, R., and Melino, G. (2005). The cornified envelope: a model of cell death in the skin. Nat. Rev. Mol. Cell. Biol. 6, 328–340.10.1038/nrm1619Search in Google Scholar PubMed

Caubet, C., Jonca, N., Brattsand, M., Guerrin, M., Bernard, D., Schmidt, R., Egelrud, T., Simon, M., and Serre, G. (2004). Degradation of corneodesmosome proteins by two serine proteases of the kallikrein family, SCTE/KLK5/hK5 and SCCE/KLK7/hK7. J. Invest. Dermatol. 122, 1235–1244.10.1111/j.0022-202X.2004.22512.xSearch in Google Scholar PubMed

Chavanas, S., Bodemer, C., Rochat, A., Hamel-Teillac, D., Ali, M., Irvine, A.D., Bonafe, J.L., Wilkinson, J., Taieb, A., Barrandon, Y., et al., (2000). Mutations in SPINK5, encoding a serine protease inhibitor, cause Netherton syndrome. Nat. Genet. 25, 141–142.10.1038/75977Search in Google Scholar PubMed

Comel, M. (1949). Ichthyosis Linearis circumflexa. Dermatologica 98, 133–136.10.1159/000257290Search in Google Scholar

Dale, A.B., Resing, K.A., and Lonsdale-Eccles, J.D. (1985). Filaggrin: a keratin filament associated protein. Ann. NY Acad. Sci. 455, 330–342.10.1111/j.1749-6632.1985.tb50420.xSearch in Google Scholar PubMed

De, Y., Chen, Q., Schmidt, A.P., Anderson, G.M., Wang, J.M., Wooters, J., Oppenheim, J.J., and Chertov, O. (2000). LL-37, the neutrophil granule- and epithelial cell-derived cathelicidin, utilizes formyl peptide receptor-like 1 (FPRL1) as a receptor to chemoattract human peripheral blood neutrophils, monocytes, and T cells. J. Exp. Med. 192, 1069–1074.10.1084/jem.192.7.1069Search in Google Scholar PubMed PubMed Central

Denecker, G., Hoste, E., Gilbert, B., Hochepied, T., Ovaere, P., Lippens, S., Van den Broecke, C., Van Damme, P., D’Herde, K., Hachem, J.P., et al., (2007). Caspase-14 protects against epidermal UVB photodamage and water loss. Nat. Cell. Biol. 9, 666–674.10.1038/ncb1597Search in Google Scholar PubMed

Denecker, G., Ovaere, P., Vandenabeele, P., and Declercq, W. (2008). Caspase-14 reveals its secrets. J. Cell Biol. 180, 451–458.10.1083/jcb.200709098Search in Google Scholar PubMed PubMed Central

Deraison, C., Bonnart, C., Lopez, F., Besson, C., Robinson, R., Jayakumar, A., Wagberg, F., Brattsand, M., Hachem, J.P., Leonardsson, G., et al. (2007). LEKTI fragments specifically inhibit KLK5, KLK7, and KLK14 and control desquamation through a pH-dependent interaction. Mol. Biol. Cell 18, 3607–3619.10.1091/mbc.e07-02-0124Search in Google Scholar PubMed PubMed Central

Descargues, P., Deraison, C., Bonnart, C., Kreft, M., Kishibe, M., Ishida-Yamamoto, A., Elias, P., Barrandon, Y., Zambruno, G., Sonnenberg, A., et al., (2005). Spink5-deficient mice mimic Netherton syndrome through degradation of desmoglein 1 by epidermal protease hyperactivity. Nat. Genet. 37, 56–65.10.1038/ng1493Search in Google Scholar PubMed

Descargues, P., Deraison, C., Prost, C., Fraitag, S., Mazereeuw-Hautier, J., D’Alessio, M., Ishida-Yamamoto, A., Bodemer, C., Zambruno, G., and Hovnanian, A. (2006). Corneodesmosomal cadherins are preferential targets of stratum corneum trypsin- and chymotrypsin-like hyperactivity in Netherton syndrome. J. Invest. Dermatol. 126, 1622–1632.10.1038/sj.jid.5700284Search in Google Scholar PubMed

Di, L.W., Larcher, F., Semenova, E., Talbot, G.E., Harper, J.I., Del Rio, M., Thrasher, A.J., and Qasim, W. (2011). Ex-vivo gene therapy restores LEKTI activity and corrects the architecture of Netherton syndrome-derived skin grafts. Mol. Ther. 19, 408–416.10.1038/mt.2010.201Search in Google Scholar PubMed PubMed Central

Di, L.W., Mellerio, J.E., Bernadis, C., Harper, J., Abdul-Wahab, A., Ghani, S., Chan, L., Martinez-Queipo, M., Hara, H., McNicol, A.M., et al., (2013). Phase I study protocol for ex vivo lentiviral gene therapy for the inherited skin disease, Netherton syndrome. Hum. Gene. Ther. Clin. Dev. 24, 182–190.10.1089/humc.2013.195Search in Google Scholar PubMed

Egelrud, T., Brattsand, M., Kreutzmann, P., Walden, M., Vitzithum, K., Marx, U.C., Forssmann, W.G., and Magert, H.J. (2005). hK5 and hK7, two serine proteinases abundant in human skin, are inhibited by LEKTI domain 6. Br. J. Dermatol. 153, 1200–1203.10.1111/j.1365-2133.2005.06834.xSearch in Google Scholar PubMed

Eissa, A. and Diamandis, E.P. (2011). Kallikrein protease involvement in skin pathologies supports a new view of the origin of inflamed itchy skin. In: Proteases and Their Receptors in Inflammation. N. Vergnolle and M. Chignard, eds. (Basel, Switzerland: Springer), pp. 51–71.10.1007/978-3-0348-0157-7_3Search in Google Scholar

Elias, M.P., Hatano, Y., and Williams, M.L. (2008). Basis for the barrier abnormality in atopic dermatitis: outside-inside-outside pathogenic mechanisms. J. Allergy Clin. Immunol. 121, 1337–1343.10.1016/j.jaci.2008.01.022Search in Google Scholar PubMed PubMed Central

Fartasch, M., Williams, M.L., and Elias, P.M. (1999). Altered lamellar body secretion and stratum corneum membrane structure in Netherton syndrome: differentiation from other infantile erythrodermas and pathogenic implications. Arch. Dermatol. 135, 823–832.10.1001/archderm.135.7.823Search in Google Scholar PubMed

Folster-Holst, R., Swensson, O., Stockfleth, E., Monig, H., Mrowietz, U., and Christophers, E. (1999). Comel-Netherton syndrome complicated by papillomatous skin lesions containing human papillomaviruses 51 and 52 and plane warts containing human papillomavirus 16. Br. J. Dermatol. 140, 1139–1143.10.1046/j.1365-2133.1999.02892.xSearch in Google Scholar PubMed

Fontao, L., Laffitte, E., Briot, A., Kaya, G., Roux-Lombard, P., Fraitag, S., Hovnanian A.A., and Saurat, J.H. (2011). Infliximab infusions for netherton Syndrome: sustained clinical improvement correlates with a reduction of thymic stromal lymphopoietin levels in the skin. J. Invest. Dermatol. 131, 1947–1950.10.1038/jid.2011.124Search in Google Scholar PubMed

Fortugno, P., Bresciani, A., Paolini, C., Pazzagli, C., El Hachem, M., D’Alessio, M., and Zambruno, G. (2011). Proteolytic activation cascade of the Netherton syndrome-defective protein, LEKTI, in the epidermis: implications for skin homeostasis. J. Invest. Dermatol. 131, 2223–2232.10.1038/jid.2011.174Search in Google Scholar PubMed

Fuchs, E. and Raghavan, S. (2002). Getting under the skin of epidermal morphogenesis. Nat. Rev. Genet. 3, 199–209.10.1038/nrg758Search in Google Scholar PubMed

Furio, L. and Hovnanian, A. (2011). When activity requires breaking up: LEKTI proteolytic activation cascade for specific proteinase inhibition. J. Invest. Dermatol. 131, 2169–2173.10.1038/jid.2011.295Search in Google Scholar PubMed

Furio, L., de Veer, S., Jaillet, M., Briot, A., Robin, A., Deraison, C., and Hovnanian, A. (2014). Transgenic kallikrein 5 mice reproduce major cutaneous and systemic hallmarks of Netherton syndrome. J. Exp. Med. 211, 499–513.10.1084/jem.20131797Search in Google Scholar PubMed PubMed Central

Galliano, F.M., Toulza, E., Gallinaro, H., Jonca, N., Ishida-Yamamoto, A., Serre, G., and Guerrin, M. (2006). A novel protease inhibitor of the alpha2-macroglobulin family expressed in the human epidermis. J. Biol. Chem. 281, 5780–5789.10.1074/jbc.M508017200Search in Google Scholar PubMed

Giroux, D.J., Sizun, J., Gardach, C., Awad, H., Guillois, B., and Alix, D. (1993). Severe hypernatremic dehydration disclosing Netherton syndrome in the neonatal period. Arch. Fr. Pediatr. 50, 585–588.Search in Google Scholar

Godic, A. and Dragos, V. (2004). Successful treatment of Netherton’s syndrome with topical calcipotriol. Eur. J. Dermatol. 14, 115–117.Search in Google Scholar

Guma, M., Ronacher, L., Liu-Bryan, R., Takai, S., Karin, M., and Corr, M. (2009). Caspase 1-independent activation of interleukin-1beta in neutrophil-predominant inflammation. Arthritis Rheum. 60, 3642–3650.10.1002/art.24959Search in Google Scholar PubMed PubMed Central

Hachem, P.J., Wagberg, F., Schmuth, M., Crumrine, D., Lissens, W., Jayakumar, A., Houben, E., Mauro, T.M., Leonardsson, G., Brattsand, M., et al. (2006). Serine protease activity and residual LEKTI expression determine phenotype in Netherton syndrome. J. Invest. Dermatol. 126, 1609–1621.10.1038/sj.jid.5700288Search in Google Scholar PubMed

Hansson, L., Backman, A., Ny, A., Edlund, M., Ekholm, E., Ekstrand Hammarstrom, B., Tornell, J., Wallbrandt, P., Wennbo, H., and Egelrud, T. (2002). Epidermal overexpression of stratum corneum chymotryptic enzyme in mice: a model for chronic itchy dermatitis. J. Invest. Dermatol. 118, 444–449.10.1046/j.0022-202x.2001.01684.xSearch in Google Scholar PubMed

Hatano, Y., Terashi, H., Arakawa, S., and Katagiri, K. (2005). Interleukin-4 suppresses the enhancement of ceramide synthesis and cutaneous permeability barrier functions induced by tumor necrosis factor-alpha and interferon-gamma in human epidermis. J. Invest. Dermatol. 124, 786–792.10.1111/j.0022-202X.2005.23651.xSearch in Google Scholar PubMed

Hausser, I. and Anton-Lamprecht, I. (1996). Severe congenital generalized exfoliative erythroderma in newborns and infants: a possible sign of Netherton syndrome. Pediatr. Dermatol. 13, 183–199.10.1111/j.1525-1470.1996.tb01202.xSearch in Google Scholar PubMed

Heinz-Erian, P., Muller, T., Krabichler, B., Schranz, M., Becker, C., Ruschendorf, F., Nurnberg, P., Rossier, B., Vujic, M., Booth, I.W., et al., (2009). Mutations in SPINT2 cause a syndromic form of congenital sodium diarrhea. Am. J. Hum. Genet. 84, 188–196.10.1016/j.ajhg.2009.01.004Search in Google Scholar PubMed PubMed Central

Hewett, R.D., Simons, A.L., Mangan, N.E., Jolin, H.E., Green, S.M., Fallon, P.G., and McKenzie, A.N. (2005). Lethal, neonatal ichthyosis with increased proteolytic processing of filaggrin in a mouse model of Netherton syndrome. Hum. Mol. Genet. 14, 335–346.10.1093/hmg/ddi030Search in Google Scholar PubMed

Hintner, H., Jaschke, E., and Fritsch, P. (1980). Netherton syndrome: weakened immunity, generalized verrucosis and carcinogenesis. Hautarzt 31, 428–432.Search in Google Scholar

Hosomi, N., Fukai, K., Nakanishi, T., Funaki, S., and Ishii, M. (2008). Caspase-1 activity of stratum corneum and serum interleukin-18 level are increased in patients with Netherton syndrome. Br. J. Dermatol. 159, 744–746.10.1111/j.1365-2133.2008.08706.xSearch in Google Scholar PubMed

Hou, L., Kapas, S., Cruchley, A.T., Macey, M.G., Harriott, P., Chinni, C., Stone, S.R., and Howells, G.L. (1998). Immunolocalization of protease-activated receptor-2 in skin: receptor activation stimulates interleukin-8 secretion by keratinocytes in vitro. Immunology 94, 356–362.10.1046/j.1365-2567.1998.00528.xSearch in Google Scholar PubMed PubMed Central

Hovnanian, A. (2012). Netherton syndrome: new advances in clinic, disease mechanism and treatment. Expert Review 7, 81–92.10.1586/edm.11.85Search in Google Scholar

Hovnanian, A. (2013). Netherton syndrome: skin inflammation and allergy by loss of protease inhibition. Cell Tissue Res. 351, 289–300.10.1007/s00441-013-1558-1Search in Google Scholar PubMed

Ishida-Yamamoto, A., Deraison, C., Bonnart, C., Bitoun, E., Robinson, R., O’Brien, T.J., Wakamatsu, K., Ohtsubo, S., Takahashi, H., Hashimoto, Y., et al. (2005). LEKTI is localized in lamellar granules, separated from KLK5 and KLK7, and is secreted in the extracellular spaces of the superficial stratum granulosum. J. Invest. Dermatol. 124, 360–366.10.1111/j.0022-202X.2004.23583.xSearch in Google Scholar PubMed

Jayakumar, A., Kang, Y., Mitsudo, K., Henderson, Y., Frederick, M.J., Wang, M., El-Naggar, A.K., Marx, U.C., Briggs, K., and Clayman, G.L. (2004). Expression of LEKTI domains 6–9′ in the baculovirus expression system: recombinant LEKTI domains 6–9′ inhibit trypsin and subtilisin A. Protein Expr. Purif. 35, <softenter;93–101.10.1016/j.pep.2003.12.004Search in Google Scholar PubMed

Judge, R.M., Morgan, G., and Harper, J.I. (1994). A clinical and immunological study of Netherton’s syndrome. Br. J. Dermatol. 131, 615–621.10.1111/j.1365-2133.1994.tb04971.xSearch in Google Scholar PubMed

Komatsu, N., Saijoh, K., Toyama, T., Ohka, R., Otsuki, N., Hussack, G., Takehara, K., and Diamandis, E.P. (2005). Multiple tissue kallikrein mRNA and protein expression in normal skin and skin diseases. Br. J. Dermatol. 153, 274–281.10.1111/j.1365-2133.2005.06754.xSearch in Google Scholar PubMed

Komatsu, N., Saijoh, K., Otsuki, N., Kishi, T., Micheal, I.P., Obiezu, C.V., Borgono, C.A., Takehara, K., Jayakumar, A., Wu, H.K., et al., (2007). Proteolytic processing of human growth hormone by multiple tissue kallikreins and regulation by the serine protease inhibitor Kazal-Type5 (SPINK5) protein. Clin. Chim. Acta 377, 228–236.10.1016/j.cca.2006.10.009Search in Google Scholar PubMed

Krasagakis, K., Ioannidou, D.J., Stephanidou, M., Manios, A., Panayiotides, J.G., and Tosca, A.D. (2003). Early development of multiple epithelial neoplasms in Netherton syndrome. Dermatology 207, 182–184.10.1159/000071791Search in Google Scholar PubMed

Kreutzmann, P., Schulz, A., Standker, L., Forssmann, W.G., and Magert, H.J. (2004). Recombinant production, purification and biochemical characterization of domain 6 of LEKTI: a temporary Kazal-type-related serine proteinase inhibitor. J. Chromatogr. B. Analyt. Technol. Biomed. Life Sci. 803, 75–81.10.1016/j.jchromb.2003.07.016Search in Google Scholar PubMed

Leyvraz, C., Charles, R.P., Rubera, I., Guitard, M., Rotman, S., Breiden, B., Sandhoff, K., and Hummler, E. (2005). The epidermal barrier function is dependent on the serine protease CAP1/Prss8. J. Cell Biol. 170, 487–496.10.1083/jcb.200501038Search in Google Scholar PubMed PubMed Central

Li, L.A., Walsh, S., and McKay, D.R. (2011). Surgical management of a giant condyloma of Buschke-Lowenstein in a patient with Netherton syndrome using the pedicled anterolateral thigh flap–a case report. J. Plast. Reconstr. Aesthet. Surg. 64, 1533–1536.10.1016/j.bjps.2011.03.013Search in Google Scholar PubMed

List, K., Szabo, R., Wertz, P.W., Segre, J., Haudenschild, C.C., Kim, S.Y., and Bugge, T.H. (2003). Loss of proteolytically processed filaggrin caused by epidermal deletion of Matriptase/MT-SP1. J. Cell Biol. 163, 901–910.10.1083/jcb.200304161Search in Google Scholar PubMed PubMed Central

Matsui, T., Miyamoto, K., Kubo, A., Kawasaki, H., Ebihara, T., Hata, K., Tanahashi, S., Ichinose, S., Imoto, I., Inazawa, J., et al., (2011). SASPase regulates stratum corneum hydration through profilaggrin-to-filaggrin processing. EMBO Mol. Med. 3, 320–333.10.1002/emmm.201100140Search in Google Scholar PubMed PubMed Central

Mazereeuw-Hautier, J., Cope, J., Ong, C., Green, A., Hovnanian, A., and Harper, J.I. (2006). Topical recombinant alpha1-antitrypsin: a potential treatment for Netherton syndrome? Arch. Dermatol. 142, 396–398.10.1001/archderm.142.3.396Search in Google Scholar PubMed

Meyer-Hoffert, U., Wu, Z., and Schroder, J.M. (2009). Identification of lympho-epithelial Kazal-type inhibitor 2 in human skin as a kallikrein-related peptidase 5-specific protease inhibitor. PLoS One 4, e4372.10.1371/journal.pone.0004372Search in Google Scholar PubMed PubMed Central

Meyer-Hoffert, U., Wu, Z., Kantyka, T., Fischer, J., Latendorf, T., Hansmann, B., Bartels, J., He, Y., Glaser, R., and Schroder, J.M. (2010). Isolation of SPINK6 in human skin: selective inhibitor of kallikrein-related peptidases. J. Biol. Chem. 285, 32174–32181.10.1074/jbc.M109.091850Search in Google Scholar PubMed PubMed Central

Mitsudo, K., Jayakumar, A., Henderson, Y., Frederick, M.J., Kang, Y., Wang, M., El-Naggar, A.K., and Clayman, G.L. (2003). Inhibition of serine proteinases plasmin, trypsin, subtilisin A, cathepsin G, and elastase by LEKTI: a kinetic analysis. Biochemistry 42, 3874–3881.10.1021/bi027029vSearch in Google Scholar PubMed

Miyai, M., Matsumoto, Y., Yamanishi, H., Yamamoto-Tanaka, M., Tsuboi, R., and Hibino, T. (2014). Keratinocyte-Specific Mesotrypsin Contributes to the Desquamation Process via Kallikrein Activation and LEKTI Degradation. J Invest Dermatol. 134, 1665–1674.10.1038/jid.2014.3Search in Google Scholar PubMed

Mizutani, R.H., Schechter, N., Lazarus, G., Black, R.A., and Kupper, T.S. (1991). Rapid and specific conversion of precursor interleukin 1 beta (IL-1 beta) to an active IL-1 species by human mast cell chymase. J. Exp. Med. 174, 821–825.10.1084/jem.174.4.821Search in Google Scholar PubMed PubMed Central

Nagaike, K., Kawaguchi, M., Takeda, N., Fukushima, T., Sawaguchi, A., Kohama, K., Setoyama, M., and Kataoka, H. (2008). Defect of hepatocyte growth factor activator inhibitor type 1/serine protease inhibitor, Kunitz type 1 (Hai-1/Spint1) leads to ichthyosis-like condition and abnormal hair development in mice. Am. J. Pathol. 173, 1464–1475.10.2353/ajpath.2008.071142Search in Google Scholar PubMed PubMed Central

Natsuga, K., Akiyama, M., and Shimizu, H. (2011). Malignant skin tumours in patients with inherited ichthyosis. Br. J. Dermatol. 165, 263–268.10.1111/j.1365-2133.2011.10381.xSearch in Google Scholar PubMed

Netherton, E.W. (1958). A unique case of trichorrhexis nodosa: bamboo hairs. AMA Arch. Derm 78, 483–487.10.1001/archderm.1958.01560100059009Search in Google Scholar PubMed

Niyonsaba, F., Ushio, H., Hara, M., Yokoi, H., Tominaga, M., Takamori, K., Kajiwara, N., Saito, H., Nagaoka, I., Ogawa, H., et al., (2010). Antimicrobial peptides human beta-defensins and cathelicidin LL-37 induce the secretion of a pruritogenic cytokine IL-31 by human mast cells. J. Immunol. 184, 3526–3534.10.4049/jimmunol.0900712Search in Google Scholar PubMed

Ny, A. and Egelrud, T. (2003). Transgenic mice over-expressing a serine protease in the skin: evidence of interferon gamma-independent MHC II expression by epidermal keratinocytes. Acta Derm. Venereol. 83, 322–327.10.1080/00015550310003809Search in Google Scholar PubMed

Ny, A. and Egelrud, T. (2004). Epidermal hyperproliferation and decreased skin barrier function in mice overexpressing stratum corneum chymotryptic enzyme. Acta Derm. Venereol. 84, 18–22.10.1080/00015550310005924Search in Google Scholar PubMed

Nylander-Lundqvist, E. and Egelrud, T. (1997). Formation of active IL-1 beta from pro-IL-1 beta catalyzed by stratum corneum chymotryptic enzyme in vitro. Acta Derm. Venereol. 77, 203–206.Search in Google Scholar

Ohler, A., Debela, M., Wagner, S., Magdolen, V., and Becker-Pauly, C. (2010). Analyzing the protease web in skin: meprin metalloproteases are activated specifically by KLK4, 5 and 8 vice versa leading to processing of proKLK7 thereby triggering its activation. Biol. Chem. 391, 455–460.10.1515/bc.2010.023Search in Google Scholar PubMed

Oji, V., Beljan, G., Beier, K., Traupe, H., and Luger, T.A. (2005). Topical pimecrolimus: a novel therapeutic option for Netherton syndrome. Br. J. Dermatol. 153, 1067–1068.10.1111/j.1365-2133.2005.06884.xSearch in Google Scholar PubMed

Ong, A. and Harper, J. (2006). Netherton’s syndrome. In: Textbook of Pediatric Dermatology. J. Harper, A. Oranje and N. Prose, eds. (Turin, Italy, Blackwell), pp. 1359–1366.Search in Google Scholar

Pearton, J.D., Nirunsuksiri, W., Rehemtulla, A., Lewis, S.P., Presland, R.B., and Dale, B.A. (2001). Proprotein convertase expression and localization in epidermis: evidence for multiple roles and substrates. Exp. Dermatol. 10, 193–203.10.1034/j.1600-0625.2001.010003193.xSearch in Google Scholar PubMed

Rattenholl, A. and Steinhoff, M. (2008). Proteinase-activated receptor-2 in the skin: receptor expression, activation and function during health and disease. Drug News Perspect. 21, 369–381.10.1358/dnp.2008.21.7.1255294Search in Google Scholar PubMed

Renner, D.E., Hartl, D., Rylaarsdam, S., Young, M.L., Monaco-Shawver, L., Kleiner, G., Markert, M.L., Stiehm, E.R., Belohradsky, B.H., Upton, M.P., et al. (2009). Comel-Netherton syndrome defined as primary immunodeficiency. J. Allergy Clin. Immunol. 124, 536–543.10.1016/j.jaci.2009.06.009Search in Google Scholar PubMed PubMed Central

Resing, A.K., Thulin, C., Whiting, K., al-Alawi, N., and Mostad, S. (1995). Characterization of profilaggrin endoproteinase 1. A regulated cytoplasmic endoproteinase of epidermis. J. Biol. Chem. 270, 28193–28198.10.1074/jbc.270.47.28193Search in Google Scholar PubMed

Roedl, D., Oji, V., Buters, J.T., Behrendt, H., and Braun-Falco, M. (2011). rAAV2-mediated restoration of LEKTI in LEKTI-deficient cells from Netherton patients. J. Dermatol. Sci. 61, 194–198.10.1016/j.jdermsci.2010.12.004Search in Google Scholar PubMed

Saghari, S., Woolery-Lloyd, H., and Nouri, K. (2002). Squamous cell carcinoma in a patient with Netherton’s syndrome. Inter. J. Dermatol. 41, 415–416.10.1046/j.1365-4362.2002.01444.xSearch in Google Scholar PubMed

Saif, H.G.B. and Al-Khenaizan, S. (2007). Netherton syndrome: successful use of topical tacrolimus and pimecrolimus in four siblings. Int. J. Dermatol. 46, 290–294.10.1111/j.1365-4632.2006.02956.xSearch in Google Scholar PubMed

Sakabe, J., Yamamoto, M., Hirakawa, S., Motoyama, A., Ohta, I., Tatsuno, K., Ito, T., Kabashima, K., Hibino, T., and Tokura, Y. (2013). Kallikrein-related peptidase 5 functions in proteolytic processing of profilaggrin in cultured human keratinocytes. J. Biol. Chem. 288, 17179–17189.10.1074/jbc.M113.476820Search in Google Scholar PubMed PubMed Central

Sales, U.K., Masedunskas, A., Bey, A.L., Rasmussen, A.L., Weigert, R., List, K., Szabo, R., Overbeek, P.A., and Bugge, T.H. (2010). Matriptase initiates activation of epidermal pro-kallikrein and disease onset in a mouse model of Netherton syndrome. Nat. Genet. 42, 676–683.10.1038/ng.629Search in Google Scholar PubMed PubMed Central

Sandilands, A., Sutherland, C., Irvine, A.D., and McLean, W.H. (2009). Filaggrin in the frontline: role in skin barrier function and disease. J. Cell Sci. 122, 1285–1294.10.1242/jcs.033969Search in Google Scholar PubMed PubMed Central

Schalkwijk, J., Chang, A., Janssen, P., De Jongh, G.J., and Mier, P.D. (1990). Skin-derived antileucoproteases (SKALPs): characterization of two new elastase inhibitors from psoriatic epidermis. Br. J. Dermatol. 122, 631–641.10.1111/j.1365-2133.1990.tb07285.xSearch in Google Scholar PubMed

Schechter, M.N., Choi, E.J., Wang, Z.M., Hanakawa, Y., Stanley, J.R., Kang, Y., Clayman, G.L. and Jayakumar, A. (2005). Inhibition of human kallikreins 5 and 7 by the serine protease inhibitor lympho-epithelial Kazal-type inhibitor (LEKTI). Biol. Chem. 386, 1173–1184.10.1515/BC.2005.134Search in Google Scholar PubMed

Segre, J.A. (2006). Epidermal barrier formation and recovery in skin disorders. J. Clin. Invest. 116, 1150–1158.10.1172/JCI28521Search in Google Scholar PubMed PubMed Central

Soumelis, V., Reche, P.A., Kanzler, H., Yuan, W., Edward, G., Homey, B., Gilliet, M., Ho, S., Antonenko, S., Lauerma, A., et al. (2002). Human epithelial cells trigger dendritic cell mediated allergic inflammation by producing TSLP. Nat. Immunol. 3, 673–680.10.1038/ni805Search in Google Scholar PubMed

Stehlik, C. (2009). Multiple interleukin-1beta-converting enzymes contribute to inflammatory arthritis. Arthritis Rheum. 60, 3524–3530.10.1002/art.24961Search in Google Scholar PubMed PubMed Central

Steinhoff, M., Corvera, C.U., Thoma, M.S., Kong, W., McAlpine, B.E., Caughey, G.H., Ansel, J.C., and Bunnett, N.W. (1999). Proteinase-activated receptor-2 in human skin: tissue distribution and activation of keratinocytes by mast cell tryptase. Exp. Dermatol. 8, 282–294.10.1111/j.1600-0625.1999.tb00383.xSearch in Google Scholar PubMed

Steinhoff, M., Neisius, U., Ikoma, A., Fartasch, M., Heyer, G., Skov, P.S., Luger, T.A., and Schmelz M. (2003). Proteinase- activated receptor-2 mediates itch: a novel pathway for pruritus in human skin. J. Neurosci. 23, 6176–6180.10.1523/JNEUROSCI.23-15-06176.2003Search in Google Scholar

Stoll, C., Alembik, Y., Tchomakov, D., Messer, J., Heid, E., Boehm, N., Calvas, P., and Hovnanian, A. (2001). Severe hypernatremic dehydration in an infant with Netherton syndrome. Genet. Couns. 12, 237–243.Search in Google Scholar

Stryk, S., Siegfried, E.C., and Knutsen, A.P. (1999). Selective antibody deficiency to bacterial polysaccharide antigens in patients with Netherton syndrome. Pediatr. Dermatol. 16, 19–22.10.1046/j.1525-1470.1999.99005.xSearch in Google Scholar PubMed

Sun, J.D. and Linden, K.G. (2006). Netherton syndrome: a case report and review of the literature. Int J Dermatol. 45, 693–697.10.1111/j.1365-4632.2005.02637.xSearch in Google Scholar PubMed

Szabo, R., Kosa, P., List, K., and Bugge, T.H. (2009). Loss of matriptase suppression underlies spint1 mutation-associated ichthyosis and postnatal lethality. Am. J. Pathol. 174, 2015–2022.10.2353/ajpath.2009.090053Search in Google Scholar PubMed PubMed Central

Takai, T. and Ikeda, S. (2011). Barrier dysfunction caused by environmental proteases in the pathogenesis of allergic diseases. Allergol. Int. 60, 25–35.10.2332/allergolint.10-RAI-0273Search in Google Scholar PubMed

Tartaglia-Polcini, A., Bonnart, C., Micheloni, A., Cianfarani, F., Andre, A., Zambruno, G., Hovnanian, A., and D’Alessio, M. (2006). SPINK5, the defective gene in netherton syndrome, encodes multiple LEKTI isoforms derived from alternative pre-mRNA processing. J. Invest. Dermatol. 126, 315–324.10.1038/sj.jid.5700015Search in Google Scholar PubMed

Traupe, H. (1989). The Comel-Netherton syndrome. The Ichthyoses. A Guide to Clinical Diagnosis, Genetic Counseling and Therapy. (Berlin, Germany: Springer-Verlag), pp. 168–178.10.1007/978-3-642-73650-6_17Search in Google Scholar

van der Voort, E.A. and Prens, E.P. (2013). Netherton syndrome with multiple non-melanoma skin cancers. Acta Derm. Venereol. 93, 727–728.10.2340/00015555-1558Search in Google Scholar PubMed

Van Gysel, D., Koning, H., Baert, M.R., Savelkoul, H.F., Neijens, H.J., and Oranje, A.P. (2001). Clinico-immunological heterogeneity in Comel-Netherton syndrome. Dermatology 202, 99–107.10.1159/000051607Search in Google Scholar PubMed

Wakita, H., Furukawa, F., and Takigawa, M. (1997). Thrombin and trypsin induce granulocyte-macrophage colony-stimulating factor and interleukin-6 gene expression in cultured normal human keratinocytes. Proc. Assoc. Am. Physicians 109, 190–207.Search in Google Scholar

Weber, F., Fuchs, P.G., Pfister, H.J., Hinter, H., Fritsch, P., and Hoepfl, R. (2001). Human papillomavirus infection in Nehterton’s syndrome. Br. J. Dermatol. 144, 1044–1049.10.1046/j.1365-2133.2001.04196.xSearch in Google Scholar PubMed

Wingens, P.M., van Bergen, B.H., Hiemstra, P.S., Meis, J.F., van Vlijmen-Willems, I.M., Zeeuwen, P.L., Mulder, J., Kramps, H.A., van Ruissen, F., and Schalkwijk, J. (1998). Induction of SLPI (ALP/HUSI-I) in epidermal keratinocytes. J. Invest. Dermatol. 111, 996–1002.10.1046/j.1523-1747.1998.00425.xSearch in Google Scholar PubMed

Witt, H., Luck, W., Hennies, H.C., Classen, M., Kage, A., Lass, U., Landt, O., and Becker, M. (2000). Mutations in the gene encoding the serine protease inhibitor Kazal type 1 are associated with chronic pancreatitis. Nat. Genet. 25, 213–216.10.1038/76088Search in Google Scholar PubMed

Yamasaki, K., Schauber, J., Coda, A., Lin, H., Dorschner, R.A., Schechter, N.M., Bonnart, C., Descargues, P., Hovnanian, A., and Gallo, R.L. (2006). Kallikrein-mediated proteolysis regulates the antimicrobial effects of cathelicidins in skin. Faseb J. 20, 2068–2080.10.1096/fj.06-6075comSearch in Google Scholar PubMed

Yamasaki, K., Kanada, K., Macleod, D.T., Borkowski, A.W., Morizane, S., Nakatsuji, T., Cogen, A.L., and Gallo, R.L. (2011). TLR2 expression is increased in rosacea and stimulates enhanced serine protease production by keratinocytes. J. Invest. Dermatol. 131, 688–697.10.1038/jid.2010.351Search in Google Scholar PubMed PubMed Central

Yamazaki, M., Ishidoh, K., Suga, Y., Saido, T.C., Kawashima, S., Suzuki, K., Kominami, E., and Ogawa, H. (1997). Cytoplasmic processing of human profilaggrin by active mu-calpain. Biochem. Biophys. Res. Commun. 235, 652–656.10.1006/bbrc.1997.6809Search in Google Scholar PubMed

Yan, C, A., Honig, P.J., Ming, M.E., Weber, J., and Shah, K.N. (2010). The safety and efficacy of pimecrolimus 1% cream for the treatment of Netherton syndrome: results from an exploratory study. Arch. Dermatol. 146, 57–62.10.1001/archdermatol.2009.326Search in Google Scholar PubMed

Yang, T., Liang, D., Koch, P.J., Hohl, D., Kheradmand, F., and Overbeek, P.A. (2004). Epidermal detachment, desmosomal dissociation, and destabilization of corneodesmosin in Spink5-/- mice. Genes Dev. 18, 2354–2358.10.1101/gad.1232104Search in Google Scholar PubMed PubMed Central

Yousef, M, G., Bharaj, B.S., Yu, H., Poulopoulos, J., and Diamandis, E.P. (2001). Sequence analysis of the human kallikrein gene locus identifies a unique polymorphic minisatellite element. Biochem. Biophys. Res. Commun. 285, 1321–1329.10.1006/bbrc.2001.5321Search in Google Scholar PubMed

Received: 2014-2-15
Accepted: 2014-6-6
Published Online: 2014-8-6
Published in Print: 2014-9-1

©2014 by De Gruyter

Downloaded on 25.4.2024 from https://www.degruyter.com/document/doi/10.1515/hsz-2014-0137/html
Scroll to top button