Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter April 27, 2013

Cathepsin K: a unique collagenolytic cysteine peptidase

  • Marko Novinec

    Marko Novinec did his PhD studies at the Jožef Stefan Institute, Ljubljana, Slovenia and received a PhD in Biomedicine from the University of Ljubljana, Slovenia in 2008. He continued his training as a Postdoc in the group of Prof. Antonio Baici at the University of Zürich, Switzerland, where he investigated the mechanisms of allosteric regulation in cysteine peptidases. Since 2013, he is Assistant Professor of Biochemistry at the Faculty of Chemistry and Chemical Technology, University of Ljubljana, Slovenia. His research focuses on the structure-function-evolution relationships in enzymes.

    EMAIL logo
    and Brigita Lenarčič

    Brigita Lenarčič holds a BSc in Pharmacy and a PhD in Chemistry from the University of Ljubljana, Slovenia. She was a guest scientist at the University of Notre Dame, Indiana, USA and Sincrotrone Trieste, Italy. She works as a senior researcher at the Jožef Stefan Institute, Ljubljana, Slovenia. Since 2006 she is Professor of Biochemistry and Head of the Chair of Biochemistry at the Faculty of Chemistry and Chemical Technology, University of Ljubljana, Slovenia. Her research focuses on the structure-function relationships in extracellular matrix proteins and regulation of peptidase activity.

    EMAIL logo
From the journal Biological Chemistry

Abstract

Cathepsin K has emerged as a promising target for the treatment of osteoporosis in recent years. Initially identified as a papain-like cysteine peptidase expressed in high levels in osteoclasts, the important role of this enzyme in bone metabolism was highlighted by the finding that mutations in the CTSK gene cause the rare recessive disorder pycnodysostosis, which is characterized by severe bone anomalies. At the molecular level, the physiological role of cathepsin K is reflected by its unique cleavage pattern of type I collagen molecules, which is fundamentally different from that of other endogenous collagenases. Several cathepsin K inhibitors have been developed to reduce the excessive bone matrix degradation associated with osteoporosis, with the frontrunner odanacatib about to successfully conclude Phase 3 clinical trials. Apart from osteoclasts, cathepsin K is expressed in different cell types throughout the body and is involved in processes of adipogenesis, thyroxine liberation and peptide hormone regulation. Elevated activity of cathepsin K has been associated with arthritis, atherosclerosis, obesity, schizophrenia, and tumor metastasis. Accordingly, its activity is tightly regulated via multiple mechanisms, including competitive inhibition by endogenous macromolecular inhibitors and allosteric regulation by glycosaminoglycans. This review provides a state-of-the-art description of the activity of cathepsin K at the molecular level, its biological functions and the mechanisms involved in its regulation.


Corresponding authors: Marko Novinec, Department of Chemistry and Biochemistry, Faculty of Chemistry and Chemical Technology, University of Ljubljana, SI-1000 Ljubljana, Slovenia; and Brigita Lenarčič, Department of Chemistry and Biochemistry, Faculty of Chemistry and Chemical Technology, University of Ljubljana, SI-1000 Ljubljana, Slovenia; and Department of Biochemistry and Molecular and Structural Biology, Jožef Stefan Institute, SI-1000 Ljubljana, Slovenia

About the authors

Marko Novinec

Marko Novinec did his PhD studies at the Jožef Stefan Institute, Ljubljana, Slovenia and received a PhD in Biomedicine from the University of Ljubljana, Slovenia in 2008. He continued his training as a Postdoc in the group of Prof. Antonio Baici at the University of Zürich, Switzerland, where he investigated the mechanisms of allosteric regulation in cysteine peptidases. Since 2013, he is Assistant Professor of Biochemistry at the Faculty of Chemistry and Chemical Technology, University of Ljubljana, Slovenia. His research focuses on the structure-function-evolution relationships in enzymes.

Brigita Lenarčič

Brigita Lenarčič holds a BSc in Pharmacy and a PhD in Chemistry from the University of Ljubljana, Slovenia. She was a guest scientist at the University of Notre Dame, Indiana, USA and Sincrotrone Trieste, Italy. She works as a senior researcher at the Jožef Stefan Institute, Ljubljana, Slovenia. Since 2006 she is Professor of Biochemistry and Head of the Chair of Biochemistry at the Faculty of Chemistry and Chemical Technology, University of Ljubljana, Slovenia. Her research focuses on the structure-function relationships in extracellular matrix proteins and regulation of peptidase activity.

The authors thank Professor Andrej Petrič (Faculty of Chemistry and Chemical Technology, University of Ljubljana) for help with chemical structures and the Slovenian Research Agency for financial support (grants P1-0140, Z1-4077 and J1-4247).

Conflict of interest statement: The authors declare no conflict of interest.

References

Abdollahi-Roodsaz, S., Joosten, L.A., Koenders, M.I., van den Brand, B.T., van de Loo, F.A., and van den Berg, W.B. (2009). Local interleukin-1-driven joint pathology is dependent on toll-like receptor 4 activation. Am. J. Pathol. 175, 2004–2013.10.2353/ajpath.2009.090262Search in Google Scholar

Alberts, B., Johnson, A., Lewis, J., Raff, M., Roberts, K., and Walter, P. (2002). Molecular Biology of the Cell, 4th Edition (New York, NY, USA: Garland Science).Search in Google Scholar

Alves, M.F., Puzer, L., Cotrin, S.S., Juliano, M.A., Juliano, L., Brömme, D., and Carmona, A.K. (2003). S3 to S3’ subsite specificity of recombinant human cathepsin K and development of selective internally quenched fluorescent substrates. Biochem. J. 373, 981–986.10.1042/bj20030438Search in Google Scholar

Asagiri, M., Hirai, T., Kunigami, T., Kamano, S., Gober, H.J., Okamoto, K., Nishikawa, K., Latz, E., Golenbock, D.T., Aoki, K., et al. (2008). Cathepsin K-dependent toll-like receptor 9 signaling revealed in experimental arthritis. Science 319, 624–627.10.1126/science.1150110Search in Google Scholar

Atley, L.M., Mort, J.S., Lalumiere, M., and Eyre, D.R. (2000). Proteolysis of human bone collagen by cathepsin K: characterization of the cleavage sites generating by cross-linked N-telopeptide neoepitope. Bone 26, 241–247.10.1016/S8756-3282(99)00270-7Search in Google Scholar

Avila, J.L. and Convit, J. (1975). Inhibition of leucocytic lysosomal enzymes by glycosaminoglycans in vitro. Biochem. J. 152, 57–64.10.1042/bj1520057Search in Google Scholar PubMed PubMed Central

Barrett, A.J. (1986). The cystatins: a diverse superfamily of cysteine peptidase inhibitors. Biomed. Biochim. Acta 45, 1363–1374.Search in Google Scholar

Bernstein, H.G., Bukowska, A., Dobrowolny, H., Bogerts, B., and Lendeckel, U. (2007). Cathepsin K and schizophrenia. Synapse 61, 252–253.10.1002/syn.20358Search in Google Scholar PubMed

Bone, H. (2012). Future directions in osteoporosis therapeutics. Endocrinol. Metab. Clin. North. Am. 41, 655–661.10.1016/j.ecl.2012.05.003Search in Google Scholar PubMed

Boonen, S., Rosenberg, E., Claessens, F., Vanderschueren, D., and Papapoulos, S. (2012). Inhibition of cathepsin K for treatment of osteoporosis. Curr. Osteoporos. Rep. 10, 73–79.10.1007/s11914-011-0085-9Search in Google Scholar PubMed

Borel, O., Gineyts, E., Bertholon, C., and Garnero, P. (2012). Cathepsin K preferentially solubilizes matured bone matrix. Calcif. Tissue Int. 91, 32–39.10.1007/s00223-012-9604-7Search in Google Scholar PubMed

Bossard, M.J., Tomaszek, T.A., Thompson, S.K., Amegadzie, B.Y., Hanning, C.R., Jones, C., Kurdyla, J.T., McNulty, D.E., Drake, F.H., Gowen, M., et al. (1996). Proteolytic activity of human osteoclast cathepsin K. Expression, purification, activation, and substrate identification. J. Biol. Chem. 271, 12517–12524.10.1074/jbc.271.21.12517Search in Google Scholar PubMed

Brage, M., Abrahamson, M., Lindstrom, V., Grubb, A., and Lerner, U.H. (2005). Different cysteine proteinases involved in bone resorption and osteoclast formation. Calcif. Tissue Int. 76, 439–447.10.1007/s00223-004-0043-ySearch in Google Scholar

Brix, K., Dunkhorst, A., Mayer, K., and Jordans, S. (2008). Cysteine cathepsins: cellular roadmap to different functions. Biochimie 90, 194–207.10.1016/j.biochi.2007.07.024Search in Google Scholar

Brömme, D. and Lecaille, F. (2009). Cathepsin K inhibitors for osteoporosis and potential off-target effects. Expert. Opin. Investig. Drugs 18, 585–600.10.1517/13543780902832661Search in Google Scholar

Brömme, D., Okamoto, K., Wang, B.B., and Biroc, S. (1996). Human cathepsin O2, a matrix protein-degrading cysteine protease expressed in osteoclasts. Functional expression of human cathepsin O2 in Spodoptera frugiperda and characterization of the enzyme. J. Biol. Chem. 271, 2126–2132.10.1074/jbc.271.4.2126Search in Google Scholar

Bühling, F., Rocken, C., Brasch, F., Hartig, R., Yasuda, Y., Saftig, P., Brömme, D., and Welte, T. (2004). Pivotal role of cathepsin K in lung fibrosis. Am. J. Pathol. 16, 2203–2216.10.1016/S0002-9440(10)63777-7Search in Google Scholar

Caglič, D., Pungerčar, J.R., Pejler, G., Turk, V., and Turk, B. (2007). Glycosaminoglycans facilitate procathepsin B activation through disruption of propeptide-mature enzyme interactions. J. Biol. Chem. 282, 33076–33085.10.1074/jbc.M705761200Search in Google Scholar PubMed

Charni-Ben Tabassi, N., Desmarais, S., Bay-Jensen, A.C., Delaisse, J.M., Percival, M.D., and Garnero, P. (2008). The type II collagen fragments Helix-II and CTX-II reveal different enzymatic pathways of human cartilage collagen degradation. Osteoarthritis Cartilage 16, 1183–1191.10.1016/j.joca.2008.02.008Search in Google Scholar PubMed

Cherney, M.M., Lecaille, F., Kienitz, M., Nallaseth, F.S., Li, Z., James, M.N., and Brömme, D. (2011). Structure-activity analysis of cathepsin K/chondroitin 4-sulfate interactions. J. Biol. Chem. 286, 8988–8998.10.1074/jbc.M110.126706Search in Google Scholar PubMed PubMed Central

Chiellini, C., Costa, M., Novelli, S.E., Amri, E.Z., Benzi, L., Bertacca, A., Cohen, P., Del Prato, S., Friedman, J.M., and Maffei, M. (2003). Identification of cathepsin K as a novel marker of adiposity in white adipose tissue. J. Cell. Physiol. 195, 309–321.10.1002/jcp.10253Search in Google Scholar PubMed

Chiodoni, C., Colombo, M.P., and Sangaletti, S. (2010). Matricellular proteins: from homeostasis to inflammation, cancer, and metastasis. Cancer Metastasis Rev. 29, 295–307.10.1007/s10555-010-9221-8Search in Google Scholar PubMed

Choe, Y., Leonetti, F., Greenbaum, D.C., Lecaille, F., Bogyo, M., Brömme, D., Ellman, J.A., and Craik, C.S. (2006). Substrate profiling of cysteine proteases using a combinatorial peptide library identifies functionally unique specificities. J. Biol. Chem. 281, 12824–12832.10.1074/jbc.M513331200Search in Google Scholar PubMed

Chung, L., Dinakarpandian, D., Yoshida, N., Lauer-Fields, J.L., Fields, G.B., Visse, R., and Nagase, H. (2004). Collagenase unwinds triple-helical collagen prior to peptide bond hydrolysis. EMBO J. 23, 3020–3030.10.1038/sj.emboj.7600318Search in Google Scholar PubMed PubMed Central

Clemens, J.D., Herrick, M.V., Singer, F.R., and Eyre, D.R. (1997). Evidence that serum NTx (collagen-type I N-telopeptides) can act as an immunochemical marker of bone resorption. Clin. Chem. 43, 2058–2063.10.1093/clinchem/43.11.2058Search in Google Scholar

Cordes, C., Bartling, B., Simm, A., Afar, D., Lautenschlager, C., Hansen, G., Silber, R.E., Burdach, S., and Hofmann, H.S. (2009). Simultaneous expression of Cathepsins B and K in pulmonary adenocarcinomas and squamous cell carcinomas predicts poor recurrence-free and overall survival. Lung Cancer 64, 79–85.10.1016/j.lungcan.2008.07.005Search in Google Scholar PubMed

Dauth, S., Sirbulescu, R.F., Jordans, S., Rehders, M., Avena, L., Oswald, J., Lerchl, A., Saftig, P., and Brix, K. (2011). Cathepsin K deficiency in mice induces structural and metabolic changes in the central nervous system that are associated with learning and memory deficits. BMC Neurosci. 12, 74.10.1186/1471-2202-12-74Search in Google Scholar PubMed PubMed Central

Dejica, V.M., Mort, J.S., Laverty, S., Antoniou, J., Zukor, D.J., Tanzer, M., and Poole, A.R. (2008). Cleavage of type II collagen by cathepsin K in human osteoarthritic cartilage. Am. J. Pathol. 173, 161–169.10.2353/ajpath.2008.070494Search in Google Scholar PubMed PubMed Central

Dejica, V.M., Mort, J.S., Laverty, S., Percival, M.D., Antoniou, J., Zukor, D.J., and Poole, A.R. (2012). Increased type II collagen cleavage by cathepsin K and collagenase activities with aging and osteoarthritis in human articular cartilage. Arthritis Res. Ther. 14, R113.10.1186/ar3839Search in Google Scholar PubMed PubMed Central

Donnarumma, M., Regis, S., Tappino, B., Rosano, C., Assereto, S., Corsolini, F., Di Rocco, M., and Filocamo, M. (2007). Molecular analysis and characterization of nine novel CTSK mutations in twelve patients affected by pycnodysostosis. Mutation in brief #961. Online. Hum. Mutat. 28, 524.10.1002/humu.9490Search in Google Scholar PubMed

Dubin, G. (2005). Proteinaceous cysteine protease inhibitors. Cell Mol. Life Sci. 62, 653–669.10.1007/s00018-004-4445-9Search in Google Scholar PubMed PubMed Central

Eisman, J.A., Bone, H.G., Hosking, D.J., McClung, M.R., Reid, I.R., Rizzoli, R., Resch, H., Verbruggen, N., Hustad, C.M., DaSilva, C., et al. (2011). Odanacatib in the treatment of postmenopausal women with low bone mineral density: three-year continued therapy and resolution of effect. J. Bone Miner. Res. 26, 242–251.10.1002/jbmr.212Search in Google Scholar PubMed

Everts, V., Aronson, D.C., and Beertsen, W. (1985). Phagocytosis of bone collagen by osteoclasts in two cases of pycnodysostosis. Calcif. Tissue Int. 37, 25–31.10.1007/BF02557674Search in Google Scholar PubMed

Everts, V., Delaisse, J.M., Korper, W., Jansen, D.C., Tigchelaar-Gutter, W., Saftig, P., and Beertsen, W. (2002). The bone lining cell: its role in cleaning Howship’s lacunae and initiating bone formation. J. Bone Miner. Res. 17, 77–90.10.1359/jbmr.2002.17.1.77Search in Google Scholar PubMed

Falgueyret, J.P., Desmarais, S., Oballa, R., Black, W.C., Cromlish, W., Khougaz, K., Lamontagne, S., Masse, F., Riendeau, D., Toulmond, S., et al. (2005). Lysosomotropism of basic cathepsin K inhibitors contributes to increased cellular potencies against off-target cathepsins and reduced functional selectivity. J. Med. Chem. 48, 7535–7543.10.1021/jm0504961Search in Google Scholar PubMed

Funicello, M., Novelli, M., Ragni, M., Vottari, T., Cocuzza, C., Soriano-Lopez, J., Chiellini, C., Boschi, F., Marzola, P., Masiello, P., et al. (2007). Cathepsin K null mice show reduced adiposity during the rapid accumulation of fat stores. PLoS One 2, e683.10.1371/journal.pone.0000683Search in Google Scholar PubMed PubMed Central

Garnero, P., Borel, O., Byrjalsen, I., Ferreras, M., Drake, F.H., McQueney, M.S., Foged, N.T., Delmas, P.D., and Delaisse, J.M. (1998). The collagenolytic activity of cathepsin K is unique among mammalian proteinases. J. Biol. Chem. 273, 32347–32352.10.1074/jbc.273.48.32347Search in Google Scholar PubMed

Garnero, P., Ferreras, M., Karsdal, M.A., Nicamhlaoibh, R., Risteli, J., Borel, O., Qvist, P., Delmas, P.D., Foged, N.T., and Delaisse, J.M. (2003). The type I collagen fragments ICTP and CTX reveal distinct enzymatic pathways of bone collagen degradation. J. Bone Miner. Res. 18, 859–867.10.1359/jbmr.2003.18.5.859Search in Google Scholar PubMed

Gauthier, J.Y., Chauret, N., Cromlish, W., Desmarais, S., Duong le, T., Falgueyret, J.P., Kimmel, D.B., Lamontagne, S., Leger, S., LeRiche, T., et al. (2008). The discovery of odanacatib (MK-0822), a selective inhibitor of cathepsin K. Bioorg. Med. Chem. Lett. 18, 923–928.10.1016/j.bmcl.2007.12.047Search in Google Scholar PubMed

Gelb, B.D., Shi, G.P., Chapman, H.A., and Desnick, R.J. (1996). Pycnodysostosis, a lysosomal disease caused by cathepsin K deficiency. Science 273, 1236–1238.10.1126/science.273.5279.1236Search in Google Scholar PubMed

Giraudeau, F.S., McGinnis, R.E., Gray, I.C., O’Brien, E.J., Doncaster, K.E., Spurr, N.K., Ralston, S.H., Reid, D.M., and Wood, J. (2004). Characterization of common genetic variants in cathepsin K and testing for association with bone mineral density in a large cohort of perimenopausal women from Scotland. J. Bone Miner. Res. 19, 31–41.10.1359/jbmr.0301205Search in Google Scholar

Godat, E., Herve-Grvepinet, V., Veillard, F., Lecaille, F., Belghazi, M., Bromme, D., and Lalmanach, G. (2008). Regulation of cathepsin K activity by hydrogen peroxide. Biol. Chem. 389, 1123–1126.10.1515/BC.2008.109Search in Google Scholar PubMed

Haeckel, C., Krueger, S., Buehling, F., Broemme, D., Franke, K., Schuetze, A., Roese, I., and Roessner, A. (1999). Expression of cathepsin K in the human embryo and fetus. Dev. Dyn. 216, 89–95.10.1002/(SICI)1097-0177(199910)216:2<89::AID-DVDY1>3.0.CO;2-9Search in Google Scholar

Han, J., Luo, T., Gu, Y., Li, G., Jia, W., and Luo, M. (2009). Cathepsin K regulates adipocyte differentiation: possible involvement of type I collagen degradation. Endocr. J. 56, 55–63.10.1507/endocrj.K08E-143Search in Google Scholar

Hanson, D.A., Weis, M.A., Bollen, A.M., Maslan, S.L., Singer, F.R., and Eyre, D.R. (1992). A specific immunoassay for monitoring human bone resorption: quantitation of type I collagen cross-linked N-telopeptides in urine. J. Bone Miner. Res. 7, 1251–1258.10.1002/jbmr.5650071119Search in Google Scholar

Helske, S., Syvaranta, S., Lindstedt, K.A., Lappalainen, J., Oorni, K., Mayranpaa, M.I., Lommi, J., Turto, H., Werkkala, K., Kupari, M., et al. (2006). Increased expression of elastolytic cathepsins S, K, and V and their inhibitor cystatin C in stenotic aortic valves. Arterioscler. Thromb. Vasc. Biol. 26, 1791–1798.10.1161/01.ATV.0000228824.01604.63Search in Google Scholar

Herroon, M.K., Rajagurubandara, E., Rudy, D.L., Chalasani, A., Hardaway, A.L., and Podgorski, I. (2012). Macrophage cathepsin K promotes prostate tumor progression in bone. Oncogene 32, 1580–1593.10.1038/onc.2012.166Search in Google Scholar

Herve-Grepinet, V., Veillard, F., Godat, E., Heuze-Vourc’h, N., Lecaille, F., and Lalmanach, G. (2008). Extracellular catalase activity protects cysteine cathepsins from inactivation by hydrogen peroxide. FEBS Lett. 582, 1307–1312.10.1016/j.febslet.2008.03.007Search in Google Scholar

Hirabara, S., Kojima, T., Takahashi, N., Hanabayashi, M., and Ishiguro, N. (2013). Hyaluronan inhibits TLR-4 dependent cathepsin K and matrix metalloproteinase 1 expression in human fibroblasts. Biochem. Biophys. Res. Commun. 430, 519–522.10.1016/j.bbrc.2012.12.003Search in Google Scholar

Hou, W.S., Brömme, D., Zhao, Y., Mehler, E., Dushey, C., Weinstein, H., Miranda, C.S., Fraga, C., Greig, F., Carey, J., et al. (1999). Characterization of novel cathepsin K mutations in the pro and mature polypeptide regions causing pycnodysostosis. J. Clin. Invest. 103, 731–738.10.1172/JCI653Search in Google Scholar

Hou, W.S., Li, Z., Buttner, F.H., Bartnik, E., and Brömme, D. (2003). Cleavage site specificity of cathepsin K toward cartilage proteoglycans and protease complex formation. Biol. Chem. 384, 891–897.10.1515/BC.2003.100Search in Google Scholar

Hou, W.S., Li, Z., Gordon, R.E., Chan, K., Klein, M.J., Levy, R., Keysser, M., Keyszer, G., and Brömme, D. (2001). Cathepsin K is a critical protease in synovial fibroblast-mediated collagen degradation. Am. J. Pathol. 159, 2167–2177.10.1016/S0002-9440(10)63068-4Search in Google Scholar

Husmann, K., Muff, R., Bolander, M.E., Sarkar, G., Born, W., and Fuchs, B. (2008). Cathepsins and osteosarcoma: Expression analysis identifies cathepsin K as an indicator of metastasis. Mol. Carcinog. 47, 66–73.10.1002/mc.20362Search in Google Scholar PubMed

Inaoka, T., Bilbe, G., Ishibashi, O., Tezuka, K., Kumegawa, M., and Kokubo, T. (1995). Molecular cloning of human cDNA for cathepsin K: novel cysteine proteinase predominantly expressed in bone. Biochem. Biophys. Res. Commun. 206, 89–96.10.1006/bbrc.1995.1013Search in Google Scholar PubMed

Inui, T., Ishibashi, O., Inaoka, T., Origane, Y., Kumegawa, M., Kokubo, T., and Yamamura, T. (1997). Cathepsin K antisense oligodeoxynucleotide inhibits osteoclastic bone resorption. J. Biol. Chem. 272, 8109–8112.10.1074/jbc.272.13.8109Search in Google Scholar PubMed

Ishibashi, O., Mori, Y., Kurokawa, T., and Kumegawa, M. (1999). Breast cancer cells express cathepsins B and L but not cathepsins K or H. Cancer Biochem. Biophys. 17, 69–78.Search in Google Scholar

Ishidoh, K. and Kominami, E. (1995). Procathepsin L degrades extracellular matrix proteins in the presence of glycosaminoglycans in vitro. Biochem. Biophys. Res. Commun. 217, 624–631.10.1006/bbrc.1995.2820Search in Google Scholar PubMed

Jensen, A.B., Wynne, C., Ramirez, G., He, W., Song, Y., Berd, Y., Wang, H., Mehta, A., and Lombardi, A. (2010). The cathepsin K inhibitor odanacatib suppresses bone resorption in women with breast cancer and established bone metastases: results of a 4-week, double-blind, randomized, controlled trial. Clin. Breast Cancer 10, 452–458.10.3816/CBC.2010.n.059Search in Google Scholar PubMed

Jordans, S., Jenko-Kokalj, S., Kuhl, N.M., Tedelind, S., Sendt, W., Brömme, D., Turk, D., and Brix, K. (2009). Monitoring compartment-specific substrate cleavage by cathepsins B, K, L, and S at physiological pH and redox conditions. BMC Biochem. 10, 23.10.1186/1471-2091-10-23Search in Google Scholar PubMed PubMed Central

Kafienah, W., Brömme, D., Buttle, D.J., Croucher, L.J., and Hollander, A.P. (1998a). Human cathepsin K cleaves native type I and II collagens at the N-terminal end of the triple helix. Biochem. J. 331, 727–732.10.1042/bj3310727Search in Google Scholar PubMed PubMed Central

Kafienah, W., Buttle, D.J., Burnett, D., and Hollander, A.P. (1998b). Cleavage of native type I collagen by human neutrophil elastase. Biochem. J. 330, 897–902.10.1042/bj3300897Search in Google Scholar PubMed PubMed Central

Kim, K.W., Cho, M.L., Oh, H.J., Kim, H.R., Kang, C.M., Heo, Y.M., Lee, S.H., and Kim, H.Y. (2009). TLR-3 enhances osteoclastogenesis through upregulation of RANKL expression from fibroblast-like synoviocytes in patients with rheumatoid arthritis. Immunol. Lett. 124, 9–17.10.1016/j.imlet.2009.02.006Search in Google Scholar PubMed

Ko, F., Tallerico, T., and Seeman, P. (2006). Antipsychotic pathway genes with expression altered in opposite direction by antipsychotics and amphetamine. Synapse 60, 141–151.10.1002/syn.20287Search in Google Scholar PubMed

Kumar, S., Dare, L., Vasko-Moser, J.A., James, I.E., Blake, S.M., Rickard, D.J., Hwang, S.M., Tomaszek, T., Yamashita, D.S., Marquis, R.W., et al. (2007). A highly potent inhibitor of cathepsin K (relacatib) reduces biomarkers of bone resorption both in vitro and in an acute model of elevated bone turnover in vivo in monkeys. Bone 40, 122–131.10.1016/j.bone.2006.07.015Search in Google Scholar PubMed

Kylmala, T., Tammela, T.L., Risteli, L., Risteli, J., Kontturi, M., and Elomaa, I. (1995). Type I collagen degradation product (ICTP) gives information about the nature of bone metastases and has prognostic value in prostate cancer. Br. J. Cancer 71, 1061–1064.10.1038/bjc.1995.204Search in Google Scholar PubMed PubMed Central

Lafarge, J.C., Naour, N., Clement, K., and Guerre-Millo, M. (2010). Cathepsins and cystatin C in atherosclerosis and obesity. Biochimie 92, 1580–1586.10.1016/j.biochi.2010.04.011Search in Google Scholar PubMed

Langdahl, B., Binkley, N., Bone, H., Gilchrist, N., Resch, H., Rodriguez Portales, J., Denker, A., Lombardi, A., Le Bailly De Tilleghem, C., et al. (2012). Odanacatib in the treatment of postmenopausal women with low bone mineral density: Five years of continued therapy in a phase 2 study. J. Bone Miner. Res. 27, 2251–2258.10.1002/jbmr.1695Search in Google Scholar PubMed

Lange, A.W. and Yutzey, K.E. (2006). NFATc1 expression in the developing heart valves is responsive to the RANKL pathway and is required for endocardial expression of cathepsin K. Dev. Biol. 292, 407–417.10.1016/j.ydbio.2006.01.017Search in Google Scholar PubMed

Lecaille, F., Brömme, D., and Lalmanach, G. (2008). Biochemical properties and regulation of cathepsin K activity. Biochimie 90, 208–226.10.1016/j.biochi.2007.08.011Search in Google Scholar PubMed

Lecaille, F., Choe, Y., Brandt, W., Li, Z., Craik, C.S., and Brömme, D. (2002). Selective inhibition of the collagenolytic activity of human cathepsin K by altering its S2 subsite specificity. Biochemistry 41, 8447–8454.10.1021/bi025638xSearch in Google Scholar PubMed

Lecaille, F., Weidauer, E., Juliano, M.A., Brömme, D., and Lalmanach, G. (2003). Probing cathepsin K activity with a selective substrate spanning its active site. Biochem. J. 375, 307–312.10.1042/bj20030468Search in Google Scholar

Lenarčič, B. and Bevec, T. (1998). Thyropins–new structurally related proteinase inhibitors. Biol. Chem. 379, 105–111.Search in Google Scholar

Lendeckel, U., Kahne, T., Ten Have, S., Bukowska, A., Wolke, C., Bogerts, B., Keilhoff, G., and Bernstein, H.G. (2009). Cathepsin K generates enkephalin from beta-endorphin: a new mechanism with possible relevance for schizophrenia. Neurochem. Int. 54, 410–417.10.1016/j.neuint.2009.01.011Search in Google Scholar PubMed

Li, Z., Hou, W.S., and Brömme, D. (2000). Collagenolytic activity of cathepsin K is specifically modulated by cartilage-resident chondroitin sulfates. Biochemistry 39, 529–536.10.1021/bi992251uSearch in Google Scholar PubMed

Li, Z., Hou, W.S., Escalante-Torres, C.R., Gelb, B.D., and Brömme, D. (2002). Collagenase activity of cathepsin K depends on complex formation with chondroitin sulfate. J. Biol. Chem. 277, 28669–28676.10.1074/jbc.M204004200Search in Google Scholar

Li, Z., Kienetz, M., Cherney, M.M., James, M.N., and Brömme, D. (2008). The crystal and molecular structures of a cathepsin K:chondroitin sulfate complex. J. Mol. Biol. 383, 78–91.10.1016/j.jmb.2008.07.038Search in Google Scholar

Li, Z., Yasuda, Y., Li, W., Bogyo, M., Katz, N., Gordon, R.E., Fields, G.B., and Brömme, D. (2004). Regulation of collagenase activities of human cathepsins by glycosaminoglycans. J. Biol. Chem. 279, 5470–5479.10.1074/jbc.M310349200Search in Google Scholar

Lindeman, J.H., Hanemaaijer, R., Mulder, A., Dijkstra, P.D., Szuhai, K., Brömme, D., Verheijen, J.H., and Hogendoorn, P.C. (2004). Cathepsin K is the principal protease in giant cell tumor of bone. Am. J. Pathol. 165, 593–600.10.1016/S0002-9440(10)63323-8Search in Google Scholar

Lippuner, K. (2012). The future of osteoporosis treatment – a research update. Swiss Med. Wkly. 142, w13624.10.4414/smw.2012.13624Search in Google Scholar

Littlewood-Evans, A.J., Bilbe, G., Bowler, W.B., Farley, D., Wlodarski, B., Kokubo, T., Inaoka, T., Sloane, J., Evans, D.B., and Gallagher, J.A. (1997). The osteoclast-associated protease cathepsin K is expressed in human breast carcinoma. Cancer Res. 57, 5386–5390.Search in Google Scholar

Lutgens, E., Lutgens, S.P., Faber, B.C., Heeneman, S., Gijbels, M.M., de Winther, M.P., Frederik, P., van der Made, I., Daugherty, A., Sijbers, A.M., et al. (2006a). Disruption of the cathepsin K gene reduces atherosclerosis progression and induces plaque fibrosis but accelerates macrophage foam cell formation. Circulation 113, 98–107.10.1161/CIRCULATIONAHA.105.561449Search in Google Scholar

Lutgens, S.P., Kisters, N., Lutgens, E., van Haaften, R.I., Evelo, C.T., de Winther, M.P., Saftig, P., Daemen, M.J., Heeneman, S., and Cleutjens, K.B. (2006b). Gene profiling of cathepsin K deficiency in atherogenesis: profibrotic but lipogenic. J. Pathol. 210, 334–343.10.1002/path.2054Search in Google Scholar

Mason, R.W. and Massey, S.D. (1992). Surface activation of pro-cathepsin L. Biochem. Biophys. Res. Commun. 189, 1659–1666.10.1016/0006-291X(92)90268-PSearch in Google Scholar

McGrath, M.E., Klaus, J.L., Barnes, M.G., and Brömme, D. (1997). Crystal structure of human cathepsin K complexed with a potent inhibitor. Nat. Struct. Biol. 4, 105–109.10.1038/nsb0297-105Search in Google Scholar PubMed

Mihelič, M., Doberšek, A., Gunčar, G., and Turk, D. (2008). Inhibitory fragment from the p41 form of invariant chain can regulate activity of cysteine cathepsins in antigen presentation. J. Biol. Chem. 283, 14453–14460.10.1074/jbc.M801283200Search in Google Scholar PubMed

Mohamed, M.M. and Sloane, B.F. (2006). Cysteine cathepsins: multifunctional enzymes in cancer. Nat. Rev. Cancer 6, 764–775.10.1038/nrc1949Search in Google Scholar PubMed

Nagase, S., Hashimoto, Y., Small, M., Ohyama, M., Kuwayama, T., and Deacon, S. (2012a). Serum and urine bone resorption markers and pharmacokinetics of the cathepsin K inhibitor ONO-5334 after ascending single doses in post menopausal women. Br. J. Clin. Pharmacol. 74, 959–970.10.1111/j.1365-2125.2012.04307.xSearch in Google Scholar PubMed PubMed Central

Nagase, S., Ohyama, M., Hashimoto, Y., Small, M., Kuwayama, T., and Deacon, S. (2012b). Pharmacodynamic effects on biochemical markers of bone turnover and pharmacokinetics of the cathepsin K inhibitor, ONO-5334, in an ascending multiple-dose, phase 1 study. J. Clin. Pharmacol. 52, 306–318.10.1177/0091270011399080Search in Google Scholar PubMed

Novinec, M., Grass, R.N., Stark, W.J., Turk, V., Baici, A., and Lenarčič, B. (2007). Interaction between human cathepsins K, L, and S and elastins: mechanism of elastinolysis and inhibition by macromolecular inhibitors. J. Biol. Chem. 282, 7893–7902.10.1074/jbc.M610107200Search in Google Scholar PubMed

Novinec, M., Kovačič, L., Lenarčič, B., and Baici, A. (2010). Conformational flexibility and allosteric regulation of cathepsin K. Biochem. J. 429, 379–389.10.1042/BJ20100337Search in Google Scholar PubMed

Novinec, M., Lenarčič, B., and Baici, A. (2012). Clusterin is a specific stabilizer and liberator of extracellular cathepsin K. FEBS Lett. 586, 1062–1066.10.1016/j.febslet.2012.03.004Search in Google Scholar PubMed

Ochi, Y., Yamada, H., Mori, H., Nakanishi, Y., Nishikawa, S., Kayasuga, R., Kawada, N., Kunishige, A., Hashimoto, Y., Tanaka, M., et al. (2011). Effects of ONO-5334, a novel orally-active inhibitor of cathepsin K, on bone metabolism. Bone 49, 1351–1356.10.1016/j.bone.2011.09.041Search in Google Scholar PubMed

Oliveira, M., Assis, D.M., Paschoalin, T., Miranda, A., Ribeiro, E.B., Juliano, M.A., Brömme, D., Christoffolete, M.A., Barros, N.M., and Carmona, A.K. (2012). Cysteine cathepsin S processes leptin, inactivating its biological activity. J. Endocrinol. 214, 217–224.10.1530/JOE-12-0108Search in Google Scholar PubMed

Podgorski, I., Linebaugh, B.E., Koblinski, J.E., Rudy, D.L., Herroon, M.K., Olive, M.B., and Sloane, B.F. (2009). Bone marrow-derived cathepsin K cleaves SPARC in bone metastasis. Am. J. Pathol. 175, 1255–1269.10.2353/ajpath.2009.080906Search in Google Scholar PubMed PubMed Central

Punturieri, A., Filippov, S., Allen, E., Caras, I., Murray, R., Reddy, V., and Weiss, S.J. (2000). Regulation of elastinolytic cysteine proteinase activity in normal and cathepsin K-deficient human macrophages. J. Exp. Med. 192, 789–799.10.1084/jem.192.6.789Search in Google Scholar PubMed PubMed Central

Quintanilla-Dieck, M.J., Codriansky, K., Keady, M., Bhawan, J., and Rünger, T.M. (2008). Cathepsin K in melanoma invasion. J. Invest. Dermatol. 128, 2281–2288.10.1038/jid.2008.63Search in Google Scholar PubMed

Rapa, I., Volante, M., Cappia, S., Rosas, R., Scagliotti, G.V., and Papotti, M. (2006). Cathepsin K is selectively expressed in the stroma of lung adenocarcinoma but not in bronchioloalveolar carcinoma. A useful marker of invasive growth. Am. J. Clin. Pathol. 125, 847–854.10.1309/Q96AYDAAJ3E1TNWTSearch in Google Scholar

Rawlings, N.D., Barrett, A.J., and Bateman, A. (2012). MEROPS: the database of proteolytic enzymes, their substrates and inhibitors. Nucleic Acids Res. 40, D343–350.10.1093/nar/gkr987Search in Google Scholar PubMed PubMed Central

Rawlings, N.D., Tolle, D.P., and Barrett, A.J. (2004). Evolutionary families of peptidase inhibitors. Biochem. J. 378, 705–716.10.1042/bj20031825Search in Google Scholar

Ricard-Blum, S. (2011). The collagen family. Cold Spring Harb. Perspect. Biol. 3, a004978.10.1101/cshperspect.a004978Search in Google Scholar PubMed PubMed Central

Risteli, J., Elomaa, I., Niemi, S., Novamo, A., and Risteli, L. (1993). Radioimmunoassay for the pyridinoline cross-linked carboxy-terminal telopeptide of type I collagen: a new serum marker of bone collagen degradation. Clin. Chem. 39, 635–640.10.1093/clinchem/39.4.635Search in Google Scholar

Rosen, H.N., Moses, A.C., Garber, J., Iloputaife, I.D., Ross, D.S., Lee, S.L., and Greenspan, S.L. (2000). Serum CTX: a new marker of bone resorption that shows treatment effect more often than other markers because of low coefficient of variability and large changes with bisphosphonate therapy. Calcif. Tissue Int. 66, 100–103.10.1007/PL00005830Search in Google Scholar PubMed

Rünger, T.M., Adami, S., Benhamou, C.L., Czerwinski, E., Farrerons, J., Kendler, D.L., Mindeholm, L., Realdi, G., Roux, C., and Smith, V. (2012). Morphea-like skin reactions in patients treated with the cathepsin K inhibitor balicatib. J. Am. Acad. Dermatol. 66, e89–96.10.1016/j.jaad.2010.11.033Search in Google Scholar PubMed

Saftig, P., Hunziker, E., Wehmeyer, O., Jones, S., Boyde, A., Rommerskirch, W., Moritz, J.D., Schu, P., and von Figura, K. (1998). Impaired osteoclastic bone resorption leads to osteopetrosis in cathepsin-K-deficient mice. Proc. Natl. Acad. Sci. USA 95, 13453–13458.10.1073/pnas.95.23.13453Search in Google Scholar PubMed PubMed Central

Samokhin, A.O., Wong, A., Saftig, P., and Brömme, D. (2008). Role of cathepsin K in structural changes in brachiocephalic artery during progression of atherosclerosis in apoE-deficient mice. Atherosclerosis 200, 58–68.10.1016/j.atherosclerosis.2007.12.047Search in Google Scholar PubMed

Sassi, M.L., Eriksen, H., Risteli, L., Niemi, S., Mansell, J., Gowen, M., and Risteli, J. (2000). Immunochemical characterization of assay for carboxyterminal telopeptide of human type I collagen: loss of antigenicity by treatment with cathepsin K. Bone 26, 367–373.10.1016/S8756-3282(00)00235-0Search in Google Scholar

Schilling, O. and Overall, C.M. (2008). Proteome-derived, database-searchable peptide libraries for identifying protease cleavage sites. Nat. Biotechnol. 26, 685–694.10.1038/nbt1408Search in Google Scholar

Schuiling, K.D., Robinia, K., and Nye, R. (2011). Osteoporosis update. J. Midwifery Womens Health 56, 615–627.10.1111/j.1542-2011.2011.00135.xSearch in Google Scholar

Skrzydlewska, E., Sulkowska, M., Koda, M., and Sulkowski, S. (2005). Proteolytic-antiproteolytic balance and its regulation in carcinogenesis. World J. Gastroenterol. 11, 1251–1266.10.3748/wjg.v11.i9.1251Search in Google Scholar

Spiegelman, B.M. and Ginty, C.A. (1983). Fibronectin modulation of cell shape and lipogenic gene expression in 3T3-adipocytes. Cell 35, 657–666.10.1016/0092-8674(83)90098-3Search in Google Scholar

Stoch, S.A., Zajic, S., Stone, J.A., Miller, D.L., van Bortel, L., Lasseter, K.C., Pramanik, B., Cilissen, C., Liu, Q., Liu, L., et al. (2012). Odanacatib, a selective cathepsin K inhibitor to treat osteoporosis: Safety, tolerability, pharmacokinetics and pharmacodynamics – Results from single oral dose studies in healthy volunteers. Br. J. Clin. Pharmacol. 75, 1240–1254.10.1111/j.1365-2125.2012.04471.xSearch in Google Scholar

Stumptner-Cuvelette, P. and Benaroch, P. (2002). Multiple roles of the invariant chain in MHC class II function. Biochim. Biophys. Acta 1542, 1–13.10.1016/S0167-4889(01)00166-5Search in Google Scholar

Sukhova, G.K., Shi, G.P., Simon, D.I., Chapman, H.A., and Libby, P. (1998). Expression of the elastolytic cathepsins S and K in human atheroma and regulation of their production in smooth muscle cells. J. Clin. Invest. 102, 576–583.10.1172/JCI181Search in Google Scholar PubMed PubMed Central

Suoranta, S., Manninen, H., Koskenkorva, P., Kononen, M., Laitinen, R., Lehesjoki, A.E., Kalviainen, R., and Vanninen, R. (2012). Thickened skull, scoliosis and other skeletal findings in Unverricht-Lundborg disease link cystatin B function to bone metabolism. Bone 51, 1016–1024.10.1016/j.bone.2012.08.123Search in Google Scholar PubMed

Taleb, S. and Clement, K. (2007). Emerging role of cathepsin S in obesity and its associated diseases. Clin. Chem. Lab. Med. 45, 328–332.10.1515/CCLM.2007.083Search in Google Scholar PubMed

Tepel, C., Brömme, D., Herzog, V., and Brix, K. (2000). Cathepsin K in thyroid epithelial cells: sequence, localization and possible function in extracellular proteolysis of thyroglobulin. J. Cell Sci. 113, 4487–4498.10.1242/jcs.113.24.4487Search in Google Scholar

Tezuka, K., Tezuka, Y., Maejima, A., Sato, T., Nemoto, K., Kamioka, H., Hakeda, Y., and Kumegawa, M. (1994). Molecular cloning of a possible cysteine proteinase predominantly expressed in osteoclasts. J. Biol. Chem. 269, 1106–1109.10.1016/S0021-9258(17)42227-7Search in Google Scholar

Turk, B., Turk, D., and Salvesen, G.S. (2002). Regulating cysteine protease activity: essential role of protease inhibitors as guardians and regulators. Curr. Pharm. Des. 8, 1623–1637.10.2174/1381612023394124Search in Google Scholar

Turk, D., Gunčar, G., Podobnik, M., and Turk, B. (1998). Revised definition of substrate binding sites of papain-like cysteine proteases. Biol. Chem. 379, 137–147.10.1515/bchm.1998.379.2.137Search in Google Scholar

Turk, V., Stoka, V., Vasiljeva, O., Renko, M., Sun, T., Turk, B., and Turk, D. (2012). Cysteine cathepsins: from structure, function and regulation to new frontiers. Biochim. Biophys. Acta 1824, 68–88.10.1016/j.bbapap.2011.10.002Search in Google Scholar

Vargova, V., Pytliak, M., and Mechirova, V. (2012). Matrix metalloproteinases. EXS 103, 1–33.10.1007/978-3-0348-0364-9_1Search in Google Scholar

Vasiljeva, O., Dolinar, M., Pungerčar, J.R., Turk, V., and Turk, B. (2005). Recombinant human procathepsin S is capable of autocatalytic processing at neutral pH in the presence of glycosaminoglycans. FEBS Lett. 579, 1285–1290.10.1016/j.febslet.2004.12.093Search in Google Scholar

Velasco, G., Ferrando, A.A., Puente, X.S., Sanchez, L.M., and Lopez-Otin, C. (1994). Human cathepsin O. Molecular cloning from a breast carcinoma, production of the active enzyme in Escherichia coli, and expression analysis in human tissues. J. Biol. Chem. 269, 27136–27142.10.1016/S0021-9258(18)47135-9Search in Google Scholar

Votta, B.J., Levy, M.A., Badger, A., Bradbeer, J., Dodds, R.A., James, I.E., Thompson, S., Bossard, M.J., Carr, T., Connor, J.R., et al. (1997). Peptide aldehyde inhibitors of cathepsin K inhibit bone resorption both in vitro and in vivo. J. Bone Miner. Res. 12, 1396–1406.10.1359/jbmr.1997.12.9.1396Search in Google Scholar PubMed

Wijkmans, J. and Gossen, J. (2011). Inhibitors of cathepsin K: a patent review (2004–2010). Expert Opin. Ther. Pat. 21, 1611–1629.10.1517/13543776.2011.616283Search in Google Scholar PubMed

Williams, S.C. (2012). Potential first-in-class osteoporosis drug speeds through trials. Nat. Med. 18, 1158.10.1038/nm0812-1158Search in Google Scholar PubMed

Wilson, S., Hashamiyan, S., Clarke, L., Saftig, P., Mort, J., Dejica, V.M., and Brömme, D. (2009). Glycosaminoglycan-mediated loss of cathepsin K collagenolytic activity in MPS I contributes to osteoclast and growth plate abnormalities. Am. J. Pathol. 175, 2053–2062.10.2353/ajpath.2009.090211Search in Google Scholar PubMed PubMed Central

Xie, L., Moroi, Y., Hayashida, S., Tsuji, G., Takeuchi, S., Shan, B., Nakahara, T., Uchi, H., Takahara, M., and Furue, M. (2011). Cathepsin K-upregulation in fibroblasts promotes matrigel invasive ability of squamous cell carcinoma cells via tumor-derived IL-1alpha. J. Dermatol. Sci. 61, 45–50.10.1016/j.jdermsci.2010.09.005Search in Google Scholar PubMed

Xue, Y., Cai, T., Shi, S., Wang, W., Zhang, Y., Mao, T., and Duan, X. (2011). Clinical and animal research findings in pycnodysostosis and gene mutations of cathepsin K from 1996 to 2011. Orphanet J. Rare Dis. 6, 20.10.1186/1750-1172-6-20Search in Google Scholar PubMed PubMed Central

Yan, X., Takahara, M., Xie, L., Oda, Y., Nakahara, T., Uchi, H., Takeuchi, S., Tu, Y., Moroi, Y., and Furue, M. (2011). Stromal expression of cathepsin K in squamous cell carcinoma. J. Eur. Acad. Dermatol. Venereol. 25, 362–365.10.1111/j.1468-3083.2010.03743.xSearch in Google Scholar PubMed

Yang, M., Sun, J., Zhang, T., Liu, J., Zhang, J., Shi, M.A., Darakhshan, F., Guerre-Millo, M., Clement, K., Gelb, B.D., et al. (2008). Deficiency and inhibition of cathepsin K reduce body weight gain and increase glucose metabolism in mice. Arterioscler. Thromb. Vasc. Biol. 28, 2202–2208.10.1161/ATVBAHA.108.172320Search in Google Scholar PubMed PubMed Central

Yang, M., Zhang, Y., Pan, J., Sun, J., Liu, J., Libby, P., Sukhova, G.K., Doria, A., Katunuma, N., Peroni, O.D., et al. (2007). Cathepsin L activity controls adipogenesis and glucose tolerance. Nat. Cell Biol. 9, 970–977.10.1038/ncb1623Search in Google Scholar PubMed

Yasuda, Y., Li, Z., Greenbaum, D., Bogyo, M., Weber, E., and Brömme, D. (2004). Cathepsin V, a novel and potent elastolytic activity expressed in activated macrophages. J. Biol. Chem. 279, 36761–36770.10.1074/jbc.M403986200Search in Google Scholar PubMed

Zhang, S.H., Reddick, R.L., Piedrahita, J.A., and Maeda, N. (1992). Spontaneous hypercholesterolemia and arterial lesions in mice lacking apolipoprotein E. Science 258, 468–471.10.1126/science.1411543Search in Google Scholar PubMed

Zhao, B., Janson, C.A., Amegadzie, B.Y., D’Alessio, K., Griffin, C., Hanning, C.R., Jones, C., Kurdyla, J., McQueney, M., Qiu, X., et al. (1997). Crystal structure of human osteoclast cathepsin K complex with E-64. Nat. Struct. Biol. 4, 109–111.10.1038/nsb0297-109Search in Google Scholar PubMed

Received: 2013-2-7
Accepted: 2013-4-24
Published Online: 2013-04-27
Published in Print: 2013-09-01

©2013 by Walter de Gruyter Berlin Boston

Downloaded on 25.4.2024 from https://www.degruyter.com/document/doi/10.1515/hsz-2013-0134/html
Scroll to top button