Skip to main content
Log in

Inflammation-induced “Channelopathies” in the gastrointestinal smooth muscle

  • Review Article
  • Published:
Cell Biochemistry and Biophysics Aims and scope Submit manuscript

Abstract

Inflammation markedly alters the motility patterns of the gastrointestinal tract, resulting mostly in decreased excitability of smooth muscle. There is emerging evidence indicating that inflammation alters ion channel expression and function of smooth muscle cells. In this review we summarize studies defining the mechanisms affecting contractile and electrical activity of gastrointestinal smooth muscle. We have focused on the evidence for decreased calcium channel conductance and alterations in the intracellular signaling mechanisms and discuss the role of muscarinic receptor activation in models of gastrointestinal inflammation. We propose that some of the clinical symptoms of altered smooth muscle contraction in pathogenesis of gut disorders such as inflammatory bowel disease may be regulated at the level of the ion channel.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Waxman, S. G. (2001) Transcriptional channelopathies: an emerging class of disorders. Nat. Rev. Neurosci. 2, 652–659.

    Article  PubMed  CAS  Google Scholar 

  2. Horowitz, B., Ward, S. M., and Sanders, K. M. (1999) Cellular and molecular basis for electrical rhythmicity in gastrointestinal muscles. Annu. Rev. Physiol. 61, 19–43.

    Article  PubMed  CAS  Google Scholar 

  3. Huizinga, J. D. (1999) Gastrointestinal peristalsis: joint action of enteric nerves, smooth muscle, and interstitial cells of Cajal. Microsc. Res. Tech. 47, 239–247.

    Article  PubMed  CAS  Google Scholar 

  4. Murthy, K. S., Grider, J. R., Jin, J. G., and Makhlouf, G. M. (1995) Interplay of VIP and nitric oxide in the regulation of neuromuscular activity in the gut. Arch. Int. Pharmacodyn. Ther. 329, 27–38.

    PubMed  CAS  Google Scholar 

  5. Vermillion, D. L., Huizinga, J. D., Riddell, R. H., and Collins, S. M. (1993) Altered small-intestinal smooth-muscle function in Crohns-disease. Gastroenterology 104, 1692–1699.

    PubMed  CAS  Google Scholar 

  6. Cohen, J. D., Kao, H. W., Tan, S. T., Lechago, J., and Snape, W. J., Jr. (1986) Effect of acute experimental colitis on rabbit colonic smooth muscle. Am. J. Physiol. 251, G538-G545.

    PubMed  CAS  Google Scholar 

  7. Wells, R. W., Morris, G. P., Blennerhassett, M. G., and Paterson, W. G. (2003) Effects of acid-induced esophagitis on esophageal smooth muscle. Can. J. Physiol. Pharmacol. 81, 451–458.

    Article  PubMed  CAS  Google Scholar 

  8. White, R. J., Zhang, Y., Morris, G. P., and Paterson, W. G. (2001) Esophagitis related esophageal shortening in opossum is associated with longitudinal muscle hyperresponsiveness. Am. J. Physiol. Gastrointest. Liver Physiol. 280, G463-G469.

    PubMed  CAS  Google Scholar 

  9. Sarna, S. K. (2003) Neuronal locus and cellular signaling for stimulation of ileal giant migrating and phasic contractions. Am. J. Physiol. Gastrointest. Liver Physiol. 284, G789-G797.

    PubMed  CAS  Google Scholar 

  10. Ward, S. M., Keller, R. G., and Sanders, K. M. (1991) Structure and organization of electrical activity of canine distal colon. Am. J. Physiol. 260, G724-G735.

    PubMed  CAS  Google Scholar 

  11. Huizinga, J. D. and Barajas-Lopez, C. (1990) Ionic and cellular basis for slowwave-type and spike-like action potentials. Prog. Clin. Biol. Res. 327, 605–615.

    PubMed  CAS  Google Scholar 

  12. Szurszewski J. H. (1969) A migrating electric complex of canine small intestine. Am. J. Physiol. 217, 1757–1763.

    PubMed  CAS  Google Scholar 

  13. Sarna, S. K. (1985) Cyclic motor activity; migrating motor complex: 1985. Gastroenterology 89, 894–913.

    PubMed  CAS  Google Scholar 

  14. Sarna, S. K. (1991) MMC migration: neural or muscular?. Am. J. Physiol. 260, G665-G667.

    PubMed  CAS  Google Scholar 

  15. Spencer, N. J., Sanders, K. M., and Smith, T. K. (2003) Migrating motor complexes do not require electrical slow waves in the mouse small intestine. J. Physiol. 553, 881–893.

    Article  PubMed  CAS  Google Scholar 

  16. Kern, F., Jr., Almy, T. P., Abbot, F. K., and Bogdonoff, M. D. (1951) The motility of the distal colon in non-specific ulcerative colitis. Gastroenterology 19, 492–503.

    PubMed  Google Scholar 

  17. Sarna, S. K. (1998) In vivo signal-transduction pathways to stimulate phasic contractions in normal and inflamed ileum. Am. J. Physiol. 274, G618-G625.

    PubMed  CAS  Google Scholar 

  18. Biancani, P., Sohn, U. D., Rich, H. G., Harnett, K. M., and Behar, J. (1997) Signal transduction pathways in esophageal and lower esophageal sphincter circular muscle. Am. J. Med. 103, 23S-28S.

    Article  PubMed  CAS  Google Scholar 

  19. Chey, W. Y., Jin, H. O., Lee, M. H., Sun, S. W., and Lee, K. Y. (2001) Colonic motility abnormality in patients with irritable bowel syndrome exhibiting abdominal pain and diarrhea. Am. J. Gastroenterol. 96, 1499–1506.

    Article  PubMed  CAS  Google Scholar 

  20. Kern, S. E., Redston, M., Seymour, A. B., Caldas, C., Powell, S. M., Kornacki, S., et al. (1994) Molecular genetic profiles of colitis-associated neoplasms. Gastroenterology 107, 420–428.

    PubMed  CAS  Google Scholar 

  21. Lind, C. D. (1991) Motility disorders in the irritable bowel syndrome. Gastroenterol. Clin. North Am. 20, 279–295.

    PubMed  CAS  Google Scholar 

  22. Reddy, S. N., Bazzocchi, G., Chan, S., Akashi, K., Villanuevameyer, J., Yanni, G., et al. (1991) Colonic motility and transit in health and ulcerative-colitis. Gastroenterology 101, 1289–1297.

    PubMed  CAS  Google Scholar 

  23. Li, M., Johnson, C. P., Adams, M. B., and Sarna, S. K. (2002) Cholinergic and nitrergic regulation of in vivo giant migrating contractions in rat colon. Am. J. Physiol. Gastrointest. Liver Physiol. 283, G544-G552.

    PubMed  CAS  Google Scholar 

  24. Shi, X. Z. and Sarna, S. K. (1999) Differential inflammatory modulation of canine ileal longitudinal and circular muscle cells. Am. J. Physiol. Gastrointest. Liver Physiol. 277, G341-G350.

    CAS  Google Scholar 

  25. Akiho, H., Blennerhassert, P., Deng, Y., and Collins, S. M. (2002) Role of IL-4, IL-13, and STAT6 in inflammation-induced hypercontractility of murine smooth muscle cells. Am. J. Physiol. Gastrointest. Liver Physiol. 282, G226-G232.

    PubMed  CAS  Google Scholar 

  26. Szurszewski, J. H. (1985) Smooth muscle physiology. Nippon Heikatsukin. Gakkai Zasshi 21, Suppl. 1.

    Google Scholar 

  27. Moreels, T. G., De Man, J. G., Dick, J. M., Nieuwendijk, R. J., De Winter, B. Y., Lefebvre, et al. (2001) Effect of TNBS induced morphological changes on pharmacological contractility of the rat ileum. Eur. J. Pharmacol. 423, 211–222.

    Article  PubMed  CAS  Google Scholar 

  28. Lu, G., Qian, X., Berezin, I., Telford, G. L., Huizinga, J. D., and Sarna, S. K. (1997) Inflammation modulates in vitro colonic myoelectric and contractile activity and interstitial cells of Cajal. Am. J. Physiol. 273, G1233-G1245.

    PubMed  CAS  Google Scholar 

  29. Koch, T. R., Carney, J. A., Go, V. L., and Szurszewski, J. H. (1991) Inhibitory neuropeptides and intrinsic inhibitory innervation of descending human colon. Dig. Dis. Sci. 36, 712–718.

    Article  PubMed  CAS  Google Scholar 

  30. Rasmussen, H. H., Fallingborg, J. F., Mortensen, P. B., Vyberg, M., Tage-Jensen, U., and Rasmussen, S. N. (1997) Hepatobiliary dysfunction and primary sclerosing cholangitis in patients with Crohn's disease. Scand. J. Gastroenterol. 32, 604–610.

    Article  PubMed  CAS  Google Scholar 

  31. Akbarali, H. I., Pothoulakis, C., and Castagliuolo, I. (2000) Altered ion channel activity in murine colonic smooth muscle myocytes in an experimental colitis model. Biochem. Biophys. Res. Commun. 275, 637–642.

    Article  PubMed  CAS  Google Scholar 

  32. Liu, X., Rusch, N. J., Striessnig, J., and Sarna, S. K. (2001) Down-regulation of L-type calcium channels in inflamed circular smooth muscle cells of the canine colon. Gastroenterology 120, 480–489.

    Article  PubMed  CAS  Google Scholar 

  33. Kinoshita, K., Sato, K., Hori, M., Ozaki, H., and Karaki, H. (2003) Decrease in the activity of the L-type Ca2+-channels and its reversal by NF-κB inhibitors in colonic smooth muscle isolated from a TNBS-induced colitis model rat. Am. J. Physiol. Gastrointest. Liver Physiol. 285, G483-G493.

    PubMed  CAS  Google Scholar 

  34. Soldatov, N. M. (2003) Ca2+ channel moving tail; link between Ca2+-induced inactivation and Ca2+ signal transduction. Trends Pharmacol. Sci. 24, 167–171.

    Article  PubMed  CAS  Google Scholar 

  35. Koch, W. J., Hui, A., Shull, G. E., Ellinor, P., and Schwartz, A. (1989) Characterization of cDNA clones encoding two putative isoforms of the alpha 1 subunit of the dihydropyridine-sensitive voltage-dependent calcium channel isolated from rat brain and rat aorta. FEBS Lett. 250, 386–388.

    Article  PubMed  CAS  Google Scholar 

  36. Dai, B., Saada, N., Echetebu, C., Dettbam, C., and Palade, P. (2002) A new promoter for alpha1C subunit of human L-type cardiac calcium channel Ca(V)1.2. Biochem. Biophys. Res. Commun. 296, 429–433.

    Article  PubMed  CAS  Google Scholar 

  37. Holm, A. N., Rich, A., Sarr, M. G., and Farrugia, G. (2000) Whole cell current and membrane potential regulation by a human smooth muscle mechanosensitive calcium channel. Am. J. Physiol. Gastrointest. Liver Physiol. 279, G1155-G1161.

    PubMed  CAS  Google Scholar 

  38. Saada, N., Dai, B., Echetebu, C., Sarna, S. K., and Palade, P. (2003) Smooth muscle uses another promoter to express primarily a form of human Cav1.2 L type calcium channel different from the principll heart form. Biochem. Biophys. Res. Commun. 302, 23–28.

    Article  PubMed  CAS  Google Scholar 

  39. Neurath, M. F., Fuss, I., Schurmann, G., Pettersson, S., Arnold, K., Muller-Lobeck, H., et al. (1998) Cytokine gene transcription by NF-kappa B family members in patients with inflammatory bowel disease. Ann. N. Y. Acad. Sci. 859, 149–159.

    Article  PubMed  CAS  Google Scholar 

  40. Ghosh, S., May, M. J., and Kopp, E. B. (1998) NF-kappa B and Rel proteins: evolutionarily conserved mediators of immune responses. Annu. Rev. Immunol. 16, 225–260.

    Article  PubMed  CAS  Google Scholar 

  41. Shi, X. Z., Lindholm, P. F., and Sarna, S. K. (2003) NF-kappa B activation by oxidative stress and inflammation suppresses contractility in colonic circular smooth muscle cells. Gastroenterology 124, 1369–1380.

    Article  PubMed  CAS  Google Scholar 

  42. Stevenson, A. S., Gomez, M. F., Hill-Eubanks, D. C., and Nelson, M. T. (2001) NFAT4 movement in native smooth muscle. A role for differential Ca(2+) signaling. J Biol. Chem. 276, 15018–15024.

    Article  PubMed  CAS  Google Scholar 

  43. Gomez, M. F., Gonzalez Bosc, L. V., Stevenson, A. S., Wilkerson, M. K., Hill-Eubanks, D. C., and Nelson, M. T. (2003) Constitutively elevated nuclear export activity opposes Ca2+-dependent NFATc3 nuclear accumulation in vascular smooth muscle: role of JNK2 and Crm-1. J. Biol. Chem. 278, 46847–46853.

    Article  PubMed  CAS  Google Scholar 

  44. Hu, X. Q., Singh, N., Mukhopadhyay, D., and Akbarali, H. I. (1998) Modulation of voltage-dependent Ca2+ channels in rabbit colonic smooth muscle cells by c-Src and focal adhesion kinase. J. Biol. Chem. 273, 5337–5342.

    Article  PubMed  CAS  Google Scholar 

  45. Hatakaeyama, N., Mukhopadhyay, D., Goyal, R. K., and Akbarali, H. I. (1996) eyrosine kinase-dependent modulation of calcium entry in rabbit colonic muscularis mucosae. Am. J. Physiol. 270, C1780-C1789.

    Google Scholar 

  46. Davis, M. J., Wu, X., Nurkiewicz, T. R., Kawasaki, J., Gui, P., Hill, M. A., and Wilson, E., (2002) Regulation of ion channels by integrins. Cell Biochem. Biophys. 36, 41–66.

    Article  PubMed  CAS  Google Scholar 

  47. Di Salyo, J., Nelson, S. R., and Kaplan, N. (1997) Protein tyrosine phosphorylation in smooth muscle: a potential coupling mechanism between receptor activation and intracellular calcium. Proc. Soc. Exp. Biol. Med. 214, 285–301.

    Google Scholar 

  48. Hollenberg, M. D. (1994) Tyrosine kinase pathways and the regulation of smooth muscle contractility. Trends Pharmacol. Sci. 15, 108–114.

    Article  PubMed  CAS  Google Scholar 

  49. Bence-Hanulec, K. K., Marshall, J., and Blair, L. A. (2000) Potentiation of neuronal L calcium channels by IGF-1 requires phosphorylation of the alpha1 subunit on a specific tyrosine residue. Neuron 27, 121–131

    Article  PubMed  CAS  Google Scholar 

  50. Jin, X., Morsy, N., Shoeb, F., Zavzavadjian, J., and Akbarali, H. I. (2002) Coupling of M2 muscarinic receptor to L-type Ca channel via c-src kinase in rabbit colonic circular smooth muscle. Gastroenterology 123, 827–834.

    Article  PubMed  CAS  Google Scholar 

  51. Babenko, A. P., Aguilar-Bryan, L., and Bryan, J. (1998) A view of sur/KIR6X, KATP channels. Annu. Rev. Physiol. 60, 667–687

    Article  PubMed  CAS  Google Scholar 

  52. Seino, S. (1999) ATP-sensitive potassium channels: a model of heteromultimeric potassium channel/receptor assemblies. Annu. Rev. Physiol. 61, 337–362.

    Article  PubMed  CAS  Google Scholar 

  53. Hatakeyama, N., Wang, Q., Goyal, R. K., and Akbarali, H. I. (1995) Muscarinic suppression of ATP-sensitive K+ channel in rabbit esophageal smooth muscle. Am. J. Physiol. 268, C877-C885.

    PubMed  CAS  Google Scholar 

  54. Akbarali H. I. and Jin X. (2003) ATP-sensitive K+ channels demonstrate enhanced bursting activity in a murine experimental colitis model. Gastroenterology 124, S1022.

    Article  Google Scholar 

  55. Preiksaitis, H. G., Krysiak, P. S., Chrones, T., Rajgopal, V., and Laurier, L. G. (2000) Pharmacological and molecular characterization of muscarinic receptor subtypes in human esophageal smooth muscle. J. Pharmacol. Exp. Ther. 295, 879–888.

    PubMed  CAS  Google Scholar 

  56. Wang, J., Krysiak, P. S., Laurier, L. G., Sims, S. M., and Preiksaitis, H. G. (2000) Human esophageal smooth muscle cells express muscarinic receptor subtypes M(1) through M(5). Am. J. Physiol. Gastrointest. Liver Physiol. 279, G1059-G1069.

    PubMed  CAS  Google Scholar 

  57. Stengel, P. W., Yamada, M., Wess, J., and Cohen, M. L. (2002) M(3)-receptor knockout mice: muscarinic receptor function in atria, stomach fundus, urinary bladder, and trachea. Am. J. Physiol. Regul. Integr. Comp. Physiol. 282, R1443-R1449.

    PubMed  CAS  Google Scholar 

  58. Matsui, M., Motomura, D., Fujikawa, T., Jiang, J., Takahashi, S., Manabe, T., et al. (2002) Mice lacking M2 and M3 muscarinic acetylcholine receptors are devoid of cholinergic smooth muscle contractions but still viable. J. Neurosci. 22, 10627–10632.

    PubMed  CAS  Google Scholar 

  59. Sawyer, G. W. and Ehlert, F. J. (1999) Muscarinic M3 receptor inactivation reveals a pertussis toxin-sensitive contractile response in the guinea pig colon: evidence for M2/M3 receptor interactions. J. Pharmacol. Exp. Ther. 289, 464–476.

    PubMed  CAS  Google Scholar 

  60. Bolton, T. B. (1979) Cholinergic mechanisms in smooth muscle. Br. Med. Bull. 35, 275–283.

    PubMed  CAS  Google Scholar 

  61. Inoue, M. and Kuriyama, H. (1991) Muscarinic receptor is coupled with a cation channel through a GTP-binding protein in guinea-pig chromaffin cells. J. Physiol. 436, 511–529.

    PubMed  CAS  Google Scholar 

  62. Inoue, R. and Isenberg, G. (1990) Acetylcholine activates nonselective cation channels in guinea pig ileum through a G protein. Am. J. Physiol. 258, C1173-C1178.

    PubMed  CAS  Google Scholar 

  63. Pacaud, P. and Bolton, T. B. (1991) Relation between muscarinic receptor cationic current and internal calcium in guinea-pig jejunal smooth muscle cells. J. Physiol. 441, 477–499.

    PubMed  CAS  Google Scholar 

  64. Kotlikoff, M. I., Dhulipala, P., and Wang, Y. X. (1999) M2 signaling in smooth muscle cells. Life Sci. 64, 437–442.

    Article  PubMed  CAS  Google Scholar 

  65. Wang, Y. X., Dhulipala, P. D., Li, L., Benovic, J. L., and Kotlikoff, M. I. (1999) Coupling of M2 muscarinic receptors to membrane ion channels via phosphoinositide 3-kinase gamma and atypical protein kinase C. J. Biol. Chem. 274, 13859–13864.

    Article  PubMed  CAS  Google Scholar 

  66. Shi, X. Z. and Sarna, S. K. (1997) Inflammatory modulation of muscarinic receptor activation in canine ileal circular muscle cells. Gastroenterology 112, 864–874.

    Article  PubMed  CAS  Google Scholar 

  67. Ehlert, F. J., Sawyer, G. W., and Esqueda, E. E. (1999) Contractile role of M2 and M3 muscarinic receptors in gastrointestinal smooth muscle. Life Sci. 64, 387–394.

    Article  PubMed  CAS  Google Scholar 

  68. Jadcherla, S. R. (2002) Inflammatory inhibits muscarinic signaling in in vivo canine colonic circular smooth muscle cells. Pediatr. Res. 52, 756–762.

    PubMed  CAS  Google Scholar 

  69. Murthy, K. S. and Makhlouf, G. M. (1997) Differential coupling of muscarinic m2 and m3 receptors to adenylyl cyclases V/VI in smooth muscle. Concurrent M2-mediated inhibition via Galphai3 and m3-mediated stimulation via Gbetagammaq. J. Biol. Chem. 272, 21317–21324.

    Article  PubMed  CAS  Google Scholar 

  70. Murthy, K. S. and Makhlouf, G. M. (1998) Regulation of adenylyl cyclase type V/VI in smooth muscle: interplay of inhibitory G protein and Ca2+ influx. Mol. Pharmacol. 54, 122–128.

    PubMed  CAS  Google Scholar 

  71. Sohn, U. D., Harnett, K. M., Cao, W., Rich, H., Kim, N., Behar, J., et al. (1997) Acute experimental esophagitis activates a second signal transduction pathway in cat smooth muscle from the lower esophageal sphincter. J. Pharmacol. Exp. Ther. 283, 1293–1304.

    PubMed  CAS  Google Scholar 

  72. Singer, C. A., Vang, S., and Gerthoffer, W. T. (2002) Coupling of M(2) muscarinic receptors to Src activation in cultured canine colonic smooth muscle cells. Am. J. Physiol. Gastrointest. Liver Physiol. 282, G61-G68.

    PubMed  CAS  Google Scholar 

  73. Gold, M. S. (1999) Tetrodotoxin-resistant Na+ currents and inflammatory hyperalgesia. Proc. Natl. Acad. Sci. U. S. A. 96, 7645–7649.

    Article  PubMed  CAS  Google Scholar 

  74. Lai, J., Gold, M. S., Kim, C. S., Bian, D., Ossipov, M. H., Hunter, J. C., et al. (2002) Inhibition of neuropathic pain by decreased expression of the tetrodotoxin-resistant sodium channel, NaV1.8. Pain 95, 143–152.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hamid I. Akbarali.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Malykhina, A.P., Akbarali, H.I. Inflammation-induced “Channelopathies” in the gastrointestinal smooth muscle. Cell Biochem Biophys 41, 319–330 (2004). https://doi.org/10.1385/CBB:41:2:319

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1385/CBB:41:2:319

Index Entries

Navigation