Skip to main content
Log in

Alterations in plasma essential trace elements selenium, manganese, zinc, copper, and iron concentrations and the possible role of these elements on oxidative status in patients with childhood asthma

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

The aim of the present study is to evaluate the status of plasma essential trace element selenium (Se), manganese (Mn), copper (Cu), zinc (Zn), and iron (Fe) concentrations and the effect of these elements on oxidative status in patients with childhood asthma. Plasma Se, Mn, Cu, and Zn concentrations were determined by atomic absorption spectrophotometry (AAS) and Fe concentrations, malondialdehyde (MDA), and total antioxidant capacity (TAC) were determined by the colorimetric method. The plasma MDA/TAC ratio was calculated as an index of oxidative status. Plasma albumin levels were measured to determine nutritional status. Plasma Fe concentrations, MDA levels and the MDA/TAC ratio were significantly higher (p<0.001, p<0.001, and p<0.01, respectively) and Se and Mn concentrations and TAC were lower (p<0.01, p<0.05, and p<0.01, respectively) in patients when compared to the healthy subjects. Plasma Zn, Cu, and albumin levels were not found to be significantly different in patients and controls (p>0.05). There were positive relationships between plasma MDA and Fe (r=0.545, p<0.001) and TAC and Se (r=0.485, p<0.021), and a negative correlation between TAC and MDA values (r= −0.337, p<0.031) in patients with childhood asthma. However, there was no correlation between these trace elements and albumin content in patient groups. These observations suggest that increased Fe and decreased Se concentrations in patients with childhood asthma may be responsible for the oxidant/antioxidant imbalance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. J. Bounquest, P. K. Jeffery, W. W. Busse, et al., Asthma: from broncocontruction to airways inflammation and remodeling, Am. Rev. Respir. Dis. 145, 911–917 (2000).

    Google Scholar 

  2. N. M. Clark, R. W. Brown, E. Parker, et al., Childhood asthma, Environ Health Res. 107, 421–429 (1999).

    Google Scholar 

  3. P. J. Barnes, Reactive oxygen species and airflow inflammation, Free Radical Biol. Med. 9, 235–243 (1990).

    Article  CAS  Google Scholar 

  4. W. MacNee, Oxidative strees and lung inflammation in airways disease, Eur. J. Pharm. 429, 195–207 (2001).

    Article  CAS  Google Scholar 

  5. N. L. Misso, K. A. Powers, R. L. Gillon, et al., Reduced platelet glutathione peroxidase activity and plasma selenium concentration in atopic asthmatic patients, Clin. Exp. Allergy 26, 838–847 (1996).

    Article  PubMed  CAS  Google Scholar 

  6. L. J. Smith, M. Shamsuddin, P. H. Sporn, et al., Reduced superoxide dismutase in lung cells of patients with asthma, Free Radical Biol. Med. 22, 1301–1307 (1997).

    Article  CAS  Google Scholar 

  7. A. Kocyigit, E. Ozcan, and S. Gür, Effects of tobacco smoking on plasma selenium, zinc, copper and iron concentrations and related antioxidative enzyme activities, Clin. Biochem. 34, 629–633 (2001).

    Article  PubMed  CAS  Google Scholar 

  8. B. Halliwell and J. M. Gutteridge, Role of free radicals and catalytic metal ions in human disease: an overview, Methods Enzymol. 186, 1–85 (1990).

    Article  PubMed  CAS  Google Scholar 

  9. J. M. Gutteridge, Lipid peroxidation and antioxidant as biomarkers of tissue damage, Clin. Chem. 41, 1819–1828 (1995).

    PubMed  CAS  Google Scholar 

  10. W. MacNee, Oxidative stress and lung inflammation in airways disease, Eur. J. Pharm. 429, 195–207 (2001).

    Article  CAS  Google Scholar 

  11. D. Milde, O. Novak, V. Stuka, et al., Plasma levels of selenium, manganese, copper, and iron in colorectal cancer patients, Biol. Trace. Element Res. 79, 107–114 (2001).

    Article  CAS  Google Scholar 

  12. K. Yagi, Simple assay for the level of total lipid peroxides in serum or plasma, Methods Mol. Biol. 108, 101–106 (1998).

    PubMed  CAS  Google Scholar 

  13. D. Koracevic, G. Koracevic, V. Djordjevic, et al., Method for measurements of antioxidant activity in human fluids, J. Clin. Pathol. 54, 356–361 (2001).

    Article  PubMed  CAS  Google Scholar 

  14. P. J. Barnes, ROS and airflow inflammation, Free Radical Biol. Med. 9, 235–243 (1990).

    Article  CAS  Google Scholar 

  15. R. P. Bowler and J. D. Crapo, Oxidative stress in airways: is there a role for extracellular superoxide dismutase, Am. J. Respir. Crit. Care Med. 166, 38–43 (2002).

    Article  Google Scholar 

  16. R. S. Kalathinkal, S. S. Kumar, and S. Rajaje, Excessive free radical generation in the blood of children suffering from asthma, Clin. Chim. Acta 305, 107–114 (2001).

    Article  Google Scholar 

  17. J. M. Gutteridge, Lipid peroxidation and antioxidants as biomarkers of tissue damage, Clin. Chem. 41, 1819–1828 (1995).

    PubMed  CAS  Google Scholar 

  18. I. Rahman and W. MacNee, Role of oxidant/antioxidant in smoking-induced lung diseases, Free Radical Biol. Med. 21, 669–682 (1996).

    Article  CAS  Google Scholar 

  19. P. Aisen, G. Cohen, and J. O. Kang, Iron toxicosis, Int. Rev. Exp. Pathol. 31, 1–46 (1990).

    PubMed  CAS  Google Scholar 

  20. J. M. Gutteridge and B. Halliwell, Free radicals and antioxidants in the year 2000. A historical look to the future, Ann NY Acad. Sci. 899, 136–147 (2000).

    Article  PubMed  CAS  Google Scholar 

  21. K. L. Maier, How the lung deals with antioxidants, Eur. Respir. J. 6, 334–336 (1993).

    PubMed  CAS  Google Scholar 

  22. J. Stone, L. Hinks, R. Beasley, et al., Reduced selenium status of patients with asthma, Clin. Sci. 77, 495–500 (1989).

    PubMed  CAS  Google Scholar 

  23. A. Flatt, N. Pearce, C. Thomson, et al., Reduced selenium in asthmatic subjects in New Zealand, Thorax 45, 95–99 (1990).

    Article  PubMed  CAS  Google Scholar 

  24. L. Hasselmark, R. Malmgren, O. Zeterstrom, et al., Selenium supplementation in intrinsic asthma, Allergy 48, 30–36 (1993).

    PubMed  CAS  Google Scholar 

  25. R. Moreno-Reyes, C. Suetens, F. Mathieu, et al., Kashin-Beck osteoathropathy in rural Tibet in relation to selenium and iodine status, N. Engl. J. Med. 339, 1112–1120 (1998).

    Article  PubMed  CAS  Google Scholar 

  26. ISAAC Steering Committee, Worldwide variation in prevalence of symptoms of asthma, allergic rhinoconjunctivitis, and atopic eczema: ISSAC, Lancet 351, 1225–1232 (1997).

    Google Scholar 

  27. A. Southar, A. Seaton, and K. Brown, Bronchial reactivity and dietary antioxidants, Thorax 52, 166–170 (1997).

    Article  Google Scholar 

  28. J. E. Albina, C. D. Mills, W. L. Henry, et al., Temporal expression of different pathways of l-arginine metabolism in healing wounds, J. Immunol. 144, 3877–3880 (1994).

    Google Scholar 

  29. P. J. Barnes, Nitric oxide and asthma, Res. Immunol. 146, 698–702 (1995).

    Article  PubMed  CAS  Google Scholar 

  30. K. Ashutosh, Nitric oxide and asthma: a review, Curr. Opin. Pulmon. Med. 6, 21–25 (2000).

    Article  CAS  Google Scholar 

  31. F. H. Gou, S. A. Comhair, S. Zheng, et al., Molecular mechanisms of increased NO (NO) in asthma: evidence for transcriptional and posttranslational regulation of NO synthesis, J. Immunol. 164, 5870–5980 (2000).

    Google Scholar 

  32. A. Bast, G. Haenen, and C. Doelman, Oxidants and antioxidants, Am. J. Med. 91, 2–13 (1991).

    Article  Google Scholar 

  33. M. S. el-Kholy, M. A. Gas Allah, S. el-Shimi, et al., Zinc and copper status in children with bronchial asthma and atopic dermatitis, J. Egypt. Public Health. Assoc. 65, 657–681 (1990).

    PubMed  CAS  Google Scholar 

  34. F. Akinkube and S. Ette, Role of zinc, copper and ascorbic acid in some common clinical pediatric problems, J. Trop. Paediatr. 33, 337–342 (1987).

    Google Scholar 

  35. H. Vural, K. Uzun, E. Uz, et al., Concentrations of copper, zinc and various elements in serum of patients with bronchial asthma, J. Trace. Element Med. Biol. 14, 88–91 (2000).

    Article  CAS  Google Scholar 

  36. J. L. Malo, A. Cartier, and J. Dolovich, Occupational asthma due to zinc, Eur. Respir. J. 6, 447–450 (1993).

    PubMed  CAS  Google Scholar 

  37. J. M. Freitas and R. Meneghini, Iron and its sensitive balance in the cell, Mutat. Res. 475, 153–159 (2001).

    PubMed  Google Scholar 

  38. T. Nunoshiba, F. Obata, A. C. Boss, et al., Role of iron and superoxide for generation of hydroxyl radical, oxidative DNA lesions, and mutagenesis in Escherichia coli, J. Biol. Chem. 274, 34,832–34,837 (1999).

    Article  CAS  Google Scholar 

  39. L. S. Greene, Asthma and oxidant stress: nutritional, environmental, and genetic risk factors, J. Am. Coll. Nutr. 14, 317–324 (1995).

    PubMed  CAS  Google Scholar 

  40. J. J. Bullen, H. J. Rogers, and E. Griffiths, Role of iron in bacterial infection, Curr. Topics Microbiol. Immunol. 80, 1–35 (1978).

    CAS  Google Scholar 

  41. E. D. Weinberg, Iron and susceptibility to infectious disease, Science 184, 952–956 (1974).

    Article  PubMed  CAS  Google Scholar 

  42. P. Nafstad, P. Magnus, and J. J. Jaakkola, Early respiratory infections and childhood asthma, Paediatrics 106, 38–43 (2000).

    Article  Google Scholar 

  43. L. C. von Hertzen, Puzzling associations between childhood infections and the later occurrence of asthma and atopy, Ann. Med. 32, 397–400 (2000).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kocyigit, A., Armutcu, F., Gurel, A. et al. Alterations in plasma essential trace elements selenium, manganese, zinc, copper, and iron concentrations and the possible role of these elements on oxidative status in patients with childhood asthma. Biol Trace Elem Res 97, 31–41 (2004). https://doi.org/10.1385/BTER:97:1:31

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1385/BTER:97:1:31

Index Entries

Navigation