ALL Metrics
-
Views
-
Downloads
Get PDF
Get XML
Cite
Export
Track
Review

Uterine natural killer cells: Time for a re-appraisal?

[version 1; peer review: 2 approved]
PUBLISHED 02 Jul 2019
Author details Author details
OPEN PEER REVIEW
REVIEWER STATUS

Abstract

The presence of unusual natural killer cells in human endometrium has been recognized for 30 years, but despite considerable research effort, the in vivo role of uterine natural killer (uNK) cells in both normal and pathological pregnancy remains uncertain. uNK cells may differentiate from precursors present in endometrium, but migration from peripheral blood in response to chemokine stimuli with in situ modification to a uNK cell phenotype is also possible. uNK cells produce a wide range of secretory products with diverse effects on trophoblast and spiral arteries which may play an important role in implantation and early placentation. Interactions with other decidual cell populations are also becoming clear. Recent evidence has demonstrated subpopulations of uNK cells and the presence of other innate lymphoid cell populations in decidua which may refine future approaches to investigation of the role of uNK cells in human pregnancy.

Keywords

uterine natural killer cell, uNK cell, human pregnancy, decidua

Introduction

Granulated cells were recognized in endometrial stroma almost a century ago, but despite light and electron microscopic evidence for a lymphocyte origin in humans1, mouse2,3, and rat4, they were regarded as stromal cells until identified as unusual natural killer (NK) cells using monoclonal antibodies57. The term uterine NK (uNK) cell has been commonly adopted, although “decidual NK cell” and “endometrial NK cell” are also used to reflect their presence only in endometrium. uNK cells, characterized as CD45+CD56brightCD16+CD9+, increase in number in luteal phase endometrium and early pregnancy decidua710. A substantial number remain in later pregnancy11,12, although fewer have cytoplasmic granules, explaining why early studies relying on identifying cytoplasmic granules reported their virtual absence at full term13. This distribution suggests a role in pregnancy and this has been the focus of studies over the last 30 years.

Despite suggestions of a detrimental role of NK cells in early pregnancy failure, uNK cells are considered to be a positive force for healthy pregnancy, although their precise role remains uncertain. The recent identification of molecularly distinct uNK cell subgroups14 and other innate lymphoid cells (ILCs) in human decidua1517 suggests that a re-appraisal may be timely. The aim of this review is to provide a brief overview of views on the origin and function of uNK cells that have developed over the last 30 years and consider future directions.

Origin of uterine natural killer cells

There is no consensus regarding the origin of uNK cells; their gene expression patterns differ from those of peripheral blood NK (pbNK) cells18, but whether they differentiate locally or are recruited to endometrium (or both) is uncertain. Hematopoietic precursor cells (HPCs) have been reported in non-pregnant endometrium19 and early pregnancy decidua2022 at a frequency of 0.1% to 4%. HPCs purified from decidua and cultured in decidual stromal cell (DSC)-conditioned medium or various cytokine combinations produced CD56brightCD16CD9+ uNK-like cells2022. Additional evidence for local differentiation comes from detection of increased CD56+ uNK cells in human proliferative endometrium transplanted into non-obese diabetic/severe combined immunodeficiency/γCnull immunodeficient mice subjected to menstrual cycle–mimicking hormone treatment23. In contrast, Male et al.24 did not detect HPCs in non-pregnant endometrium and suggested the possibility of local differentiation from stage 3 immature NK cells, although the cells detected in these studies express markers that are characteristic oftype 3 ILCs and produce interleukin-22 (IL-22)17. Human endometrium produces several factors implicated in NK cell differentiation, including IL-1525, IL-7, Flt3L26, SCF (KL)2729, and transforming growth factor beta 1 (TGFβ1)30, many of which are increased in the luteal phase and early pregnancy.

Rather than differentiation from HPCs, it is possible that locally secreted chemokines/cytokines could attract pbNK cells to endometrium and also mediate further local differentiation. Purified CD16+CD9pbNK cells converted into CD16CD9+ uNK-like cells after culture with DSC-conditioned medium or TGFβ120,31, and a uNK cell-type phenotype (CD56brightCD16CD9+KIR+, VEGF-A producing, low cytotoxicity) was induced by exposure of pbNK cells to hypoxia, TGFβ1, and demethylating agents31. DSCs produce chemoattractants implicated in recruitment of pbNK cells to endometrium, including C-X-C motif chemokine 10 (CXCL10), CXCL12, CX3CL1, and chemerin32,33, and compared with non-pregnant and male cells, pbNK cells from pregnant women have increased ability to migrate through DSCs26. Furthermore, pbNK cells acquire a uNK cell-type chemokine receptor pattern after co-culture with DSCs. NK cell populations could also be recruited into endometrium in pregnancy in response to trophoblast34.

uNK cells consistently localize to areas of stromal decidualization, including progesterone-treated endometrium, intrauterine decidua in ectopic pregnancy, and extrauterine decidua in normal pregnancy. This indicates a role for DSCs in uNK cell differentiation or recruitment (or both) and clearly demonstrates that they are not (all) dependent on trophoblast. It seems likely that both recruitment from blood and local differentiation play a role but perhaps with different contributions in non-pregnant and pregnant endometrium. A developing population is suggested by phenotypic differences with increasing gestation, and there is reduced expression of HLA-C–specific killer immunoglobulin-like receptors (KIRs) from 6 to 12 weeks35, increased NKG2D expression from 8 to 12 weeks36, increased expression of NKp80 and NKG2D, and a population with reduced CD56 brightness in second (13 to 20 weeks) compared with first (6 to 12 weeks) trimester11,37. Functional changes may also reflect an evolving population. Altered cytokine/growth factor expression and differing effects on trophoblast invasion have been reported in CD56+ uNK cells from 8 to 10 compared with 12 to 14 weeks of gestational age3840, and a reduced proportion of cells expressing granzyme and perforin13,37, reduced CD56+ cells in proximity to extravillous trophoblast (EVT), and altered interactions with HTR-8/SVneo trophoblast-like cells have been reported in the second compared with the first trimester of pregnancy37. These phenotypic and functional variations may reflect further local differentiation of immature NK cells or recruitment and further differentiation of additional populations from peripheral blood. CD56+ cells also proliferate in endometrium, and the highest expression of the proliferation marker Ki67 (>40%) is in the mid/late luteal phase41 and this could account for phenotypic differences as the menstrual cycle and pregnancy progress. The biological significance of the phenotypic and functional changes related to gestational age is not known. In addition, whether any altered decidual NK cell populations in pathological pregnancy represent alteration of a resident uNK cell population or recruitment of an additional population has not been established.

Interaction with trophoblast

uNK cells express a range of receptors, including KIRs and leukocyte immunoglobulin-like receptors (LILRs) that can recognize HLA-E, HLA-G, and HLA-C, which are expressed by EVT4245. uNK cell expression of these receptors differs from that of pbNK cells and is biased toward HLA-E and HLA-C1 recognition35. It was suggested that the bias toward HLA-C recognition resulted from pregnancy46, but studies using uNK cells from menstrual blood indicate that this receptor repertoire is established in non-pregnant endometrium and does not differ between consecutive menstrual cycles47,48. Expression of these specific receptors by uNK cells suggests that they interact with EVT, and specific KIR/HLA-C combinations have been associated with pregnancy complications, including pre-eclampsia, fetal growth restriction, and recurrent miscarriage4952. However, an epidemiological study of Japanese couples did not support this proposal, noting similar rates of pre-eclampsia in couples comprising Japanese women and Caucasian men and couples comprising Japanese men and women53. Furthermore, no association of HLA-C/KIR genotype with pre-eclampsia was noted in a recent Danish study, although this was confined to severe pre-eclampsia54.

There were early suggestions that uNK cells may limit EVT invasion by cytotoxicity, and some studies have suggested that uNK cells are capable of cytotoxic activity. Co-culture of IL-2–activated CD56bright decidual NK cells with an EVT-like cell line HTR-8/SV40neo led to granulolysin accumulation in the EVT cells, and transfection of granulolysin into HTR-8/SC40neo cells induced their apoptosis55. Furthermore, a more recent study detected cytotoxic activity by IL-2–stimulated CD56+ cells (>90% purity) from early pregnancy decidua against both cytotrophoblast and the NK target K562, an activity that was inhibited by decidual macrophages56. Nevertheless, in most studies, uNK cells have been poorly cytotoxic to both classic NK cell targets and trophoblast57, and the consensus is that uNK cells are not cytotoxic in healthy pregnancy. uNK cells can acquire cytotoxic ability when decidua is infected by pathogens such as cytomegalovirus and toxoplasma, suggesting a possible role in protection against infection58.

There are many reports of cytokine, chemokine, and growth factor production by uNK cells, mainly at a gestational age of 8 to 14 weeks, when trophoblast invasion and spiral artery remodeling are maximal; a summary is given in Table 1 but the list is not exhaustive. Several different approaches have been used for tissue disaggregation, uNK cell purification, and mechanisms and durations of cell activation; this may explain the variation between different studies.

Table 1. Cytokines, chemokines, and growth factor production by uterine natural killer cells.

PublicationCytokines, chemokines, and growth factors detectedCell preparationGestational ageConditions
El Costa et al.45IFNγ, TNFα, MIP-1α, MIP-1β, GM-CSFMACS-negative selection, 96% CD3−CD56+8–12 weeksEngagement of NKp30 (but not
NKp46)
Higuma-Myojo
et al.79
TGF, minor populations of CD56+ cells producing other
cytokines
Ficoll, flow cytometry6–12 weeksMononuclear cells stimulated with
PMA/ionomycin/brefeldin 4 hours,
flow cytometry
Lash et al.38Ang1, Ang2, PDGF-BB (low), KGF (low), ICAM-1 (low),
VEGF-C, PlGF, TGFβ1
MACS-positive selection, >95% CD56+8–10 weeks, 12–14
weeks
No stimulation, Fastquant, ELISA
Lash et al.39IL-1β, IL-4, IL-6, IL-8, IL-10, IL-13, GM-CSF, IFNγ,
RANTES, TNFα
MACS-positive selection >95% CD56+8–10 weeks, 12–14
weeks
No stimulation, Fastquant, ELISA
Hanna et al.66CXCL8 (IL-8), CXCL10 (IP-10), CCL5 (RANTES), CCL22,
MIP-1α, MIP-1β, PlGF, VEGF-A, VEGF-B, VEGF-C
Flow cytometry cell sorting, >99% CD56bright
CD16−CD3−
First trimesterIL-15 72 hours
Sotnikova et al.62IFNγDynabeads-positive selection7–10 weeksIncubation with autologous
cytotrophoblast
Engert et al.80GRO, MCP1, I-309, RANTES, IL-8, IL-1β, EGF, VEGF,
TPO, M-CSF, ENA, oncostatin M, IL-10, GROα,
angiogenin, IL-1α, IL-4, IL-12p40p70, IFNγ, SCF, SDF-1,
MCP-2 (detected in >50% samples)
MACS, >90% pure7–8 weeksNo stimulation, protein array
Saito et al.81G-CSF, GM-CSF, M-CSF, TNFα, IFNγ, LIFFlow cytometry sorting7–9 weeksNo stimulation
Fraser et al.82CXCL16, HB-EGF, HGF, IL-1β, IL-8, TGFβ1, UPA, TIMP-1MACS-positive selection, 93.6 ± 1.3% CD56+,
80 ± 4% viability after 24 hours
9.1–13.7 weeksIL-15, SCF
Wallace et al.83IL-6, IL-8, CXCL10MagCellect-negative selection, CD56+ 95.7 ±
0.92%, viability after 6 hours 84.6 ± 2.8%
8–14 weeksIL-15, SCF
Wallace et al.84Angiogenin, sIL2-R, endostatin, PlGF, IL-1RA, MIG, MIP-
1α, MIP-1β, RANTES
MACS-positive selection, 93.6 ± 1.3% CD56+9–14 weeksIL-15, SCF
Wallace et al.85TNFα, CXCL10, IFNγ, IL-8, PlGF (mRNA)MagCellect-negative selection, CD56+ 95.7 ±
0.92%, viability after 6 hours 84.6 ± 2.8%
9–14 weeksIL-15, SCF
Kennedy et al.63GM-CSF, CCL3, CCL1, XCL1Flow cytometry and intracellular cytokine
detection; or MACS positive selection and
ELISA
First trimesterActivation of KIR2DS4
Chen et al.86Angiogenin, bFGF, VEGF-A, VEGFR, IL-1αMACS-positive selection, 91.3%
CD16−CD56+
LH+7 non-pregnant
endometrium
Fu et al.65Pleiotrophin, osteopontin, osteoglycinFicoll, MACS-negative selectionFirst trimesterCo-culture with EVT

Ang, angiopoetin; bFGF, basic fibroblast growth factor; CCL, C-C motif chemokine; EGF, epidermal growth factor; ELISA, enzyme-

linked immunosorbent assay; ENA, epithelial neutrophil-activating protein; EVT, extravillous trophoblast; G-CSF, granulocyte colony-stimulating factor; GM-CSF, granulocyte-macrophage colony-stimulating factor; GRO, growth-regulated oncogene; HB-EGF, heparin-binding epidermal growth factor; HGF, hepatocyte growth factor; ICAM-1, intercellular adhesion molecule 1; IFN, interferon; IL, interleukin; KGF, keratinocyte growth factor; LIF, leukocyte inhibitory factor; MACS, magnetic-activated cell sorting; MCP, monocyte chemotactic protein; M-CSF, macrophage colony-stimulating factor; MIG, monokine induced by interferon-gamma; MIP, macrophage inflammatory protein; PDGF-BB, platelet-derived growth factor beta; PlGF, placental growth factor; RANTES, regulated upon activation, normal T cell expressed, and secreted; SCF, stem cell factor; SDF-1, stromal cell-derived factor 1; sIL2-R, soluble interleukin-2 receptor; TGF, transforming growth factor; TIMP-1, tissue inhibitor of metalloproteinase 1; TNFα, tumor necrosis factor alpha; TPO, thrombopoietin; UPA, urokinase-type plasminogen activator; VEGF, vascular endothelial growth factor; VEGFR, vascular endothelial growth factor receptor.

Given the phenotypic changes, it is not surprising that the uNK cell secretome varies with gestational age. uNK cell production of IL-1β, IL-6, CXCL8, granulocyte-macrophage colony-stimulating factor (GM-CSF), and interferon-gamma (IFNγ) was increased at 12 to 14 weeks compared with 8 to 10 weeks of gestation39, whereas angiopoetin 2 (Ang2) and vascular endothelial growth factor-C (VEGF-C) secretion were higher at the earlier gestational age38. Increased cytokine levels at 12 to 14 weeks may tie in with reports that interactions between pbNK cells and soluble HLA-G induce a pro-inflammatory/pro-angiogenic senescence-associated secretory phenotype with increased secretion of, among others, IL-1β, IL-6, and CXCL85961, although this has not been demonstrated for uNK cells. uNK cell secretory products are also altered by trophoblast; uNK cell secretion of Ang1, VEGF-C, IL-6, CXCL8, and TGFβ1 were reduced by co-culture with EVT and cytotrophoblast40. In contrast, increased IFNγ mRNA was reported after incubation of uNK cells with cytotrophoblast62. Interaction of HLA-C (expressed by EVT) with the activating receptors KIR2DS1 and KIR2DS4 expressed by uNK cells stimulates their production of cytokines, including GM-CSF, which can stimulate trophoblast invasion in vitro63,64. Furthermore, a recent study demonstrated that, when co-cultured with EVT, a subset of uNK cells (CD49a+Eomes+) secrete growth-promoting factors, including pleiotrophin and osteoglycin; this effect is stimulated by HLA-G/ILT2 crosstalk65.

Among other chemokines and growth factors, uNK cells simulate trophoblast invasion by production of CXCL8 and CXCL1066, although decidual CD3+ T cells, which produce higher levels of CXCL8, did not stimulate EVT invasion67. Other cytokines produced by uNK cells, such as tumor necrosis factor alpha (TNFα) and IFNγ, inhibit invasion of EVT cells by various mechanisms, including trophoblast apoptosis, inhibition of proliferation, and reduced matrix metalloprotease (MMP) production68,69. The effect of uNK cells on EVT invasion may also depend on gestational age; in keeping with increased production of cytokines such as CXCL8, uNK cell supernatants at 12 to 14 weeks of gestation stimulated trophoblast invasion, whereas those at 8 to 10 weeks had no effect70. In contrast, others have reported reduced trophoblast migration from villous explants co-cultured with decidual CD56+ cells, and the effect was mediated by IFNγ62,71.

uNK cells have a complex array of secretory products which may alter with different approaches to purification and activation. Despite the many and varied reports, the in vivo relevance of these studies remains unclear. Examination of any one cytokine is unlikely to reflect its importance in vivo, which may vary with gestational age; for example, a role in spiral artery remodeling may shift in later gestation to promoting trophoblast invasion. In regard to the role of uNK cells in the regulation of trophoblast invasion, it is important to remember that the cells are confined to decidua/endometrium, whereas even in the first trimester of normal pregnancy, interstitial trophoblast invades into inner myometrium72. Trophoblast also invades into myometrium in placenta accreta spectrum disorders, in which decidua (and uNK cells) are absent73. Therefore, other factors, including the inherent invasive capacity of EVT following epithelial–mesenchymal transition74,75 and other maternal cell populations, must play a role.

Interaction with spiral arteries

Remodeling of spiral arteries in decidua basalis and underlying superficial myometrium is essential for healthy pregnancy and it is now accepted that, in addition to trophoblast, maternal uterine cells play a role76,77, although the presence of trophoblast may be required for the uNK cell effect78. Morphological changes in spiral arteries and arterioles in luteal phase endometrium and intrauterine decidua in ectopic pregnancy also suggest a trophoblast-independent effect76.

uNK cells from decidua of 8 to 10 weeks, but not 12 to 14 weeks, of gestation can induce separation of vascular smooth muscle cells and loss of extracellular matrix via secretion of Ang1, Ang2, VEGF-C, and IFNγ87. uNK cells (and macrophages) also produce MMPs that can break down collagen in an in vitro spiral artery model88. uNK cell supernatants also mediate vascular smooth muscle cell dedifferentiation and this effect is seen at 12 to 14 weeks but not 8 to 10 weeks of gestation89. Other chemokines and growth factors have been implicated in the uNK cell effect on spiral arteries. For example, Choudhury et al.90 suggested that IL-6 and CXCL8 secreted by EVT activate secretion of C-C motif chemokine 14 (CCL14) and CXCL6 by endothelial cells which then recruit uNK cells and macrophages to spiral arteries. Both IL-6 and CXCL8 also induce dedifferentiation of vascular smooth muscle cells in a chorionic plate artery model91.

Altered decidual leucocytes have been reported in pre-eclampsia, although results have varied9294; there have been reports of reduced9598, unchanged99, and increased100,101 uNK cells compared with controls. Uterine artery Doppler studies in early pregnancy can predict women at increased risk of developing pre-eclampsia in later pregnancy102; compared with post-delivery samples, these high-risk samples allow investigation when the pathogenetic lesion develops, before compensatory measures are in place, and this approach has been used to investigate uNK cell function in pregnancies at high risk of developing pre-eclampsia. uNK cells from 9- to 14-week gestational age pregnancies with abnormal Doppler wave forms showed reduced expression of KIR2DL/S1,3,5 and LILRB185, reduced stimulation of trophoblast outgrowth from villous explants83, reduced in vitro induction of apoptosis in vascular smooth muscle cells and endothelial cells82, increased angiogenic growth factor secretion84, and reduced ability to destabilize endothelial structures103. These results all suggest that uNK cells from pregnancies at increased risk of pre-eclampsia display altered effects on trophoblast invasion and spiral arteries and emphasize the likely importance of uNK cells in early pregnancy. Nevertheless, in common with trophoblast invasion, spiral artery remodeling extends into inner myometrium. CD14+ macrophages and CD3+ T cells are present in the wall and adventitia of spiral arteries in both decidua and superficial myometrium104, suggesting that these cells also have a role, either alone or in collaboration with uNK cells.

Interactions with other cells

uNK cells may also interact with other cell types in non-pregnant and pregnant endometrium. uNK cells interact with CD14+ cells in decidua to produce IDO (indoleamine-2,3-dioxygenase), which induces regulatory T cells105. This interaction appears to be mediated by IFNγ and TGFβ and is not seen with pbNK cells or CD14+ cells. uNK cells also form conjugates with immature dendritic cells in first-trimester decidua106108 which can induce uNK cell proliferation and cytotoxicity109. It has also been suggested that uNK cells induce apoptosis of CD209 (DC-SIGN)+ dendritic cells in decidua108. Evidence from mouse pregnancy suggests that IL-10 secreted by uNK cells regulates dendritic cell phenotype and function, and IL-10 deficiency and dendritic cell expansion are associated with early pregnancy failure110.

In addition to affecting their recruitment or differentiation (or both), DSCs may affect uNK cell function; cultured first-trimester DSCs inhibited proliferation, cytotoxicity, IFNγ production, and upregulation of activation receptor expression by pbNK cells111. In non-pregnant endometrium, uNK cells may clear senescent decidual cells at the end of the menstrual cycle, playing a crucial role in endometrial homeostasis112.

Summary

Knowledge has increased dramatically since their recognition as unusual NK cells, but despite considerable research effort, the in vivo role of uNK cells remains unclear. Recent advances suggest that a re-appraisal may be timely. Whether uNK cell phenotype and function differ between non-pregnant and pregnant endometrium, between decidua basalis and parietalis, or at different sites within decidua (such as those related to spiral arteries) and at different gestational ages remains largely unknown. Pre-eclampsia, fetal growth restriction, and recurrent pregnancy failure have been associated with altered uNK cell numbers and function and specific KIR/HLA-C combinations but the significance of these observations is not fully established. uNK cells produce a wide range of chemokines, cytokines, growth factors, and MMPs, and many have been shown to have specific effects on trophoblast or spiral arteries, but in vivo translation is difficult. Gestational age differences in phenotype and function suggest that including samples across a range of gestational weeks in the first trimester may result in skewing of data.

The starting point for most studies of uNK cell function is decidua retrieved from pregnancy terminations or miscarriages. uNK cells within these samples have been exposed directly to EVT or to soluble HLA-G with possible functional effects. Investigations of uNK cells purified from non-pregnant endometrium are relatively infrequent, although several studies have reported increased uNK cells in luteal phase endometrium in recurrent early pregnancy failure113116. A recent study of uNK cells from timed luteal phase endometrium reported increased expression of angiogenin, VEGF-A, and basic fibroblast growth factor (bFGF) in women with recurrent miscarriage compared with fertile controls86. Recent studies indicate that menstrual blood may act as a surrogate for endometrial NK cells47,48,117 and this approach may increase the scope for future studies.

A single-cell RNA-sequencing (scRNA-seq) study of first-trimester decidua recently defined three distinct uNK cell populations15. The first (termed dNK1) contained more cytoplasmic granules, higher cytoplasmic granule proteins, and higher expression of KIR genes able to bind to HLA-C; LILRB1, which has high affinity for HLA-G, was expressed only by the dNK1 subset, suggesting that this subset interacts particularly with EVT. The second population (dNK2) also expressed activating NKG2C and NKG2E and inhibitory NKG2A receptors for HLA-E molecules, whereas the third population (dNK3) did not express these receptors but did express CCL5, suggesting a role in the regulation of EVT invasion via C-C motif chemokine receptor 1 (CCR1). This report demonstrates subpopulations of uNK cells which are likely to have diverse functions. Similar studies of pathological pregnancy and non-pregnant endometrium, including endometrial NK cell populations in women with recurrent early pregnancy failure, may clarify the roles of specific uNK cell subsets in pathological pregnancy. The suggestion that there are subsets of NK cells in human decidua is supported by a report of production of growth-promoting factors by CD49a+Eomes+ uNK cells via interactions with HLA-G65, as well as the demonstration of a subpopulation of “pregnancy-trained” uNK cells in repeated compared with first pregnancies, characterized by high expression of the receptors NKG2C and LILRB1 and increased IFNγ and VEGF-A secretion118.

Besides uNK cells, other innate lymphoid cells have been identified in human decidua1517, including CD56+CD94 non-cytotoxic type 1 ILCs (ILC1s), CD56CD117+CD127+ lymphoid tissue inducer (LTi)-like cells, and CD56+CD94CD117+CD127+NKp44+ type 3 ILCs (ILC3s). These ILCs may contribute to the cytokine production reported by decidual CD56+ cells. For example, ILC1s may contribute to IFNγ production, while ILC3s produce IL-22 and CXCL8, which may regulate neutrophil recruitment119. The distribution and function of the different ILC populations are still unknown, although it has been suggested that ILC3 cytokine production may be regulated by programmed cell death (PD-1) expressed by ILC3s and its ligand PD-L1 expressed by EVT120.

It is now clear that “uNK cells” are not a single population and the relative importance of these subpopulations may change as gestation progresses. ILCs in decidua may contribute to the reported cytokine production by CD56+ uNK cells and this may differ according to different purification and activation protocols. Abnormal function in pathological pregnancy could affect specific uNK cell subpopulations or ILCs. Rather than referring to “uNK cells”, perhaps we should dissect populations more precisely and consider the functional contribution of ILCs. Technical advances may allow localization of different subpopulations, and investigation of pathological pregnancies may provide valuable clues to function. The advent of scRNA-seq technology provides an exciting way forward to unravel the role of uNK cells in normal and pathological pregnancy, making it possible to target specific cell populations for more accurate diagnosis and potential intervention.

Comments on this article Comments (0)

Version 1
VERSION 1 PUBLISHED 02 Jul 2019
Comment
Author details Author details
Competing interests
Grant information
Copyright
Download
 
Export To
metrics
Views Downloads
F1000Research - -
PubMed Central
Data from PMC are received and updated monthly.
- -
Citations
CITE
how to cite this article
Bulmer JN and Lash GE. Uterine natural killer cells: Time for a re-appraisal? [version 1; peer review: 2 approved] F1000Research 2019, 8(F1000 Faculty Rev):999 (https://doi.org/10.12688/f1000research.19132.1)
NOTE: it is important to ensure the information in square brackets after the title is included in all citations of this article.
track
receive updates on this article
Track an article to receive email alerts on any updates to this article.

Open Peer Review

Current Reviewer Status: ?
Key to Reviewer Statuses VIEW
ApprovedThe paper is scientifically sound in its current form and only minor, if any, improvements are suggested
Approved with reservations A number of small changes, sometimes more significant revisions are required to address specific details and improve the papers academic merit.
Not approvedFundamental flaws in the paper seriously undermine the findings and conclusions
Version 1
VERSION 1
PUBLISHED 02 Jul 2019
Views
0
Cite
Reviewer Report 02 Jul 2019
Shigeru Saito, Department of Gastroenterology, Cancer Institute Hospital, Japanese Foundation For Cancer Research, Tokyo, Japan 
Approved
VIEWS 0
I confirm that I have read this submission and believe that I have an ... Continue reading
CITE
CITE
HOW TO CITE THIS REPORT
Saito S. Reviewer Report For: Uterine natural killer cells: Time for a re-appraisal? [version 1; peer review: 2 approved]. F1000Research 2019, 8(F1000 Faculty Rev):999 (https://doi.org/10.5256/f1000research.20966.r50266)
NOTE: it is important to ensure the information in square brackets after the title is included in all citations of this article.
Views
1
Cite
Reviewer Report 02 Jul 2019
Surendra Sharma, Department of Pediatrics, Women and Infants Hospital, Warren Alpert Medical School of Brown University, Providence, RI, USA 
Approved
VIEWS 1
I confirm that I have read this submission and believe that I have an ... Continue reading
CITE
CITE
HOW TO CITE THIS REPORT
Sharma S. Reviewer Report For: Uterine natural killer cells: Time for a re-appraisal? [version 1; peer review: 2 approved]. F1000Research 2019, 8(F1000 Faculty Rev):999 (https://doi.org/10.5256/f1000research.20966.r50267)
NOTE: it is important to ensure the information in square brackets after the title is included in all citations of this article.

Comments on this article Comments (0)

Version 1
VERSION 1 PUBLISHED 02 Jul 2019
Comment
Alongside their report, reviewers assign a status to the article:
Approved - the paper is scientifically sound in its current form and only minor, if any, improvements are suggested
Approved with reservations - A number of small changes, sometimes more significant revisions are required to address specific details and improve the papers academic merit.
Not approved - fundamental flaws in the paper seriously undermine the findings and conclusions
Sign In
If you've forgotten your password, please enter your email address below and we'll send you instructions on how to reset your password.

The email address should be the one you originally registered with F1000.

Email address not valid, please try again

You registered with F1000 via Google, so we cannot reset your password.

To sign in, please click here.

If you still need help with your Google account password, please click here.

You registered with F1000 via Facebook, so we cannot reset your password.

To sign in, please click here.

If you still need help with your Facebook account password, please click here.

Code not correct, please try again
Email us for further assistance.
Server error, please try again.