Skip to main content

Advertisement

Log in

Peptide-guided gene delivery

  • Published:
The AAPS Journal Aims and scope Submit manuscript

Abstract

Although currently less efficient than their viral counter-parts, nonviral vectors are under intense investigation as a safer alternative for gene therapy. For successful delivery, the nonviral vector must be able to overcome many barriers to protect DNA and specifically deliver it for efficient gene expression in target cells. The use of peptides as gene delivery vectors is advantageous over other nonviral agents in that they are able to achieve all of these goals. This review will focus on the application of peptides to mediate nonviral gene delivery. By examining the literature over the past 20 years, it becomes clear that no other class of biomolecules are simultaneously capable of DNA condensation, blocking metabolism, endosomal escape, nuclear localization, and receptor targeting. Based on virtually limitless diversity of peptide sequence and function information from nature, it is increasingly clear that peptide-guided gene delivery is still in its infancy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Glover DJ, Lipps HJ, Jans DA. Towards safe, nonviral therapeutic gene expression in humans.Nat Rev Genet. 2005;6:299–310.

    Article  PubMed  CAS  Google Scholar 

  2. Schwartz JJ, Zhang S. Peptide-mediated cellular delivery.Curr Opin Mol Ther. 2000;2:162–167.

    PubMed  CAS  Google Scholar 

  3. Jackson DA, Juranek S, Lipps HJ. Designing nonviral vectors for efficient gene transfer and long-term gene expression.Mol Ther. 2006;14:613–626.

    Article  PubMed  CAS  Google Scholar 

  4. Mahato RI. Nonviral peptide-based approaches to gene delivery.J Drug Target. 1999;7:249–268.

    PubMed  CAS  Google Scholar 

  5. Wadhwa MS, Collard WT, Adami RC, McKenzie DL, Rice KG. Peptide-mediated gene delivery: influence of peptide structure on gene expression.Bioconjug Chem. 1997;8:81–88.

    Article  PubMed  CAS  Google Scholar 

  6. Adami RC, Rice KG. Metabolic stability of glutaraldehyde cross-linked peptide DNA condensates.J Pharm Sci. 1999;88:739–746.

    Article  PubMed  CAS  Google Scholar 

  7. McKenzie DL, Kwok KY, Rice KG. A potent new class of reductively activated peptide gene delivery agents.J Biol Chem. 2000;275:9970–9977.

    Article  PubMed  CAS  Google Scholar 

  8. Gupta B, Levchenko TS, Torchilin VP. Intracellular delivery of large molecules and small particles by cell-penetrating proteins and peptides.Adv Drug Deliv Rev. 2005;57:637–651.

    Article  PubMed  CAS  Google Scholar 

  9. Deshayes S, Morris MC, Divita G, Heitz F. Cell-penetrating peptides: tools for intracellular delivery of therapeutics.Cell Mol Life Sci. 2005;62:1839–1849.

    Article  PubMed  CAS  Google Scholar 

  10. Gorlich D, Mattaj IW. Nucleocytoplasmic transport.Science. 1996;271:1513–1518.

    Article  PubMed  CAS  Google Scholar 

  11. Bremner KH, Seymour LW, Pouton CW. Hamessing nuclear localization pathways for transgene delivery.Curr Opin Mol Ther. 2001;3:170–177.

    PubMed  CAS  Google Scholar 

  12. El-Aneed A. An overview of current delivery systems in cancer gene therapy.J Control Release. 2004;94:1–14.

    Article  PubMed  CAS  Google Scholar 

  13. Tiera MJ, Winnik FO, Fernandes JC. Synthetic and natural polycations for gene therapy: state of the art and new perspectives.Curr Gene Ther. 2006;6:59–71.

    Article  PubMed  CAS  Google Scholar 

  14. Tang MX, Szoka FC. The influence of polymer structure on the interactions of cationic polymers with DNA and morphology of the resulting complexes.Gene Ther. 1997;4:823–832.

    Article  PubMed  CAS  Google Scholar 

  15. Mannisto M, Vanderkerken S, Toncheva V, et al. Structure-activity relationships of poly(L-lysines): effects of pegylation and molecular shape on physicochemical and biological properties in gene delivery.J Control Release. 2002;83:169–182.

    Article  PubMed  CAS  Google Scholar 

  16. Ward CM, Read ML, Seymour LW. Systemic circulation of poly(L-lysine)/DNA vectors is influenced by polycation molecular weight and type of DNA: differential circulation in mice and rats and the implications for human gene therapy.Blood. 2001;97:2221–2229.

    Article  PubMed  CAS  Google Scholar 

  17. Gottschalk S, Sparrow JT, Hauer J, et al. A novel DNA-peptide complex for efficient gene transfer and expression in mammalian cells.Gene Ther. 1996;3:448–457.

    PubMed  CAS  Google Scholar 

  18. Plank C, Jr, Tang MX, Jr, Wolfe AR, Jr, Szoka FC, Jr. Branched cationic peptides for gene delivery: role of type and number of cationic residues in formation and in vitro activity of DNA polyplexes.Hum Gene Ther. 1999;10:319–332.

    Article  PubMed  CAS  Google Scholar 

  19. McKenzie DL, Collard WT, Rice KG. Comparative gene transfer efficiency of low molecular weight polylysine DNA-condensing peptides.J Pept Res. 1999;54:311–318.

    Article  PubMed  CAS  Google Scholar 

  20. Adami RC, Collard WT, Gupta SA, Kwok KY, Bonadio J, Rice KG. Stability of peptide-condensed Plasmid DNA formulations.J Pharm Sci. 1998;87:678–683.

    Article  PubMed  CAS  Google Scholar 

  21. McKenzie D, Smiley B, Kwok KY, Rice KG. Low molecular weight disulfide cross-linking peptides as nonviral gene delivery carriers.Bioconjug Chem. 2000;11:901–911.

    Article  PubMed  CAS  Google Scholar 

  22. Read ML, Singh S, Ahmed Z, et al. A versatile reducible polycationbased system for efficient delivery of a broad range of nucleic acids.Nucleic Acids Res. 2005;33:e86.

    Article  PubMed  CAS  Google Scholar 

  23. Pichon C, Goncalves C, Midoux P. Histidine-rich peptides and polymers for nucleic acids delivery.Adv Drug Deliv Rev. 2001;53:75–94.

    Article  PubMed  CAS  Google Scholar 

  24. Midoux P, LeCam E, Coulaud D, Delain E, Pichon C. Histidine containing peptides and polypeptides as nucleic acid vectors.Somat Cell Mol Genet. 2002;27:27–47.

    Article  PubMed  CAS  Google Scholar 

  25. Midoux P, Kichler A, Boutin V, Maurizot JC, Monsigny M. Membrane permeabilization and efficient gene transfer by a peptide containing several histidines.Bioconjug Chem. 1998;9:260–267.

    Article  PubMed  CAS  Google Scholar 

  26. Mahat RI, Monera OD, Smith LC, Rolland A. Peptide-based gene delivery.Curr Opin Mol Ther. 1999;1:226–243.

    PubMed  CAS  Google Scholar 

  27. Wagner E, Plank C, Zatloukal K, Cotten M, Birnstiel ML. Influenza virus hemagglutinin HA-2 N-terminal fusogenic peptides augment gene transfer by transferrin-polylysine-DNA complexes: toward a synthetic virus-like gene-transfer vehicle.Proc Natl Acad Sci USA. 1992;89:7934–7938.

    Article  PubMed  CAS  Google Scholar 

  28. Plank C, Oberhauser B, Mechtler K, Koch C, Wagner E. The influence of endosome-disruptive peptides on gene transfer using synthetic virus-like gene transfer systems.J Biol Chem. 1994;269:12918–12924.

    PubMed  CAS  Google Scholar 

  29. Ogris M, Carlisle RC, Bettinger T, Seymour LW. Melittin enables efficient vesicular escape and enhanced nuclear access of nonviral gene delivery vectors.J Biol Chem. 2001;276:47550–47555.

    Article  PubMed  CAS  Google Scholar 

  30. Boeckle S, Wagner E, Ogris M. C-versus N-terminally linked meltittin-polyethylenimine conjugates: the site of linkage strongly influences activity of DNA polyplexes.J Gene Med. 2005;7:1335–1347.

    Article  PubMed  CAS  Google Scholar 

  31. Boeckle S, Fahrmeir J, Roedl W, Ogris M, Wagner E. Melittin analogs with high lytic activity at endosomal pH enhance transfection with purified targeted PEI polyplexes.J Control Release. 2006;112:240–248.

    Article  PubMed  CAS  Google Scholar 

  32. Chen CP, Kim JS, Steenblock E, Liu D, Rice KG. Gene transfer with poly-melittin peptides.Bioconjug Chem. 2006;17:1057–1062.

    Article  PubMed  CAS  Google Scholar 

  33. Fawell S, Seery J, Daikh Y, et al. Tat-mediated delivery of heterologous proteins into cells.Proc Natl Acad Sci USA. 1994;91:664–668.

    Article  PubMed  CAS  Google Scholar 

  34. Ruben S, Perkins A, Purcell R, et al. Structural and functional characterization of human immunodeficiency virus tat protein.J Virol. 1989;63:1–8.

    PubMed  CAS  Google Scholar 

  35. Vives E, Brodin P, Lebleu B. A truncated HIV-1 Tat protein basic domain rapidly translocates through the plasma membrane and accumulates in the cell nucleus.J Biol Chem. 1997;272:16010–16017.

    Article  PubMed  CAS  Google Scholar 

  36. Vives E. Cellular uptake [correction of utake] of the Tat peptide: an endocytosis mechanism following ionic interactions.J Mol Recognit. 2003;16:265–271.

    Article  PubMed  CAS  Google Scholar 

  37. Brooks H, Lebleu B, Vives E. Tat peptide-mediated cellular delivery: back to basics.Adv Drug Deliv Rev. 2005;57:559–577.

    Article  PubMed  CAS  Google Scholar 

  38. Rudolph C, Plank C, Lausier J, Schillinger U, Muller RH, Rosenecker J. Oligomers of the arginine-rich motif of the HIV-1 TAT protein are capable of transferring plasmid DNA into cells.J Biol Chem. 2003;278:11411–11418.

    Article  PubMed  CAS  Google Scholar 

  39. Derossi D, Joliot AH, Chassaing G, Prochiantz A. The third helix of the Antennapedia homeodomain translocates through biological membranes.J Biol Chem. 1994;269:10444–10450.

    PubMed  CAS  Google Scholar 

  40. Derossi D, Chassaing G, Prochiantz A. Trojan peptides: the penetratin system for intracellular delivery.Trends Cell Biol. 1998;8:84–87.

    Article  PubMed  CAS  Google Scholar 

  41. Pooga M, Hallbrink M, Zorko M, Langel U. Cell penetration by transportan.FASEB J. 1998;12:67–77.

    PubMed  CAS  Google Scholar 

  42. Pooga M, Kut C, Kihlmark M, et al. Cellular translocation of proteins by transportan.FASEB J. 2001;15:1451–1453.

    PubMed  CAS  Google Scholar 

  43. Subbarao NK, Jr, Parente RA, Jr, Szoka FC, Jr, Nadasdi L, Pongracz K. pH-Dependent bilayer destabilization by an amphipathic peptide.Biochemistry. 1987;26:2964–2972.

    Article  PubMed  CAS  Google Scholar 

  44. Parente RA, Jr, Nadasdi L, Jr, Subbarao NK, Jr, Szoka FC, Jr. Association of a pH-sensitive peptide with membrane vesicles: role of amino acid sequence.Biochemistry. 1990;29:8713–8719.

    Article  PubMed  CAS  Google Scholar 

  45. Parente RA, Jr, Nir S, Jr, Szoka FC, Jr. Mechanism of leakage of phospholipid vesicle contents induced by the peptide GALA.Biochemistry. 1990;29:8720–8728.

    Article  PubMed  CAS  Google Scholar 

  46. Wyman TB, Nicol F, Zelphati O, Scaria PV, Plank C, Szoka FC. Design, synthesis and characterization of a cationic peptide that binds to nucleic acids and permeabilizes bilayers.Biochemistry. 1997;36:3008–3017.

    Article  PubMed  CAS  Google Scholar 

  47. Rittner K, Benavente A, Bompard-Sorlet A, et al. New basic membrane-destabilizing peptides for plasmid-based gene delivery in vitro and in vivo.Mol Ther. 2002;5:104–114.

    Article  PubMed  CAS  Google Scholar 

  48. Kim J, Chen CP, Rice KG. The proteasome metabolizes peptide-mediated nonviral gene delivery systems.Gene Ther. 2005;12:1581–1590.

    Article  PubMed  CAS  Google Scholar 

  49. Lanford RE, Kanda P, Kennedy RC. Induction of nuclear transport with a synthetic peptide homologous to the SV40T antigen transport signal.Cell. 1986;46:575–582.

    Article  PubMed  CAS  Google Scholar 

  50. Collas P, Husebye H, Alestrom P. The nuclear localization sequence of the SV40T antigen promotes transgene uptake and expression in zebrafish embryo nuclei.Transgenic Res. 1996;5:451–458.

    Article  PubMed  CAS  Google Scholar 

  51. Collas P, Alestrom P. Nuclear localization signal of SV40T antigen directs import of plasmid DNA into sea urchin male pronuclei in vitro.Mol Reprod Dev. 1996;45:431–438.

    Article  PubMed  CAS  Google Scholar 

  52. Lanford RE, Butel JS. Construction and characterization of an SV40 mutant defective in nuclear transport of T antigen.Cell. 1984;37:801–813.

    Article  PubMed  CAS  Google Scholar 

  53. Gharakhanian E, Takahashi J, Kasamatsu H. The carboxyl 35 amino acids of SV40 Vp3 are essential for its nuclear accumulation.Virology. 1987;157:440–448.

    Article  PubMed  CAS  Google Scholar 

  54. Lyons RH, Ferguson BQ, Rosenberg M. Pentapeptide nuclear localization signal in adenovirus E 1a.Mol Cell Biol. 1987;7:2451–2456.

    PubMed  CAS  Google Scholar 

  55. Dang CV, Lee WM. Identification of the human c-myc protein nuclear translocation signal.Mol Cell Biol. 1988;8:4048–4054.

    PubMed  CAS  Google Scholar 

  56. Robbins J, Dilworth SM, Laskey RA, Dingwall C. Two interdependent basic domains in nucleoplasm in nuclear targeting sequence: identification of a class of bipartite nuclear targeting sequence.Cell. 1991;64:615–623.

    Article  PubMed  CAS  Google Scholar 

  57. Kleinschmidt JA, Seiter A. Identification of domains involved in nuclear uptake and histone binding of protein N1 of Xenopus laevis.EMBO J. 1988;7:1605–1614.

    PubMed  CAS  Google Scholar 

  58. Kiefer P, Acland P, Pappin D, Peters G, Dickson C. Competition between nuclear localization and secretory signals determines the subcellular fate of a single CUG-initiated form of FGF3.EMBO J. 1994;13:4126–4136.

    PubMed  CAS  Google Scholar 

  59. Schreiber V, Molinete M, Boeuf H, de Murcia G, Menissier-de Murcia J. The human poly(ADP-ribose) polymerase nuclear localization signal is a bipartite element functionally separate from DNA binding and catalytic activity.EMBO J. 1992;11:3263–3269.

    PubMed  CAS  Google Scholar 

  60. Subramanian A, Ranganathan P, Diamond SL. Nuclear targeting peptide scaffolds for lipofection of nondividing mammalian cells.Nat Biotechnol. 1999;17:873–877.

    Article  PubMed  CAS  Google Scholar 

  61. Collins L, Fabre JW. A synthetic peptide vector system for optimal gene delivery to corneal endothelium.J Gene Med. 2004;6:185–194.

    Article  PubMed  CAS  Google Scholar 

  62. Collins L, Gustafsson K, Fabre JW. Tissue-binding properties of a synthetic peptide DNA vector targeted to cell membrane integrins: a possible universal nonviral vector for organ and tissue transplantation.Transplantation. 2000;69:1041–1050.

    Article  PubMed  CAS  Google Scholar 

  63. Schneider H, Harbottle RP, Yokosaki Y, Kunde J, Sheppard D, Coutelle C. A novel peptide, PLAEIDGIELTY, for the targeting of alpha9betal-integrins.FEBS Lett. 1998;429:269–273.

    Article  PubMed  CAS  Google Scholar 

  64. McKay T, Reynolds P, Jezzard S, Curiel D, Coutelle C. Secretin-mediated gene delivery, a specific targeting mechanism with potential for treatment of biliary and pancreatic disease in cystic fibrosis.Mol Ther. 2002;5:447–454.

    Article  PubMed  CAS  Google Scholar 

  65. Liu X, Tian PK, Ju DW, et al. Systemic genetic transfer of p21WAF-1 and GM-CSF utilizing of a novel oligopeptide-based EGF receptor targeting polyplex.Cancer Gene Ther. 2003;10:529–539.

    Article  PubMed  CAS  Google Scholar 

  66. Zeng J, Too HP, Ma Y, Luo ESE, Wang S. A synthetic peptide containing loop 4 of nerve growth factor for targeted gene delivery.J Gene Med. 2004;6:1247–1256.

    Article  PubMed  CAS  Google Scholar 

  67. Martinez-Fong D, Navarro-Quiroga I, Ochoa I, et al. Neurotensin-SPDP-poly-L-lysine conjugate: a nonviral vector for targeted gene delivery to neural cells.Brain Res Mol Brain Res. 1999;69:249–262.

    Article  PubMed  CAS  Google Scholar 

  68. White SJ, Nicklin SA, Sawamura T, Baker AH. Identification of peptides that target the endothelial cell-specific LOX-1 receptor.Hypertension. 2001;37:449–455.

    PubMed  CAS  Google Scholar 

  69. Bloomfield VA. DNA condensation.Curr Opin Struct Biol. 1996;6:334–341.

    Article  PubMed  CAS  Google Scholar 

  70. Wu GY, Wu CH. Receptor-mediated in vitro gene transformation by a soluble DNA carrier system.J Biol Chem. 1987;262:4429–4432.

    PubMed  CAS  Google Scholar 

  71. Wu GY, Wu CH. Evidence for targeted gene delivery to Hep G2 hepatoma cells in vitro.Biochemistry. 1988;27:887–892.

    Article  PubMed  CAS  Google Scholar 

  72. Wu GY, Wu CH. Receptor-mediated gene delivery and expression in vivo.J Biol Chem. 1988;263:14621–14624.

    PubMed  CAS  Google Scholar 

  73. Haines AM, Irvine AS, Mountain A, et al. CL22—a novel cationic peptide for efficient transfection of mammalian cells.Gene Ther. 2001;8:99–110.

    Article  PubMed  CAS  Google Scholar 

  74. Read ML, Bremner KH, Oupicky D, Green NK, Searle PF, Seymour LW. Vectors based on reducible polycations facilitate intracellular release of nucleic acids.J Gene Med. 2003;5:232–245.

    Article  PubMed  CAS  Google Scholar 

  75. Boussif O, Lezoualc'h F, Zanta MA, et al. A versatile vector for gene and oligonucleotide transfer into cells in culture and in vivo: polyethylenimine.Proc Natl Acad Sci USA. 1995;92:7297–7301.

    Article  PubMed  CAS  Google Scholar 

  76. Thomas M, Klibanov AM. Enhancing polyethylenimine's delivery of plasmid DNA into mammalian cells.Proc Natl Acad Sci USA. 2002;99:14640–14645.

    Article  PubMed  CAS  Google Scholar 

  77. Kichler A, Leborgne C, Marz J, Danos O, Bechinger B. Histidinerich amphipathic peptide antibiotics promote efficient delivery of DNA into mammalian cells.Proc Natl Acad Sci USA. 2003;100:1564–1568.

    Article  PubMed  CAS  Google Scholar 

  78. Midoux P, Monsigny M. Efficient gene transfer by histidylated polylysine/pDNA complexes.Bioconjug Chem. 1999;10:406–411.

    Article  PubMed  CAS  Google Scholar 

  79. Fajac I, Allo JC, Souil E, et al. Histidylated polylysine as a synthetic vector for gene transfer into immortalized cystic fibrosis airway surface and airway gland serous cells.J Gene Med. 2000;2:368–378.

    Article  PubMed  CAS  Google Scholar 

  80. Bello Roufai M, Midoux P. Histidylated polylysine as DNA vector: elevation of the imidazole protonation and reduced cellular uptake without change in the polyfection efficiency of serum stabilized negative polyplexes.Bioconjug Chem. 2001;12:92–99.

    Article  PubMed  CAS  Google Scholar 

  81. Pichon C, Roufai MB, Monsigny M, Midoux P. Histidylated oligolysines increase the transmembrane passage and the biological activity of antisense oligonucleotides.Nucleic Acids Res. 2000;28:504–512.

    Article  PubMed  CAS  Google Scholar 

  82. Cho YW, Kim JD, Park K. Polycation gene delivery systems: escape from endosomes to cytosol.J Pharm Pharmacol. 2003;55:721–734.

    Article  PubMed  CAS  Google Scholar 

  83. Blondelle SE, Houghten RA. Hemolytic and antimicrobial activities of the twenty-four individual omission analogues of melittin.Biochemistry. 1991;30:4671–4678.

    Article  PubMed  CAS  Google Scholar 

  84. Groll M, Ditzel L, Lowe J, et al. Structure of 20S proteasome from yeast at 2.4 A resolution.Nature. 1997;386:463–471.

    Article  PubMed  CAS  Google Scholar 

  85. Kisselev AF, Goldberg AL. Proteasome inhibitors: from research tools to drug candidates.Chem Biol. 2001;8:739–758.

    Article  PubMed  CAS  Google Scholar 

  86. Duan D, Yue Y, Yan Z, Yang J, Engelhardt JF. Endosomal processing limits gene transfer to polarized airway epithelia by adeno-associated virus.J Clin Invest. 2000;105:1573–1587.

    Article  PubMed  CAS  Google Scholar 

  87. Leonchiks A, Stavropoulou V, Sharipo A, Masucci MG. Inhibition of ubiquitin-dependent proteolysis by a synthetic glycine-alanine repeat peptide that mimics an inhibitory viral sequence.FEBS Lett. 2002;522:93–98.

    Article  PubMed  CAS  Google Scholar 

  88. Sharipo A, Imreh M, Leonchiks A, Branden C, Masucci MG. cis-Inhibition of proteasomal degradation by viral repeats: impact of length and amino acid composition.FEBS Lett. 2001;499:137–142.

    Article  PubMed  CAS  Google Scholar 

  89. Sharipo A, Imreh M, Leonchiks A, Imreh S, Masucci MG. A minimal glycine-alanine repeat prevents the interaction of ubiquitinated I kappaB alpha with the proteasome: a new mechanism for selective inhibition of proteolysis.Nat Med. 1998;4:939–944.

    Article  PubMed  CAS  Google Scholar 

  90. Nigg EA. Nucleocytoplasmic transport: signals, mechanisms and regulation.Nature. 1997;386:779–787.

    Article  PubMed  CAS  Google Scholar 

  91. Goldfarb DS, Gariepy J, Schoolnik G, Kornberg RD. Synthetic peptides as nuclear localization signals.Nature. 1986;322:641–644.

    Article  PubMed  CAS  Google Scholar 

  92. Escriou V, Carriere M, Scherman D, Wils P. NLS bioconjugates for targeting therapeutic genes to the nucleus.Adv Drug Deliv Rev. 2003;55:295–306.

    Article  PubMed  CAS  Google Scholar 

  93. Dean DA, Strong DD, Zimmer WE. Nuclear entry of nonviral vectors.Gene Ther. 2005;12:881–890.

    Article  PubMed  CAS  Google Scholar 

  94. Cartier R, Reszka R. Utilization of synthetic peptides containing nuclear localization signals for nonviral gene transfer systems.Gene Ther. 2002;9:157–167.

    Article  PubMed  CAS  Google Scholar 

  95. Zanta MA, Belguise-Valladier P, Behr JP. Gene delivery: a single nuclear localization signal peptide is sufficient to carry DNA to the cell nucleus.Proc Natl Acad Sci USA. 1999;96:91–96.

    Article  PubMed  CAS  Google Scholar 

  96. Schatzlein AG. Targeting of synthetic gene delivery systems.J Biomed Biotechnol. 2003;2003:149–158.

    Article  PubMed  Google Scholar 

  97. Wolschek MF, Thallinger C, Kursa M, et al. Specific systemic nonviral gene delivery to human hepatocellular carcinoma xenografts in SCID mice.Hepatology. 2002;36:1106–1114.

    Article  PubMed  CAS  Google Scholar 

  98. Hart SL. Integrin-mediated vectors for gene transfer and therapy.Curr Opin Mol Ther. 1999;1:197–203.

    PubMed  CAS  Google Scholar 

  99. Hart S, Harbottle R, Cooper R, Miller A, Williamson R, Coutelle C. Gene delivery and expression mediated by an integrin-binding peptide.Gene Ther. 1995;2:552–554.

    PubMed  CAS  Google Scholar 

  100. Hart SL, Collins L, Gustafsson K, Fabre JW. Integrin-mediated transfection with peptides containing arginine-glycine-aspartic acid domains.Gene Ther. 1997;4:1225–1230.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kevin G. Rice.

Additional information

Published: February 9, 2007

Rights and permissions

Reprints and permissions

About this article

Cite this article

Martin, M.E., Rice, K.G. Peptide-guided gene delivery. AAPS J 9, 3 (2007). https://doi.org/10.1208/aapsj0901003

Download citation

  • Received:

  • Accepted:

  • DOI: https://doi.org/10.1208/aapsj0901003

Keywords

Navigation