Primary biliary cirrhosis (PBC), primary sclerosing cholangitis (PSC) and autoimmune hepatitis (AIH) have collectively been recognized as autoimmune liver diseases. They have all been subjected to genome-wide association studies (GWAS) and several dozens susceptibility loci have been determined. The predominant feature of the genetic findings is that of a strong association with the human leukocyte antigen (HLA) and numerous weak associations scattered throughout the remainder of the genome. The non-HLA associations show some degree of overlap, not only between PBC, PSC and AIH, but also with other autoimmune and immune-mediated diseases. Mathematical modelling shows that the main fraction of autoimmune disease risk (including that of autoimmune liver diseases) is not explained by GWAS, proposing a major role of environmental factors. The HLA associations and autoantibodies observed in these conditions may hold clues as to the nature of such factors, which are exceedingly difficult to map by means of epidemiological study designs. The present review article explores the potential relationship between genetic risk as determined by GWAS and environmental risk in autoimmune liver diseases, and proposes a model for relevant thinking on the susceptibility genes in PBC, PSC and AIH.

1.
Kaplan MM, Gershwin ME: Primary biliary cirrhosis. N Engl J Med 2005;353:1261-1273.
2.
Bogdanos DP, Invernizzi P, Mackay IR, et al: Autoimmune liver serology: current diagnostic and clinical challenges. World J Gastroenterol 2008;14:3374-3387.
3.
Maggs JR, Chapman RW: An update on primary sclerosing cholangitis. Curr Opin Gastroenterol 2008;24:377-383.
4.
Angulo P, Peter JB, Gershwin ME, et al: Serum autoantibodies in patients with primary sclerosing cholangitis. J Hepatol 2000;32:182-187.
5.
Nässberger L, Ljungh A, Schumacher G, et al: Beta-Glucuronidase antibodies in ulcerative colitis. Lancet 1992;340:734-735.
6.
Jenne DE, Tschopp J, Lüdemann J, et al: Wegener's autoantigen decoded. Nature 1990;346:520.
7.
Lüdemann J, Utecht B, Gross WL: Anti-neutrophil cytoplasm antibodies in Wegener's granulomatosis recognize an elastinolytic enzyme. J Exp Med 1990;171:357-362.
8.
Lata J: Diagnosis and treatment of autoimmune hepatitis. Dig Dis 2012;30:212-215.
9.
Bogdanos DP, Mieli-Vergani G, Vergani D: Autoantibodies and their antigens in autoimmune hepatitis. Semin Liver Dis 2009;29:241-253.
10.
Kumagi T, Guindi M, Fischer SE, et al: Baseline ductopenia and treatment response predict long-term histological progression in primary biliary cirrhosis. Am J Gastroenterol 2010;105:2186-2194.
11.
Hoeroldt B, McFarlane E, Dube A, et al: Long-term outcomes of patients with autoimmune hepatitis managed at a nontransplant center. Gastroenterology 2011;140:1980-1989.
12.
Barnabas A, Chapman RW: Primary sclerosing cholangitis: is any treatment worthwhile? Curr Gastroenterol Rep 2012;14:17-24.
13.
Klein RJ, Zeiss C, Chew EY, et al: Complement factor H polymorphism in age-related macular degeneration. Science 2005;308:385-389.
14.
Karlsen TH, Melum E, Franke A: The utility of genome-wide association studies in hepatology. Hepatology 2010;51:1833-1842.
15.
Hindorff LA, Sethupathy P, Junkins HA, et al: Potential etiologic and functional implications of genome-wide association loci for human diseases and traits. Proc Natl Acad Sci U S A 2009;106:9362-9367.
16.
Bulik-Sullivan BK, Sullivan PF: The authorship network of genome-wide association studies. Nat Genet 2012;44:113.
17.
Koiwai O, Nishizawa M, Hasada K, et al: Gilbert's syndrome is caused by a heterozygous missense mutation in the gene for bilirubin UDP-glucuronosyltransferase. Hum Mol Genet 1995;4:1183-1186.
18.
Bosma PJ, Chowdhury JR, Huang TJ, et al: Mechanisms of inherited deficiencies of multiple UDP-glucuronosyltransferase isoforms in two patients with Crigler-Najjar syndrome, type I. FASEB J 1992;6:2859-2863.
19.
Moghrabi N, Clarke DJ, Boxer M, et al: Identification of an A-to-G missense mutation in exon 2 of the UGT1 gene complex that causes Crigler-Najjar syndrome type 2. Genomics 1993;18:171-173.
20.
Petrukhin K, Fischer SG, Pirastu M, et al: Mapping, cloning and genetic characterization of the region containing the Wilson disease gene. Nat Genet 1993;5:338-343.
21.
Bull PC, Thomas GR, Rommens JM, et al: The Wilson disease gene is a putative copper transporting P-type ATPase similar to the Menkes gene. Nat Genet 1993;5:327-337.
22.
Paulusma CC, Kool M, Bosma PJ, et al: A mutation in the human canalicular multispecific organic anion transporter gene causes the Dubin-Johnson syndrome. Hepatology 1997;25:1539-1542.
23.
Papanikolaou G, Samuels ME, Ludwig EH, et al: Mutations in HFE2 cause iron overload in chromosome 1q-linked juvenile hemochromatosis. Nat Genet 2004;36:77-82.
24.
Roetto A, Papanikolaou G, Politou M, et al: Mutant antimicrobial peptide hepcidin is associated with severe juvenile hemochromatosis. Nat Genet 2003;33:21-22.
25.
Njajou OT, Vaessen N, Joosse M, et al: A mutation in SLC11A3 is associated with autosomal dominant hemochromatosis. Nat Genet 2001;28:213-214.
26.
Montosi G, Donovan A, Totaro A, et al: Autosomal-dominant hemochromatosis is associated with a mutation in the ferroportin (SLC11A3) gene. J Clin Invest 2001;108:619-623.
27.
Strautnieks SS, Bull LN, Knisely AS, et al: A gene encoding a liver-specific ABC transporter is mutated in progressive familial intrahepatic cholestasis. Nat Genet 1998;20:233-238.
28.
Bull LN, van Eijk MJ, Pawlikowska L, et al: A gene encoding a P-type ATPase mutated in two forms of hereditary cholestasis. Nat Genet 1998;18:219-224.
29.
McDaniell R, Warthen DM, Sanchez-Lara PA, et al: NOTCH2 mutations cause Alagille syndrome, a heterogeneous disorder of the notch signaling pathway. Am J Hum Genet 2006;79:169-173.
30.
Feder JN, Gnirke A, Thomas W, et al: A novel MHC class I-like gene is mutated in patients with hereditary haemochromatosis. Nat Genet 1996;13:399-408.
31.
Kamath BM, Bauer RC, Loomes KM, et al: NOTCH2 mutations in Alagille syndrome. J Med Genet 2012;49:138-144.
32.
de Vree JM, Jacquemin E, Sturm E, et al: Mutations in the MDR3 gene cause progressive familial intrahepatic cholestasis. Proc Natl Acad Sci U S A 1998;95:282-287.
33.
Girelli D, Bozzini C, Roetto A, et al: Clinical and pathologic findings in hemochromatosis type 3 due to a novel mutation in transferrin receptor 2 gene. Gastroenterology 2002;122:1295-1302.
34.
Henriksen EK, Melum E, Karlsen TH: Update on primary sclerosing cholangitis genetics. Curr Opin Gastroenterol 2014;30:310-319.
35.
Stahl EA, Wegmann D, Trynka G, et al: Bayesian inference analyses of the polygenic architecture of rheumatoid arthritis. Nat Genet 2012;44:483-489.
36.
Wood AR, Esko T, Yang J, et al: Defining the role of common variation in the genomic and biological architecture of adult human height. Nat Genet 2014;46:1173-1186.
37.
Mells GF, Kaser A, Karlsen TH: Novel insights into autoimmune liver diseases provided by genome-wide association studies. J Autoimmun 2013;46:41-54.
38.
Jones DE, Watt FE, Metcalf JV, et al: Familial primary biliary cirrhosis reassessed: a geographically-based population study. J Hepatol 1999;30:402-407.
39.
Bergquist A, Montgomery SM, Bahmanyar S, et al: Increased risk of primary sclerosing cholangitis and ulcerative colitis in first-degree relatives of patients with primary sclerosing cholangitis. Clin Gastroenterol Hepatol 2008;6:939-943.
40.
Yoshida O, Abe M, Furukawa S, et al: A familial case of autoimmune hepatitis. Intern Med 2009;48:315-319.
41.
Nozić D, Dimitrijević J, Knezević-Usaj S: [Occurrence of autoimmune chronic hepatitis in siblings]. Vojnosanit Pregl 2005;62:591-594.
42.
Ohira H, Shinzawa J, Suzuki T, et al: Two sister cases of autoimmune hepatitis. Fukushima J Med Sci 1998;44:113-120.
43.
Donaldson PT: Genetics of liver disease: immunogenetics and disease pathogenesis. Gut 2004;53:599-608.
44.
Karlsen TH, Lammert F, Thompson RJ: Genetics of liver disease: from pathophysiology to clinical practice. J Hepatol 2015;62(1 suppl):S6-S14.
45.
Mackay IR, Morris PJ: Association of autoimmune active chronic hepatitis with HL-A1,8. Lancet 1972;2:793-795.
46.
Ercilla G, Parés A, Arriaga F, et al: Primary biliary cirrhosis associated with HLA-DRw3. Tissue Antigens 1979;14:449-452.
47.
Schrumpf E, Fausa O, Førre O, et al: HLA antigens and immunoregulatory T cells in ulcerative colitis associated with hepatobiliary disease. Scand J Gastroenterol 1982;17:187-191.
48.
Sollid LM, Markussen G, Ek J, et al: Evidence for a primary association of celiac disease to a particular HLA-DQ alpha/beta heterodimer. J Exp Med 1989;169:345-350.
49.
Daly AK, Donaldson PT, Bhatnagar P, et al: HLA-B*5701 genotype is a major determinant of drug-induced liver injury due to flucloxacillin. Nat Genet 2009;41:816-819.
50.
Singer JB, Lewitzky S, Leroy E, et al: A genome-wide study identifies HLA alleles associated with lumiracoxib-related liver injury. Nat Genet 2010;42:711-714.
51.
Kamatani Y, Wattanapokayakit S, Ochi H, et al: A genome-wide association study identifies variants in the HLA-DP locus associated with chronic hepatitis B in Asians. Nat Genet 2009;41:591-595.
52.
Jiang DK, Sun J, Cao G, et al: Genetic variants in STAT4 and HLA-DQ genes confer risk of hepatitis B virus-related hepatocellular carcinoma. Nat Genet 2013;45:72-75.
53.
Hirschfield GM, Karlsen TH: Genetic risks link autoimmune hepatitis to other autoimmune liver disease. Gastroenterology 2014;147:270-273.
54.
Nakamura M, Nishida N, Kawashima M, et al: Genome-wide association study identifies TNFSF15 and POU2AF1 as susceptibility loci for primary biliary cirrhosis in the Japanese population. Am J Hum Genet 2012;91:721-728.
55.
Liu JZ, Almarri MA, Gaffney DJ, et al: Dense fine-mapping study identifies new susceptibility loci for primary biliary cirrhosis. Nat Genet 2012;44:1137-1141.
56.
Hirschfield GM, Liu X, Xu C, et al: Primary Biliary Cirrhosis associated with HLA, IL12A, and IL12RB2 variants. N Engl J Med 2009;360:2544-2555.
57.
Folseraas T, Liaskou E, Anderson CA, et al: Genetics in PSC: what do the ‘risk genes' teach us? Clin Rev Allergy Immunol 2014;48:154-164.
58.
Karlsen TH: A lecture on the genetics of primary sclerosing cholangitis. Dig Dis 2012;30(suppl 1):32-38.
59.
Horton R, Wilming L, Rand V, et al: Gene map of the extended human MHC. Nat Rev Genet 2004;5:889-899.
60.
Traherne JA: Human MHC architecture and evolution: implications for disease association studies. Int J Immunogenet 2008;35:179-192.
61.
Molberg O, McAdam SN, Körner R, et al: Tissue transglutaminase selectively modifies gliadin peptides that are recognized by gut-derived T cells in celiac disease. Nat Med 1998;4:713-717.
62.
Goyette P, Boucher G, Mallon D, et al: High-density mapping of the MHC identifies a shared role for HLA-DRB1*01:03 in inflammatory bowel diseases and heterozygous advantage in ulcerative colitis. Nat Genet 2015;47:172-179.
63.
Næss S, Lie BA, Melum E, et al: Refinement of the MHC risk map in a scandinavian primary sclerosing cholangitis population. PLoS One 2014;9:e114486.
64.
Lie BA, Thorsby E: Several genes in the extended human MHC contribute to predisposition to autoimmune diseases. Curr Opin Immunol 2005;17:526-531.
65.
Hov JR, Kosmoliaptsis V, Traherne JA, et al: Electrostatic modifications of the human leukocyte antigen-DR P9 peptide-binding pocket and susceptibility to primary sclerosing cholangitis. Hepatology 2011;53:1967-1976.
66.
Zeman MV, Hirschfield GM: Autoantibodies and liver disease: uses and abuses. Can J Gastroenterol 2010;24:225-231.
67.
Meda F, Zuin M, Invernizzi P, et al: Serum autoantibodies: a road map for the clinical hepatologist. Autoimmunity 2008;41:27-34.
68.
Hov JR, Boberg KM, Karlsen TH: Autoantibodies in primary sclerosing cholangitis. World J Gastroenterol 2008;14:3781-3791.
69.
Candore G, Lio D, Colonna Romano G, et al: Pathogenesis of autoimmune diseases associated with 8.1 ancestral haplotype: effect of multiple gene interactions. Autoimmun Rev 2002;1:29-35.
70.
Price P, Witt C, Allcock R, et al: The genetic basis for the association of the 8.1 ancestral haplotype (A1, B8, DR3) with multiple immunopathological diseases. Immunol Rev 1999;167:257-274.
71.
Sollid LM, Jabri B: Triggers and drivers of autoimmunity: lessons from coeliac disease. Nat Rev Immunol 2013;13:294-302.
72.
Bach JF: Infections and autoimmune diseases. J Autoimmun 2005;25(suppl):74-80.
73.
Bach JF: The effect of infections on susceptibility to autoimmune and allergic diseases. N Engl J Med 2002;347:911-920.
74.
Orth T, Kellner R, Diekmann O, et al: Identification and characterization of autoantibodies against catalase and alpha-enolase in patients with primary sclerosing cholangitis. Clin Exp Immunol 1998;112:507-515.
75.
Falk RJ, Jennette JC: Anti-neutrophil cytoplasmic autoantibodies with specificity for myeloperoxidase in patients with systemic vasculitis and idiopathic necrotizing and crescentic glomerulonephritis. N Engl J Med 1988;318:1651-1657.
76.
Inagaki Y, Jinno-Yoshida Y, Hamasaki Y, et al: A novel autoantibody reactive with carbonic anhydrase in sera from patients with systemic lupus erythematosus and Sjögren's syndrome. J Dermatol Sci 1991;2:147-154.
77.
Itoh Y, Reichlin M: Antibodies to carbonic anhydrase in systemic lupus erythematosus and other rheumatic diseases. Arthritis Rheum 1992;35:73-82.
78.
Kiechle FL, Quattrociocchi-Longe TM, Brinton DA: Carbonic anhydrase antibody in sera from patients with endometriosis. Am J Clin Pathol 1994;101:611-615.
79.
Gordon SC, Quattrociocchi-Longe TM, Khan BA, et al: Antibodies to carbonic anhydrase in patients with immune cholangiopathies. Gastroenterology 1995;108:1802-1809.
80.
D'Cruz OJ, Wild RA, Haas GG Jr, et al: Antibodies to carbonic anhydrase in endometriosis: prevalence, specificity, and relationship to clinical and laboratory parameters. Fertil Steril 1996;66:547-556.
81.
Reimand K, Talja I, Metsküla K, et al: Autoantibody studies of female patients with reproductive failure. J Reprod Immunol 2001;51:167-176.
82.
Bartolomé MJ, de las Heras G, López-Hoyos M: Low-avidity antibodies to carbonic anhydrase-I and -II in autoimmune chronic pancreatitis. ScientificWorldJournal 2002;2:1560-1568.
83.
Liu C, Wei Y, Wang J, et al: Carbonic anhydrases III and IV autoantibodies in rheumatoid arthritis, systemic lupus erythematosus, diabetes, hypertensive renal disease, and heart failure. Clin Dev Immunol 2012;2012:354594.
84.
Solimena M, Folli F, Aparisi R, et al: Autoantibodies to GABA-ergic neurons and pancreatic beta cells in stiff-man syndrome. N Engl J Med 1990;322:1555-1560.
85.
Baekkeskov S, Aanstoot HJ, Christgau S, et al: Identification of the 64K autoantigen in insulin-dependent diabetes as the GABA-synthesizing enzyme glutamic acid decarboxylase. Nature 1990;347:151-156.
86.
Akawaza S, Kawasaki E, Yano M, et al: Autoantibodies to glutamic acid decarboxylase (GAD), 64,000-Mr islet cell protein (64K) antibodies and islet cell antibodies (ICA) in insulin-dependent diabetes mellitus with and without autoimmune diseases in Japan. Diabetes Res Clin Pract 1994;24(suppl):S89-S93.
87.
Björk E, Velloso LA, Kämpe O, et al: GAD autoantibodies in IDDM, stiff-man syndrome, and autoimmune polyendocrine syndrome type I recognize different epitopes. Diabetes 1994;43:161-165.
88.
Singh B, Nikoopour E, Huszarik K, et al: Immunomodulation and regeneration of islet beta cells by cytokines in autoimmune type 1 diabetes. J Interferon Cytokine Res 2011;31:711-719.
89.
Iulita MF, Cuello AC: Nerve growth factor metabolic dysfunction in Alzheimer's disease and down syndrome. Trends Pharmacol Sci 2014;35:338-348.
90.
Hegvik TA, Husebye ES, Haavik J: Autoantibodies targeting neurotransmitter biosynthetic enzymes in attention-deficit/hyperactivity disorder (ADHD). Eur Child Adolesc Psychiatry 2014;23:115-117.
91.
Wesierska-Gadek J, Grimm R, Hitchman E, et al: Members of the glutathione S-transferase gene family are antigens in autoimmune hepatitis. Gastroenterology 1998;114:329-335.
92.
Karlsson FA, Burman P, Lööf L, et al: Major parietal cell antigen in autoimmune gastritis with pernicious anemia is the acid-producing H+,K+-adenosine triphosphatase of the stomach. J Clin Invest 1988;81:475-479.
93.
Landin-Olsson M, Karlsson A, Dahlquist G, et al: Islet cell and other organ-specific autoantibodies in all children developing type 1 (insulin-dependent) diabetes mellitus in Sweden during one year and in matched control children. Diabetologia 1989;32:387-395.
94.
Mårdh S, Song YH: Characterization of antigenic structures in auto-immune atrophic gastritis with pernicious anaemia. The parietal cell H,K-ATPase and the chief cell pepsinogen are the two major antigens. Acta Physiol Scand 1989;136:581-587.
95.
Surh CD, Danner DJ, Ahmed A, et al: Reactivity of primary biliary cirrhosis sera with a human fetal liver cDNA clone of branched-chain alpha-keto acid dehydrogenase dihydrolipoamide acyltransferase, the 52 kD mitochondrial autoantigen. Hepatology 1989;9:63-68.
96.
Coppel RL, McNeilage LJ, Surh CD, et al: Primary structure of the human M2 mitochondrial autoantigen of primary biliary cirrhosis: dihydrolipoamide acetyltransferase. Proc Natl Acad Sci U S A 1988;85:7317-7321.
97.
Fregeau DR, Roche TE, Davis PA, et al: Primary biliary cirrhosis. Inhibition of pyruvate dehydrogenase complex activity by autoantibodies specific for E1 alpha, a non-lipoic acid containing mitochondrial enzyme. J Immunol 1990;144:1671-1676.
98.
Van de Water J, Fregeau D, Davis P, et al: Autoantibodies of primary biliary cirrhosis recognize dihydrolipoamide acetyltransferase and inhibit enzyme function. J Immunol 1988;141:2321-2324.
99.
Yeaman SJ, Fussey SP, Danner DJ, et al: Primary biliary cirrhosis: identification of two major M2 mitochondrial autoantigens. Lancet 1988;1:1067-1070.
100.
Fussey SP, Guest JR, James OF, et al: Identification and analysis of the major M2 autoantigens in primary biliary cirrhosis. Proc Natl Acad Sci U S A 1988;85:8654-8658.
101.
Preuss B, Berg C, Altenberend F, et al: Demonstration of autoantibodies to recombinant human sulphite oxidase in patients with chronic liver disorders and analysis of their clinical relevance. Clin Exp Immunol 2007;150:312-321.
102.
Roth EB, Stenberg P, Book C, et al: Antibodies against transglutaminases, peptidylarginine deiminase and citrulline in rheumatoid arthritis - new pathways to epitope spreading. Clin Exp Rheumatol 2006;24:12-18.
103.
Halvorsen EH, Haavardsholm EA, Pollmann S, et al: Serum IgG antibodies to peptidylarginine deiminase 4 predict radiographic progression in patients with rheumatoid arthritis treated with tumour necrosis factor-alpha blocking agents. Ann Rheum Dis 2009;68:249-252.
104.
Zhao J, Zhao Y, He J, et al: Prevalence and significance of anti-peptidylarginine deiminase 4 antibodies in rheumatoid arthritis. J Rheumatol 2008;35:969-974.
105.
Auger I, Balandraud N, Rak J, et al: New autoantigens in rheumatoid arthritis (RA): screening 8,268 protein arrays with sera from patients with RA. Ann Rheum Dis 2009;68:591-594.
106.
Pollmann S, Stensland M, Halvorsen EH, et al: Anti-PAD4 autoantibodies in rheumatoid arthritis: levels in serum over time and impact on PAD4 activity as measured with a small synthetic substrate. Rheumatol Int 2012;32:1271-1276.
107.
Darrah E, Giles JT, Ols ML, et al: Erosive rheumatoid arthritis is associated with antibodies that activate PAD4 by increasing calcium sensitivity. Sci Transl Med 2013;5:186ra65.
108.
Ishigami A, Uchida Y, Miyazaki T, et al: Two novel sandwich ELISAs identify PAD4 levels and PAD4 autoantibodies in patients with rheumatoid arthritis. Mod Rheumatol 2013;23:794-803.
109.
Du Y, Liu X, Guo JP, et al: Association between PADI4 gene polymorphisms and anti-cyclic citrullinated peptide antibody positive rheumatoid arthritis in a large Chinese Han cohort. Clin Exp Rheumatol 2014;32:377-382.
110.
Giles JT, Darrah E, Danoff S, et al: Association of cross-reactive antibodies targeting peptidyl-arginine deiminase 3 and 4 with rheumatoid arthritis-associated interstitial lung disease. PLoS One 2014;9:e98794.
111.
Krohn K, Uibo R, Aavik E, et al: Identification by molecular cloning of an autoantigen associated with Addison's disease as steroid 17 alpha-hydroxylase. Lancet 1992;339:770-773.
112.
Winqvist O, Gustafsson J, Rorsman F, et al: Two different cytochrome P450 enzymes are the adrenal antigens in autoimmune polyendocrine syndrome type I and Addison's disease. J Clin Invest 1993;92:2377-2385.
113.
Uibo R, Aavik E, Peterson P, et al: Autoantibodies to cytochrome P450 enzymes P450scc, P450c17, and P450c21 in autoimmune polyglandular disease types I and II and in isolated Addison's disease. J Clin Endocrinol Metab 1994;78:323-328.
114.
Arif S, Vallian S, Farzaneh F, et al: Identification of 3 beta-hydroxysteroid dehydrogenase as a novel target of steroid cell autoantibodies: association of autoantibodies with endocrine autoimmune disease. J Clin Endocrinol Metab 1996;81:4439-4445.
115.
Chen S, Sawicka J, Betterle C, et al: Autoantibodies to steroidogenic enzymes in autoimmune polyglandular syndrome, Addison's disease, and premature ovarian failure. J Clin Endocrinol Metab 1996;81:1871-1876.
116.
Reimand K, Peterson P, Hyöty H, et al: 3beta-hydroxysteroid dehydrogenase autoantibodies are rare in premature ovarian failure. J Clin Endocrinol Metab 2000;85:2324-2326.
117.
de Carmo Silva R, Kater CE, Dib SA, et al: Autoantibodies against recombinant human steroidogenic enzymes 21-hydroxylase, side-chain cleavage and 17alpha-hydroxylase in Addison's disease and autoimmune polyendocrine syndrome type III. Eur J Endocrinol 2000;142:187-194.
118.
Dal Pra C, Chen S, Furmaniak J, et al: Autoantibodies to steroidogenic enzymes in patients with premature ovarian failure with and without Addison's disease. Eur J Endocrinol 2003;148:565-570.
119.
Winqvist O, Karlsson FA, Kämpe O: 21-Hydroxylase, a major autoantigen in idiopathic Addison's disease. Lancet 1992;339:1559-1562.
120.
Baumann-Antczak A, Wedlock N, Bednarek J, et al: Autoimmune Addison's disease and 21-hydroxylase. Lancet 1992;340:429-430.
121.
Bednarek J, Furmaniak J, Wedlock N, et al: Steroid 21-hydroxylase is a major autoantigen involved in adult onset autoimmune Addison's disease. FEBS Lett 1992;309:51-55.
122.
Eyraud V, Chazouilleres O, Ballot E, et al: Significance of antibodies to soluble liver antigen/liver pancreas: a large French study. Liver Int 2009;29:857-864.
123.
Ruf J, Czarnocka B, De Micco C, et al: Thyroid peroxidase is the organ-specific ‘microsomal' autoantigen involved in thyroid autoimmunity. Acta Endocrinol Suppl (Copenh) 1987;281:49-56.
124.
Chardès T, Chapal N, Bresson D, et al: The human anti-thyroid peroxidase autoantibody repertoire in Graves' and Hashimoto's autoimmune thyroid diseases. Immunogenetics 2002;54:141-157.
125.
Picarelli A, Di Tola M, Sabbatella L, et al: Anti-tissue transglutaminase antibodies in arthritic patients: a disease-specific finding? Clin Chem 2003;49:2091-2094.
126.
Teichmann J, Voglau MJ, Lange U: Antibodies to human tissue transglutaminase and alterations of vitamin D metabolism in ankylosing spondylitis and psoriatic arthritis. Rheumatol Int 2010;30:1559-1563.
127.
Dieterich W, Ehnis T, Bauer M, et al: Identification of tissue transglutaminase as the autoantigen of celiac disease. Nat Med 1997;3:797-801.
128.
Farrace MG, Picarelli A, Di Tola M, et al: Presence of anti-‘tissue' transglutaminase antibodies in inflammatory intestinal diseases: an apoptosis-associated event? Cell Death Differ 2001;8:767-770.
129.
Bao F, Yu L, Babu S, et al: One third of HLA DQ2 homozygous patients with type 1 diabetes express celiac disease-associated transglutaminase autoantibodies. J Autoimmun 1999;13:143-148.
130.
Lampasona V, Bonfanti R, Bazzigaluppi E, et al: Antibodies to tissue transglutaminase C in type I diabetes. Diabetologia 1999;42:1195-1198.
131.
Song YH, Connor E, Li Y, et al: The role of tyrosinase in autoimmune vitiligo. Lancet 1994;344:1049-1052.
132.
Baharav E, Merimski O, Shoenfeld Y, et al: Tyrosinase as an autoantigen in patients with vitiligo. Clin Exp Immunol 1996;105:84-88.
133.
Kemp EH, Waterman EA, Gawkrodger DJ, et al: Identification of epitopes on tyrosinase which are recognized by autoantibodies from patients with vitiligo. J Invest Dermatol 1999;113:267-271.
134.
Weiss KM, Terwilliger JD: How many diseases does it take to map a gene with SNPs? Nat Genet 2000;26:151-157.
Copyright / Drug Dosage / Disclaimer
Copyright: All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher.
Drug Dosage: The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in government regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any changes in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug.
Disclaimer: The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publishers and the editor(s). The appearance of advertisements or/and product references in the publication is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.
You do not currently have access to this content.