1887

Abstract

The aminoglycoside phosphotransferase primarily inactivates kanamycin and neomycin, whilst also inactivates amikacin. The aim of this study was to determine the frequency of both resistance genes in major human pathogens to obtain their baseline prevalence in the gene pool of these bacterial populations in Austria. In total, 10 541 subsp. and isolates were collected representatively without selection bias between 2008 and 2011. Isolates were analysed by - and -specific TaqMan real-time PCR. For positive strains, MICs using Etests were performed and resistance gene sequences were determined. The overall prevalence of was 1.62 % (95 % confidence interval: 1.38–1.88 %). In , enterococci, and spp., the prevalence was 0.47 % (0–1.47 %), 37.53 % (32.84–42.40 %), 2.90 % (1.51–5.02 %), 0 % (0–0.32 %) and 0 % (0–0.037 %), respectively. Eleven of a total of 169 carriers showed single-nucleotide polymorphisms in the resistance allele. The overall prevalence of was 0.0096 % (0–0.046 %). (0–0.70 %), enterococci (0–0.75 %), (0–0.73 %) and (0–0.32 %) did not carry . A single isolate was positive, resulting in an prevalence of 0.013 % (0–0.058 %). carriers were moderately prevalent in the strains tested except for in enterococci, which appeared to be an important reservoir for . genes were detected at clinically irrelevant frequencies and played no significant role in the aminoglycoside resistance gene pool during the observation period.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.065789-0
2014-02-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/jmm/63/2/210.html?itemId=/content/journal/jmm/10.1099/jmm.0.065789-0&mimeType=html&fmt=ahah

References

  1. Apfalter P., Fluch P., Metz-Gercek S., Allerberger F. 2012; Resistenzbericht Österreich AURES 2011 – Antibiotikaresistenz und Verbrauch antimikrobieller Substanzen in Österreich (Antibiotic resistance rates and antibiotic consumption in Austria). Federal Ministry of Health; Vienna:
    [Google Scholar]
  2. Beck E., Ludwig G., Auerswald E. A., Reiss B., Schaller H. 1982; Nucleotide sequence and exact localization of the neomycin phosphotransferase gene from transposon Tn5. Gene 19:327–336 [View Article][PubMed]
    [Google Scholar]
  3. Becker B., Cooper M. A. 2013; Aminoglycoside antibiotics in the 21st century. ACS Chem Biol 8:105–115 [View Article][PubMed]
    [Google Scholar]
  4. Brown L. D., Cai T. T., DasGupta A. 2001; Interval estimation for a binomial proportion. Stat Sci 16:101–133 [View Article]
    [Google Scholar]
  5. CLSI 2009; Performance Standards for Antimicrobial Susceptibility Testing; 19th informational supplement M100–S19. Villanova, PA, USA: Clinical and Laboratory Standards Institute;
    [Google Scholar]
  6. Derbise A., Aubert S., El Solh N. 1997; Mapping the regions carrying the three contiguous antibiotic resistance genes aadE, sat4, and aphA-3 in the genomes of staphylococci. Antimicrob Agents Chemother 41:1024–1032[PubMed]
    [Google Scholar]
  7. Dubois V., Arpin C., Dupart V., Scavelli A., Coulange L., André C., Fischer I., Grobost F., Brochet J.-P. other authors 2008; β-Lactam and aminoglycoside resistance rates and mechanisms among Pseudomonas aeruginosa in French general practice (community and private healthcare centres). J Antimicrob Chemother 62:316–323 [View Article][PubMed]
    [Google Scholar]
  8. Durante-Mangoni E., Grammatikos A., Utili R., Falagas M. E. 2009; Do we still need the aminoglycosides?. Int J Antimicrob Agents 33:201–205 [View Article][PubMed]
    [Google Scholar]
  9. ECDC 2012; European Centre for Disease Prevention and Control. Antimicrobial resistance surveillance in Europe 2011. Annual Report of the European Antimicrobial Resistance Surveillance Network (EARS-Net); Stockholm:
    [Google Scholar]
  10. EUCAST 2013; Breakpoint tables for interpretation of MICs and zone diameters. Version 3.1, 2013. European Committee on Antimicrobial Susceptibility Testing
    [Google Scholar]
  11. Fong D. H., Berghuis A. M. 2002; Substrate promiscuity of an aminoglycoside antibiotic resistance enzyme via target mimicry. EMBO J 21:2323–2331 [View Article][PubMed]
    [Google Scholar]
  12. Fuchs K. 2012; European surveillance of veterinary consumption (ESVAC). In Resistenzbericht Österreich AURES 2011 – Antibiotikaresistenz und Verbrauch antimikrobieller Substanzen in Österreich [Antibiotic Resistance Rates and Antibiotic Consumption in Austria] pp. 316–319 Edited by Apfalter P., Fluch P., Metz-Gercek S., Allerberger F.
    [Google Scholar]
  13. Gibreel A., Sköld O., Taylor D. E. 2004; Characterization of plasmid-mediated aphA-3 kanamycin resistance in Campylobacter jejuni . Microb Drug Resist 10:98–105 [View Article][PubMed]
    [Google Scholar]
  14. Health Protection Agency 2007; Kauffmann–White Scheme – 2007: Salmonella identification – serotypes and antigenic formulae.
    [Google Scholar]
  15. Jia X., Zhang J., Sun W., He W., Jiang H., Chen D., Murchie A. I. 2013; Riboswitch control of aminoglycoside antibiotic resistance. Cell 152:68–81 [View Article][PubMed]
    [Google Scholar]
  16. Kim J.-Y., Park Y.-J., Kwon H. J., Han K., Kang M. W., Woo G.-J. 2008; Occurrence and mechanisms of amikacin resistance and its association with β-lactamases in Pseudomonas aeruginosa: a Korean nationwide study. J Antimicrob Chemother 62:479–483 [View Article][PubMed]
    [Google Scholar]
  17. Kozak M. 2005; Regulation of translation via mRNA structure in prokaryotes and eukaryotes. Gene 361:13–37 [View Article][PubMed]
    [Google Scholar]
  18. Leclercq R., Cantón R., Brown D. F., Giske C. G., Heisig P., MacGowan A. P., Mouton J. W., Nordmann P., Rodloff A. C. other authors 2013; EUCAST expert rules in antimicrobial susceptibility testing. Clin Microbiol Infect 19:141–160 [View Article][PubMed]
    [Google Scholar]
  19. Leff L. G., Dana J. R., McArthur J. V., Shimkets L. J. 1993; Detection of Tn5-like sequences in kanamycin-resistant stream bacteria and environmental DNA. Appl Environ Microbiol 59:417–421[PubMed]
    [Google Scholar]
  20. Leibovici L., Vidal L., Paul M. 2009; Aminoglycoside drugs in clinical practice: an evidence-based approach. J Antimicrob Chemother 63:246–251 [View Article][PubMed]
    [Google Scholar]
  21. Ma B. L., Blackshaw R. E., Roy J., He T. 2011; Investigation on gene transfer from genetically modified corn (Zea mays L.) plants to soil bacteria. J Environ Sci Health B 46:590–599[PubMed] [CrossRef]
    [Google Scholar]
  22. Magnet S., Blanchard J. S. 2005; Molecular insights into aminoglycoside action and resistance. Chem Rev 105:477–498 [View Article][PubMed]
    [Google Scholar]
  23. ÖGACH 2012; Österreichische Gesellschaft für Antimikrobielle Chemotherapie: Antiinfektiva.
    [Google Scholar]
  24. Peirano G., Agersø Y., Aarestrup F. M., dos Reis E. M., dos Prazeres Rodrigues D. 2006; Occurrence of integrons and antimicrobial resistance genes among Salmonella enterica from Brazil. J Antimicrob Chemother 58:305–309 [View Article][PubMed]
    [Google Scholar]
  25. Perlin M. H., Lerner S. A. 1986; High-level amikacin resistance in Escherichia coli due to phosphorylation and impaired aminoglycoside uptake. Antimicrob Agents Chemother 29:216–224 [View Article][PubMed]
    [Google Scholar]
  26. Picard F., Dressaire C., Girbal L., Cocaign-Bousquet M. 2009; Examination of post-transcriptional regulations in prokaryotes by integrative biology. C R Biol 332:958–973 [View Article][PubMed]
    [Google Scholar]
  27. Ramirez M. S., Tolmasky M. E. 2010; Aminoglycoside modifying enzymes. Drug Resist Updat 13:151–171 [View Article][PubMed]
    [Google Scholar]
  28. Rosellini D. 2012; Selectable markers and reporter genes: a well furnished toolbox for plant science and genetic engineering. Crit Rev Plant Sci 31:401–453 [View Article]
    [Google Scholar]
  29. Schmieder R., Edwards R. 2012; Insights into antibiotic resistance through metagenomic approaches. Future Microbiol 7:73–89 [View Article][PubMed]
    [Google Scholar]
  30. Schmitz F.-J., Fluit A. C., Gondolf M., Beyrau R., Lindenlauf E., Verhoef J., Heinz H.-P., Jones M. E. 1999; The prevalence of aminoglycoside resistance and corresponding resistance genes in clinical isolates of staphylococci from 19 European hospitals. J Antimicrob Chemother 43:253–259 [View Article][PubMed]
    [Google Scholar]
  31. Shaw K. J., Rather P. N., Hare R. S., Miller G. H. 1993; Molecular genetics of aminoglycoside resistance genes and familial relationships of the aminoglycoside-modifying enzymes. Microbiol Rev 57:138–163[PubMed]
    [Google Scholar]
  32. Smalla K., Van Overbeek L. S., Pukall R., Van Elsas J. D. 1993; The prevalence of nptII and Tn5 in kanamycin-resistant bacteria from different environments. FEMS Microbiol Lett 13:47–58 [View Article]
    [Google Scholar]
  33. Thomas C. M., Nielsen K. M. 2005; Mechanisms of, and barriers to, horizontal gene transfer between bacteria. Nat Rev Microbiol 3:711–721 [View Article][PubMed]
    [Google Scholar]
  34. Trieu-Cuot P., Courvalin P. 1983; Nucleotide sequence of the Streptococcus faecalis plasmid gene encoding the 3′5″-aminoglycoside phosphotransferase type III. Gene 23:331–341 [View Article][PubMed]
    [Google Scholar]
  35. WHO 2011; Guidelines for the programmatic management of drug-resistant tuberculosis – 2011 update.
    [Google Scholar]
  36. WHO 2012; Critically important antimicrobials for human medicine, 3rd revision 2011. WHO Press, World Health Organization; Geneva:
    [Google Scholar]
  37. Wright G. D., Thompson P. R. 1999; Aminoglycoside phosphotransferases: proteins, structure, and mechanism. Front Biosci 4:D9–D21 [View Article][PubMed]
    [Google Scholar]
  38. Yuan W., Hu Q., Cheng H., Shang W., Liu N., Hua Z., Zhu J., Hu Z., Yuan J. other authors 2013; Cell wall thickening is associated with adaptive resistance to amikacin in methicillin-resistant Staphylococcus aureus clinical isolates. J Antimicrob Chemother 68:1089–1096 [View Article][PubMed]
    [Google Scholar]
  39. Zarrilli R., Tripodi M.-F., Di Popolo A., Fortunato R., Bagattini M., Crispino M., Florio A., Triassi M., Utili R. 2005; Molecular epidemiology of high-level aminoglycoside-resistant enterococci isolated from patients in a university hospital in southern Italy. J Antimicrob Chemother 56:827–835 [View Article][PubMed]
    [Google Scholar]
  40. Zhu B. 2007; Abundance dynamics and sequence variation of neomycin phosphotransferase gene (nptII) homologs in river water. Aquat Microb Ecol 48:131–140 [View Article]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.065789-0
Loading
/content/journal/jmm/10.1099/jmm.0.065789-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error