1887

Abstract

Amino acid sequence comparisons between the capsid proteins of several human rhinovirus (HRV) serotypes identified residues potentially involved in the discrimination between the major and the minor group receptors. Amino acids conserved within minor group HRVs were substituted in a full-length cDNA clone of HRV2 for those found at equivalent positions in major group HRVs. Transfection of HeLa cells with RNAs transcribed from seven individual mutated cDNAs gave rise to only two viable viruses; growth characteristics and affinity for the minor group receptor of both were unchanged compared to wild-type. Similar mutations in HRV14 were previously shown to alter the affinity for its receptor; the contact sites between the minor group viruses and the respective receptor may therefore be different.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-74-10-2287
1993-10-01
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/jgv/74/10/JV0740102287.html?itemId=/content/journal/jgv/10.1099/0022-1317-74-10-2287&mimeType=html&fmt=ahah

References

  1. Abraham G., Colonno R. J. 1984; Many rhinovirus serotypes share the same cellular receptor. Virology 51:340–345
    [Google Scholar]
  2. Blaas D., Kuechler E., Vriend G., Arnold E., Luo M., Rossmann M. 1987; Comparison of the three dimensional structure of two human rhinoviruses (HRV2 and HRV14). Proteins 2:263–272
    [Google Scholar]
  3. Colonno R., Condra J., Mizutani S., Callahan P. L. Davies M.-E., Murcko M. A. 1988; Evidence for direct involvement of the rhinovirus canyon in receptor binding. Proceedings of the National Academy of Sciences, U,. S,. A. 85:5449–5453
    [Google Scholar]
  4. Duechler M., Skern T., Blaas D., Berger B., Sommergruber W., Kuechler E. 1989; Human rhinovirus serotype 2; in vitro synthesis of an infectious RNA. Virology 168:159–161
    [Google Scholar]
  5. Giranda V. L. Chapman M. S., Rossmann M. G. 1990; Modeling of the human intercellular adhesion molecule-1, the human rhinovirus major group receptor. Proteins 7:227–233
    [Google Scholar]
  6. Herlitze S., Koenen M. 1990; A general and rapid mutagenesis method using polymerase chain reaction. Gene 91:143–147
    [Google Scholar]
  7. Ho S. N., Hunt H. D., Horton R. M., Pullen J. K., Pease L. R. 1989; Site-directed mutagenesis by overlap extension using the polymerase chain reaction. Gene 77:51–59
    [Google Scholar]
  8. Hofer F., Berger B., Gruenberger M., Machat H., Dernick R., Tessmer U., Kuechler E., Blaas D. 1992; Shedding of a rhinovirus minor group binding protein: evidence for a Ca2+-dependent process. Journal of General Virology 73:627–632
    [Google Scholar]
  9. Kim S., Smith T. J., Chapman M. S., Rossmann M. G., Pevear D. C., Dutko F. J., Felock P. J., Diana G. D., McKinlay M. A. 1989; Crystal structure of human rhinovirus serotype 1A (HRV1A). Journal of Molecular Biology 210:91–111
    [Google Scholar]
  10. Lonberg-Holm K., Yin F. H. 1973; Antigenic determinants of infective and inactivated human rhinovirus type 2. Journal of Virology 9:29–40
    [Google Scholar]
  11. Maniatis T., Fritsch E. F., Sambrook J. 1982 Molecular CloningA Laboratory Manual New York: Cold Spring Harbor Laboratory;
    [Google Scholar]
  12. Neubauer C., Frasel L., Kuechler E., Blaas D. 1987; Mechanism of entry of human rhinovirus 2 into HeLa cells. Virology 158:255–258
    [Google Scholar]
  13. Olson N. H., Kolatkar P. R., Oliveira M. A., Cheng R. H., Greve J. M., McClelland A., Baker T. S., Rossmann M.G. 1993; Structure of a human rhinovirus complexed with its receptor molecule. Proceedings of the National Academy of Sciences, U,. S,. A. 90:507–511
    [Google Scholar]
  14. Palmenberg A. C. 1989; Sequence alignments of picornaviral capsid proteins. In Molecular Aspects of Picornavirus Infection and Detection pp 221–242 Edited by Semler B. L., Ehrenfeld E. Washington, D.C.: American Society for Microbiology;
    [Google Scholar]
  15. Rossmann M. G. 1989; The canyon hypothesis. Viral Immunology 2:143–161
    [Google Scholar]
  16. Rossmann M. G., Arnold E., Erickson J. W., Frankenberger E. A., Griffith J. P., Hecht H. -J., Johnson J. E., Kamer G., Luo M., Mosser A. M., Rueckert R. R., Sherry B. A., Vriend G. 1985; Structure of a common cold virus, human rhinovirus 14 (HRV14). Nature, London 317:145–154
    [Google Scholar]
  17. Skern T., Sommergruber W., Blaas D., Gruendler P., Fraundorfer F., Pieler C., Fogy I., Kuechler E. 1985; Human rhinovirus 2: complete nucleotide sequence and proteolytic processing signals in the capsid protein region. Nucleic Acids Research 13:2111–2126
    [Google Scholar]
  18. Skern T., Torgersen H., Auer H., Kuechler E., Blaas D. 1991; Human rhinovirus mutants stable at low pH. Virology 183:757–763
    [Google Scholar]
  19. Taylor J. W., Ott J., Eckstein F. 1989; The rapid generation of oligonucleotide-directed mutations at high frequency using phosphothioate-modified DNA. Nucleic Acids Research 13:8764–8785
    [Google Scholar]
  20. Uncapher C. R., Dewitt C. M., Colonno R. J. 1991; The major and minor group receptor families contain all but one human rhinovirus serotype. Virology 180814–817
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-74-10-2287
Loading
/content/journal/jgv/10.1099/0022-1317-74-10-2287
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error