Semin Liver Dis 2007; 27(4): 390-400
DOI: 10.1055/s-2007-991515
© Thieme Medical Publishers

Hepatic Microvasculature in Liver Injury

Laurie D. DeLeve1
  • 1Division of Gastrointestinal and Liver Diseases and the USC Research Center for Liver Diseases, University of Southern California, Keck School of Medicine, Los Angeles, California
Further Information

Publication History

Publication Date:
02 November 2007 (online)

ABSTRACT

Injury to the hepatic microvasculature, the hepatic sinusoids, manifests in several ways. The sinusoidal endothelial cells (SECs) may lose porosity and scavenger function (capillarization); SECs may loosen from their tetherings to the space of Disse or even detach completely (ischemia-reperfusion injury, early sinusoidal obstruction syndrome, peliosis hepatis, early acetaminophen toxicity); the space of Disse may be completely denuded of sinusoidal lining cells that then embolize and obstruct the sinusoid (early sinusoidal obstruction syndrome); or the sinusoid may be obstructed by fibrosis (hepatic sinusoidal fibrosis, late sinusoidal obstruction syndrome). In many of these microvascular injuries, the change to the sinusoid is a primary event that may lead to hepatocyte hypoxia with liver dysfunction and disruption of the portal circulation. With the exception of hepatic fibrosis, which will be reviewed elsewhere in this issue, each of these types of microvascular injuries will be described in this article.

REFERENCES

  • 1 Schaffner F, Popper H. Capillarization of hepatic sinusoids in man.  Gastroenterology. 1963;  44 239-242
  • 2 Horn T, Christoffersen P, Henriksen J H. Alcoholic liver injury: defenestration in noncirrhotic livers-a scanning electron microscopic study.  Hepatology. 1987;  7 77-82
  • 3 Mori T, Okanoue T, Sawa Y, Hori N, Ohta M, Kagawa K. Defenestration of the sinusoidal endothelial cell in a rat model of cirrhosis.  Hepatology. 1993;  17 891-897
  • 4 Le Couteur D G, Cogger V C, Markus A M et al.. Pseudocapillarization and associated energy limitation in the aged rat liver.  Hepatology. 2001;  33 537-543
  • 5 McLean A J, Cogger V C, Chong G C et al.. Age-related pseudocapillarization of the human liver.  J Pathol. 2003;  200 112-117
  • 6 Módis L, Martinez-Hernandez A. Hepatocytes modulate the hepatic microvascular phenotype.  Lab Invest. 1991;  65 661-670
  • 7 DeLeve L D, Wang X, Hu L, McCuskey M K, McCuskey R S. Rat liver sinusoidal endothelial cell phenotype is under paracrine and autocrine control.  Am J Physiol Gastrointest Liver Physiol. 2004;  287 G757-G763
  • 8 DeLeve L D, Wang X, Guo Y, Stolz A. Capillarization is due to the loss of paracrine and autocrine control of the sinusoidal endothelial cell (SEC) phenotype.  Hepatology. 2005;  42 266A
  • 9 Horn T, Junge J, Christoffersen P. Early alcoholic liver injury: changes of the Disse space in acinar zone 3.  Liver. 1985;  5 301-310
  • 10 Mori T, Okanoue T, Kanaoka H, Sawa Y, Kashima K. Experimental study of the reversibility of sinusoidal capillarization.  Alcohol Alcohol. 1994;  29(suppl 1) 67-74
  • 11 DeLeve L D, Wang X, Guo Y. Differentiated but not capillarized sinusoidal endothelial cells prevent transdifferentiation of stellate cells and promote reversion of myofibroblasts (MFB) to stellate cells (HSC) in vitro.  Hepatology. 2006;  44 687A
  • 12 Jarnagin W R, Rockey D C, Koteliansky V E, Wang S S, Bissell D M. Expression of variant fibronectins in wound healing: cellular source and biological activity of the EIIIA segment in rat hepatic fibrogenesis.  J Cell Biol. 1994;  127 2037-2048
  • 13 Hickey P L, Angus P W, McLean A J, Morgan D J. Oxygen supplementation restores theophylline clearance to normal in cirrhotic rats.  Gastroenterology. 1995;  108 1504-1509
  • 14 Le Couteur D G, Hickey H, Harvey P J, Gready J, McLean A J. Hepatic artery flow and propranolol metabolism in perfused cirrhotic rat liver.  J Pharmacol Exp Ther. 1999;  289 1553-1558
  • 15 Froomes P RA, Morgan D J, Smallwood R A, Angus P W. Comparative effects of oxygen supplementation on theophylline and acetaminophen clearance in human cirrhosis.  Gastroenterology. 1999;  116 915-920
  • 16 Redgrave T G. Formation of cholesteryl ester-rich particulate lipid during metabolism of chylomicrons.  J Clin Invest. 1970;  49 465-471
  • 17 Wisse E. An electron microscopic study of the fenestrated endothelial lining of the rat liver sinusoids.  J Ultrastruct Res. 1970;  31 125-150
  • 18 Naito M, Wisse E. Filtration effect of endothelial fenestrations on chylomicron transport in neonatal rat liver sinusoids.  Cell Tissue Res. 1978;  190 371-382
  • 19 Fraser R, Bosanquet A G, Day W A. Filtration of chylomicrons by the liver may influence cholesterol metabolism and atherosclerosis.  Atherosclerosis. 1978;  29 113-123
  • 20 Wisse E, De Zanger R B, Charels K, van der Smissen P, McCuskey R S. The liver sieve: considerations concerning the structure and function of endothelial fenestra, the sinusoidal wall and the space of Disse.  Hepatology. 1985;  5 683-692
  • 21 Le Couteur D G, Fraser R, Cogger V C, McLean A J. Hepatic pseudocapillarisation and atherosclerosis in ageing.  Lancet. 2002;  359 1612-1615
  • 22 Fraser R, Dobbs B R, Rogers G W. Lipoproteins and the liver sieve: the role of the fenestrated sinusoidal endothelium in lipoprotein metabolism, atherosclerosis, and cirrhosis.  Hepatology. 1995;  21 863-874
  • 23 Steinberg P, Lafranconi W M, Wolf C R, Waxman D J, Oesch F, Friedberg T. Xenobiotic metabolizing enzymes are not restricted to parenchymal cells in rat liver.  Mol Pharmacol. 1987;  32 463-470
  • 24 Steinberg P, Schlemper B, Molitor E, Platt K L, Seidel A, Oesch F. Rat liver endothelial and Kupffer cell-mediated mutagenicity of polycyclic aromatic hydrocarbons and aflatoxin B1.  Environ Health Perspect. 1990;  88 71-76
  • 25 DeLeve L D. Dacarbazine toxicity in murine liver cells: a novel model of hepatic endothelial injury and glutathione defense.  J Pharmacol Exp Ther. 1994;  268 1261-1270
  • 26 Wanless I R. Micronodular transformation (nodular regenerative hyperplasia) of the liver: a report of 64 cases among 2,500 autopsies and a new classification of benign hepatocellular nodules.  Hepatology. 1990;  11 787-797
  • 27 Haboubi N Y, Ali H H, Whitwell H L, Ackrill P. Role of endothelial cell injury in the spectrum of azathioprine-induced liver disease after renal transplant: light microscopy and ultrastructural observations.  Am J Gastroenterol. 1988;  83 256-261
  • 28 Zafrani E S, Cazier A, Baudelot A M, Feldmann G. Ultrastructural lesions of the liver in human peliosis. A report of 12 cases.  Am J Pathol. 1984;  114 349-359
  • 29 DeLeve L D. Cancer chemotherapy. In: Kaplowitz N, DeLeve LD Drug-induced Liver Disease. 2nd ed. New York; Informa Healthcare 2007: 631-666
  • 30 Arotcarena R, Cales V, Berthelemy P et al.. Severe sinusoidal lesions: a serious and overlooked complication of oxaliplatin-containing chemotherapy?.  Gastroenterol Clin Biol. 2006;  30 1313-1316
  • 31 Rubbia-Brandt L, Mentha G, Terris B. Sinusoidal obstruction syndrome is a major feature of hepatic lesions associated with oxaliplatin neoadjuvant chemotherapy for liver colorectal metastases [comment].  J Am Coll Surg. 2006;  202 199-200
  • 32 Bras G, Jeliffe D B, Stuart K L. Veno-occlusive disease of the liver with non-portal type of cirrhosis occurring in Jamaica.  Arch Pathol. 1954;  57 285-300
  • 33 Shulman H M, Fisher L B, Schoch H G, Henne K W, McDonald G B. Venoocclusive disease of the liver after marrow transplantation: histological correlates of clinical signs and symptoms.  Hepatology. 1994;  19 1171-1180
  • 34 DeLeve L D, Shulman H M, McDonald G B. Toxic injury to hepatic sinusoids: sinusoidal obstruction syndrome (venoocclusive disease).  Semin Liver Dis. 2002;  22 27-41
  • 35 Eisenhauer T, Hartmann H, Rumpf K W, Helmchen U, Scheler F, Creutzfeldt W. Favourable outcome of hepatic veno-occlusive disease in a renal transplant patient receiving azathioprine, treated by portacaval shunt. Report of a case and review of the literature.  Digestion. 1984;  30 185-190
  • 36 Katzka D A, Saul S H, Jorkasky D, Sigal H, Reynolds J C, Soloway R D. Azathioprine and hepatic venocclusive disease in renal transplant patients.  Gastroenterology. 1986;  90 446-454
  • 37 Read A E, Wiesner R H, LaBrecque D R et al.. Hepatic veno-occlusive disease associated with renal transplantation and azathioprine therapy.  Ann Intern Med. 1986;  104 651-655
  • 38 Liano F, Moreno A, Matesanz R et al.. Veno-occlusive hepatic disease of the liver in renal transplantation: is azathioprine the cause? [see comments].  Nephron. 1989;  51 509-516
  • 39 Sterneck M, Wiesner R, Ascher N et al.. Azathioprine hepatotoxicity after liver transplantation.  Hepatology. 1991;  14 806-810
  • 40 Giles F J, Kantarjian H M, Kornblau S M et al.. Mylotarg (gemtuzumab ozogamicin) therapy is associated with hepatic venoocclusive disease in patients who have not received stem cell transplantation.  Cancer. 2001;  92 406-413
  • 41 Rajvanshi P, Shulman H M, Sievers E L, McDonald G B. Hepatic sinusoidal obstruction following Gemtuzumab Ozogamicin (Mylotarg®).  Blood. 2002;  99 2310-2314
  • 42 Tornesello A, Piciacchia D, Mastrangelo S, Lasorella A, Mastrangelo R. Veno-occlusive disease of the liver in right-sided Wilms' tumours.  Eur J Cancer. 1998;  34 1220-1223
  • 43 Czauderna P, Katski K, Kowalczyk J et al.. Venoocclusive liver disease (VOD) as a complication of Wilms' tumour management in the series of consecutive 206 patients.  Eur J Pediatr Surg. 2000;  10 300-303
  • 44 Mattocks A R. Toxicity of pyrrolizidine alkaloids.  Nature. 1968;  217 723-728
  • 45 Lafranconi W M, Huxtable R J. Hepatic metabolism and pulmonary toxicity of monocrotaline using isolated perfused liver and lung.  Biochem Pharmacol. 1984;  33 2479-2484
  • 46 Mattocks A R, White I NH. The conversion of pyrrolizidine alkaloids to n-oxides and to dihydropyrrolizidine derivatives by rat-liver microsomes in vitro.  Chem Biol Interact. 1971;  3 383-396
  • 47 Hilliker K S, Garcia C M, Roth R A. Effects of monocrotaline and monocrotaline pyrrole on 5-hydroxytryptamine and paraquat uptake by lung slices.  Res Commun Chem Pathol Pharmacol. 1983;  40 179-197
  • 48 DeLeve L D, Wang X, Kuhlenkamp J F, Kaplowitz N. Toxicity of azathioprine and monocrotaline in murine sinusoidal endothelial cells and hepatocytes: the role of glutathione and relevance to hepatic venooclusive disease.  Hepatology. 1996;  23 589-599
  • 49 Hill D L. Microsomal metabolism of triazenylimidazoles.  Cancer Res. 1975;  35 3106-3110
  • 50 DeLeve L D. Cellular target of cyclophosphamide toxicity in the murine liver: role of glutathione and site of metabolic activation.  Hepatology. 1996;  24 830-837
  • 51 Kachel D L, Martin II W J. Cyclophosphamide-induced lung toxicity: mechanism of endothelial cell injury.  J Pharmacol Exp Ther. 1994;  268 42-46
  • 52 Liano F, Moreno A, Teruel J L, Lamas S, Matesanz R, Ortuno J. Hepatic veno-occlusive disease and renal transplantation. [letter].  Ann Intern Med. 1986;  105 625-626
  • 53 Lemley D E, DeLacy L M, Seeff L B, Ishak K G, Nashel D J. Azathioprine induced hepatic veno-occlusive disease in rheumatoid arthritis [see comments].  Ann Rheum Dis. 1989;  48 342-346
  • 54 Kaplowitz N. Enzymatic thiolysis of azathioprine in vitro.  Biochem Pharmacol. 1976;  25 2421-2426
  • 55 Kaplowitz N, Kuhlenkamp J F. Inhibition of hepatic metabolism of azathioprine in vivo.  Gastroenterology. 1978;  74 90-92
  • 56 DeLeve L D, McCuskey R S, Wang X et al.. Characterization of a reproducible rat model of hepatic veno-occlusive disease.  Hepatology. 1999;  29 1779-1791
  • 57 DeLeve L D, Ito I, Bethea N W, McCuskey M K, Wang X, McCuskey R S. Embolization by sinusoidal lining cell obstructs the microcirculation in rat sinusoidal obstruction syndrome.  Am J Physiol Gastrointest Liver Physiol. 2003;  284 G1045-G1052
  • 58 DeLeve L D, Wang X, Tsai J, Kanel G C, Strasberg S M, Tokes Z A. Prevention of sinusoidal obstruction syndrome (hepatic venoocclusive disease) in the rat by matrix metalloproteinase inhibitors.  Gastroenterology. 2003;  125 882-890
  • 59 Lamé M W, Jones A D, Wilson D W, Dunston S K, Segall H J. Protein targets of monocrotaline pyrrole in pulmonary artery endothelial cells.  J Biol Chem. 2000;  275 29091-29099
  • 60 Werb Z, Hembry R M, Murphy G, Aggeler J. Commitment to expression of the metalloendopeptidases, collagenase and stromelysin: relationship of inducing events to changes in cytoskeletal architecture.  J Cell Biol. 1986;  102 697-702
  • 61 Allenberg M, Weinstein T, Li I, Silverman M. Activation of procollagenase IV by cytochalasin D and concanavalin A in cultured rat mesangial cells: linkage to cytoskeletal reorganization.  J Am Soc Nephrol. 1994;  4 1760-1770
  • 62 MacDougall J R, Kerbel R S. Constitutive production of 92-kDa gelatinase B can be suppressed by alterations in cell shape.  Exp Cell Res. 1995;  218 508-515
  • 63 DeLeve L D, Wang X, Kanel G C et al.. Decreased hepatic nitric oxide production contributes to the development of rat sinusoidal obstruction syndrome.  Hepatology. 2003;  38 900-908
  • 64 Harb R, Lutzko C, Guo Y et al.. Origin of sinusoidal endothelial cells (SEC) and role of SEC precursors in the outcome of hepatic sinusoidal obstruction syndrome (SOS/VOD).  Gastroenterology. 2005;  128 A696
  • 65 Hillaire S, Bonte E, Denninger M H et al.. Idiopathic non-cirrhotic intrahepatic portal hypertension in the West: a re-evaluation in 28 patients.  Gut. 2002;  51 275-280
  • 66 Ibarrola C, Colina F. Clinicopathological features of nine cases of non-cirrhotic portal hypertension: current definitions and criteria are inadequate.  Histopathology. 2003;  42 251-264
  • 67 Nakanuma Y, Hoso M, Sasaki M et al.. Histopathology of the liver in non-cirrhotic portal hypertension of unknown aetiology.  Histopathology. 1996;  28 195-204
  • 68 Shedlofsky S, Koehler R E, DeSchryver-Kecskemeti K, Alpers D H. Noncirrhotic nodular transformation of the liver with portal hypertension: clinical, angiographic, and pathological correlation.  Gastroenterology. 1980;  79 938-943
  • 69 Arvanitaki M, Adler M. Nodular regenerative hyperplasia of the liver. A review of 14 cases.  Hepatogastroenterology. 2001;  48 1425-1429
  • 70 Nakanuma Y. Nodular regenerative hyperplasia of the liver: retrospective survey in autopsy series.  J Clin Gastroenterol. 1990;  12 460-465
  • 71 Grazioli L, Alberti D, Olivetti L et al.. Congenital absence of portal vein with nodular regenerative hyperplasia of the liver.  Eur Radiol. 2000;  10 820-825
  • 72 Vora A, Mitchell C D, Lennard L et al.. Toxicity and efficacy of 6-thioguanine versus 6-mercaptopurine in childhood lymphoblastic leukaemia: a randomised trial.  Lancet. 2006;  368 1339-1348
  • 73 Galdeano S, Drug R. Nodular regenerative hyperplasia of fetal liver: a report of two cases.  Pediatr Pathol. 1991;  11 479-85
  • 74 Iber F L. Obliterative portal venopathy of the liver and “idiopathic portal hypertension”.  Ann Intern Med. 1969;  71 660-661
  • 75 Wanless I R, Godwin T A, Allen F, Feder A. Nodular regenerative hyperplasia of the liver in hematologic disorders: a possible response to obliterative portal venopathy. A morphometric study of nine cases with an hypothesis on the pathogenesis.  Medicine. 1980;  59 367-379
  • 76 Shimamatsu K, Wanless I R. Role of ischemia in causing apoptosis, atrophy, and nodular hyperplasia in human liver.  Hepatology. 1997;  26 343-350
  • 77 Bioulac-Sage P, Dubuisson L, Bedin C et al.. Nodular regenerative hyperplasia in the rat induced by a selenium-enriched diet: study of a model.  Hepatology. 1992;  16 418-425
  • 78 Maione D, Di Carlo E, Li W et al.. Coexpression of IL-6 and soluble IL-6R causes nodular regenerative hyperplasia and adenomas of the liver.  EMBO J. 1998;  17 5588-5597
  • 79 Croquelois A, Blindenbacher A, Terracciano L et al.. Inducible inactivation of Notch1 causes nodular regenerative hyperplasia in mice.  Hepatology. 2005;  41 487-496
  • 80 McEntee M F, Wright K N, Wanless I, DeVovo R, Schneider J F, Shull R. Noncirrhotic portal hypertension and nodular regenerative hyperplasia of the liver in dogs with mucopolysaccharidosis type I.  Hepatology. 1998;  28 385-390
  • 81 Fonseca V, Havard C W. Portal hypertension secondary to azathioprine in myasthenia gravis.  Postgrad Med J. 1988;  64 950-952
  • 82 Gane E, Portmann B, Saxena R, Wong P, Ramage J, Williams R. Nodular regenerative hyperplasia of the liver graft after liver transplantation.  Hepatology. 1994;  20 88-94
  • 83 Mion F, Napoleon B, Berger F, Chevallier M, Bonvoisin S, Descos L. Azathioprine induced liver disease: nodular regenerative hyperplasia of the liver and perivenous fibrosis in a patient treated for multiple sclerosis.  Gut. 1991;  32 715-717
  • 84 Russmann S, Zimmermann A, Krahenbuhl S, Kern B, Reichen J. Veno-occlusive disease, nodular regenerative hyperplasia and hepatocellular carcinoma after azathioprine treatment in a patient with ulcerative colitis.  Eur J Gastroenterol Hepatol. 2001;  13 287-290
  • 85 Vora A, Mitchell C D, Lennard L et al.. Toxicity and efficacy of 6-thioguanine versus 6-mercaptopurine in childhood lymphoblastic leukaemia: a randomised trial. [see comment].  Lancet. 2006;  368 1339-1348
  • 86 Dubinsky M C, Vasiliauskas E A, Singh H et al.. 6-thioguanine can cause serious liver injury in inflammatory bowel disease patients.  Gastroenterology. 2003;  125 298-303
  • 87 Snover D C, Weisdorf S, Bloomer J, McGlave P, Weisdorf D. Nodular regenerative hyperplasia of the liver following bone marrow transplantation.  Hepatology. 1989;  9 443-448
  • 88 Dubois A, Dauzat M, Pignodel C et al.. Portal hypertension in lymphoproliferative and myeloproliferative disorders: hemodynamic and histological correlations.  Hepatology. 1993;  17 246-250
  • 89 Lorenz R, Brauer M, Classen M, Tornieporth N, Becker K. Idiopathic portal hypertension in a renal transplant patient after long-term azathioprine therapy.  Clin Investig. 1992;  70 152-155
  • 90 Tzirogiannis K N, Papadimas G K, Kondyli V G et al.. Peliosis hepatis: microscopic and macroscopic type, time pattern, and correlation with liver cell apoptosis in a model of toxic liver injury.  Dig Dis Sci. 2006;  51 1998-2006
  • 91 Leong S S, Cazen R A, Yu G S, LeFevre L, Carson J W. Abdominal visceral peliosis associated with bacillary angiomatosis. Ultrastructural evidence of endothelial destruction by bacilli.  Arch Pathol Lab Med. 1992;  116 866-871
  • 92 Scoazec J Y, Marche C, Girard P M et al.. Peliosis hepatis and sinusoidal dilation during infection by the human immunodeficiency virus (HIV). An ultrastructural study.  Am J Pathol. 1988;  131 38-47
  • 93 Goerdt S, Sorg C. Endothelial heterogeneity and the acquired immunodeficiency syndrome: a paradigm for the pathogenesis of vascular disorders.  Clin Investig. 1992;  70 89-98
  • 94 Rose P G. Paracetamol overdose and liver damage.  BMJ. 1969;  1 381-382
  • 95 Thompson R PH, Clark R, Wilson R A et al.. Hepatic damage from overdose of paracetamol.  Gut. 1972;  13 836
  • 96 Zimmerman H J. Effects of aspirin and acetaminophen on the liver.  Arch Intern Med. 1981;  141 333-342
  • 97 Klatskin G, Conn H O. Histopathology of the Liver. New York; Oxford University Press 1993
  • 98 Zimmerman H J. Syndromes of environmental hepatotoxins. Hepatotoxicity- the adverse effect of drugs and other chemicals on the liver. New York; Appleton-Century-Crofts 1978: 279-302
  • 99 Dixon M F, Nimmo J, Prescott L F. Experimental paracetamol-induced hepatic necrosis: a histopathological study.  J Pathol. 1971;  103 225-229
  • 100 Dixon M F, Dixon B, Aparicio S R, Loney D P. Experimental paracetamol-induced hepatic necrosis: a light- and electron-microscope, and histochemical study.  J Pathol. 1975;  116 17-29
  • 101 Miller D J, Pichanick G G, Fiskerstrand C, Saunders S. Hepatic erythrocyte sequestration as a cause of acute anaemia.  Am J Dig Dis. 1977;  22 1055-1059
  • 102 Chiu S, Bhakthan N MG. Experimental acetaminophen-induced hepatic necrosis: biochemical and electron microscopic study of cyteamine protection.  Lab Invest. 1978;  39 193-203
  • 103 Walker R M, Massey T E, McElligott T F, Racz W J. Acetaminophen-induced hypothermia, hepatic congestion, and modification by N-acetylcysteine in mice.  Toxicol Appl Pharmacol. 1981;  59 500-507
  • 104 Walker R M, Racz W J, McElligott T F. Acetaminophen-induced hepatotoxic congestion in mice.  Hepatology. 1985;  5 233-240
  • 105 Walker R M, Racz W J, McElligott T F. Scanning electron microscopic examination of acetaminophen-induced hepatotoxicity and congestion in mice.  Am J Pathol. 1983;  113 321-330
  • 106 Ito Y, Bethea N W, Abril E R, McCuskey R S. Early hepatic microvascular injury in response to acetaminophen toxicity.  Microcirculation. 2003;  10 391-400
  • 107 DeLeve L D, Wang X, Kaplowitz N, Shulman H M, Bart J A, van der Hoek A. Sinusoidal endothelial cells as a target for acetaminophen toxicity: direct action versus requirement for hepatocyte activation in different mouse strains.  Biochem Pharmacol. 1997;  53 1339-1345
  • 108 Liu J, Waalkes M P, Clark J, Myers P, Saavedra J E, Keefer L K. The nitric oxide donor, V-PYRRO/NO, protects against acetaminophen-induced hepatotoxicity in mice.  Hepatology. 2003;  37 324-333
  • 109 Ito Y, Abril E R, Bethea N W, McCuskey R S. Role of nitric oxide in hepatic microvascular injury elicited by acetaminophen in mice.  Am J Physiol Gastrointest Liver Physiol. 2004;  286 G60-G67
  • 110 Ito Y, Abril E R, Bethea N W, McCuskey R S. Inhibition of matrix metalloproteinases minimizes hepatic microvascular injury in response to acetaminophen in mice.  Toxicol Sci. 2005;  83 190-196
  • 111 Caldwell-Kenkel J C, Thurman R G, Lemasters J J. Selective loss of nonparenchymal cell viability after cold ischemic storage of rat livers.  Transplantation. 1988;  45 834-837
  • 112 McKeown C MB, Edwards V, Phillips M J, Harvey P RC, Petrunka C N, Strasberg S M. Sinusoidal lining cell damage: the critical injury in cold preservation of liver allografts in the rat.  Transplantation. 1988;  46 178-191
  • 113 Caldwell-Kenkel J C, Currin R T, Tanaka Y, Thurman R G, Lemasters J J. Reperfusion injury to endothelial cells following cold ischemic storage of rat livers.  Hepatology. 1989;  10 292-299
  • 114 Imamura H, Brault A, Huet P M. Effects of extended cold preservation and transplantation on the rat liver microcirculation.  Hepatology. 1997;  25 664-671
  • 115 Aguilar H I, Steers J L, Wiesner R H, Krom R A, Gores G J. Enhanced liver calpain protease activity is a risk factor for dysfunction of human liver allografts.  Transplantation. 1997;  63 612-614
  • 116 Kohli V, Gao W, Camargo Jr C A, Clavien P A. Calpain is a mediator of preservation-reperfusion injury in rat liver transplantation.  Proc Natl Acad Sci U S A. 1997;  94 9354-9359
  • 117 Upadhya A G, Topp S A, Hotchkiss R S, Anagli J, Strasberg S M. Effect of cold preservation on intracellular calcium concentration and calpain activity in rat sinusoidal endothelial cells.  Hepatology. 2003;  37 313-323
  • 118 Upadhya A G, Strasberg S M. Evidence that actin disassembly is a requirement for matrix metalloproteinase secretion by sinusoidal endothelial cells during cold preservation in the rat.  Hepatology. 1999;  30 169-176
  • 119 Upadhya A G, Harvey R P, Howard T K, Lowell J A, Shenoy S, Strasberg S M. Evidence of a role for matrix metalloproteinases in cold preservation injury of the liver in humans and in the rat.  Hepatology. 1997;  26 922-928
  • 120 Cottart C H, Do L, Blanc M C et al.. Hepatoprotective effect of endogenous nitric oxide during ischemia-reperfusion in the rat.  Hepatology. 1999;  29 809-813
  • 121 Morisue A, Wakabayashi G, Shimazu M et al.. The role of nitric oxide after a short period of liver ischemia-reperfusion.  J Surg Res. 2003;  109 101-109
  • 122 Serracino-Inglott F, Virlos I T, Habib N A, Williamson R C, Mathie R T. Differential nitric oxide synthase expression during hepatic ischemia-reperfusion.  Am J Surg. 2003;  185 589-595
  • 123 Upadhya G A, Strasberg S M. Platelet adherence to isolated rat hepatic sinusoidal endothelial cells after cold preservation.  Transplantation. 2002;  73 1764-1770
  • 124 Sindram D, Porte R J, Hoffman M R, Bentley R C, Clavien P A. Synergism between platelets and leukocytes in inducing endothelial cell apoptosis in the cold ischemic rat liver: a Kupffer cell-mediated injury.  FASEB J. 2001;  15 1230-1232
  • 125 Lasnier E, Blanc M C, Housset C, Rey C, Roch-Arveiller M, Vaubourdolle M. Cytotoxic response of sinusoidal endothelial cells to polymorphonuclear leukocytes and its potential implication in hypoxia-reoxygenation injury.  Liver. 2002;  22 495-500
  • 126 Man K, Lo C M, Ng I O et al.. Liver transplantation in rats using small-for-size grafts: a study of hemodynamic and morphological changes.  Arch Surg. 2001;  136 280-285
  • 127 Man K, Fan S T, Lo C M et al.. Graft injury in relation to graft size in right lobe live donor liver transplantation: a study of hepatic sinusoidal injury in correlation with portal hemodynamics and intragraft gene expression.  Ann Surg. 2003;  237 256-264
  • 128 Demetris A J, Kelly D M, Eghtesad B et al.. Pathophysiologic observations and histopathologic recognition of the portal hyperperfusion or small-for-size syndrome.  Am J Surg Pathol. 2006;  30 986-993

Laurie D DeLeveM.D. Ph.D. 

Division of Gastrointestinal and Liver Diseases and the USC Research Center for Liver Diseases, University of Southern California, Keck School of Medicine

2011 Zonal Avenue, HMR 603A, Los Angeles CA 90033

Email: deleve@usc.edu

    >