Sleep Breath 2002; 06(4): 205-210
DOI: 10.1055/s-2002-36531
EMERGING RESEARCH

Copyright © 2002 by Thieme Medical Publishers, Inc., 333 Seventh Avenue, New York, NY 10001, USA. Tel.: +1(212) 584-4662

Neonatal Intermittent Hypoxia Impairs Dopamine Signaling and Executive Functioning

Michael J. Decker, David B. Rye
  • Department of Neurology, Emory University School of Medicine, Atlanta, Georgia
Further Information

Publication History

Publication Date:
13 January 2003 (online)

ABSTRACT

Mesotelencephalic dopamine (DA) pathways are exquisitely vulnerable to ischemic-anoxic insult. These insults are known to produce long-term derangements in DA signaling and have been hypothesized to contribute, at least in part, to pathologic behaviors such as cerebral palsy, schizophrenia, and attention deficit hyperactivity disorder (ADHD). Whether modest intermittent hypoxia, such as that encountered with repetitive apneas in premature infants, contributes to clinically significant impairments in DA signaling, and how these impairments manifest at a systems level, is unknown. To address these voids there is a need to develop animal models emulating features of a common disorder of prematurity, namely, apnea with hypoxia. Behavioral traits exhibited by such models include disturbed sleep-wake architecture, excessive locomotion, and impaired working memory persisting 1 to 2 months post-insult. Western-blot analysis of expression patterns of proteins involved in DA signaling (e.g., DA and vesicular monoamine transporters, tyrosine hydroxylase, and D1 receptors) are consistent with that which might be expected from hyper- or hypodopaminergic functioning in DA-responsive prefrontal cortex and striatal circuits, respectively. These novel observations suggest that intermittent hypoxia occurring during a period of critical brain development disrupts development of those mesotelencephalic pathways modulating the expression of sleep and wakefulness, locomotion, and executive functioning.

REFERENCES

  • 1 Tuor U I, Del Bigio R M, Chumas P D. Brain damage due to cerebral hypoxia/ischemia in the neonate: pathology and pharmacological modification.  Cerebrovasc Brain Metab Rev . 1996;  8 159-193
  • 2 Nyakas C, Buwalda B, Luiten P G. Hypoxia and brain development [review].  Prog Neurobiol . 1996;  49 1-51
  • 3 Poets C F, Southall D P. Patterns of oxygenation during periodic breathing in preterm infants.  Early Hum Dev . 1991;  26 1-12
  • 4 Poets C F, Samuels M P, Southall D P. Epidemiology and pathophysiology of apnoea of prematurity.  Biol Neonate . 1994;  65 211-219
  • 5 Henderson-Smart D J. The effect of gestational age on the incidence and duration of recurrent apnea in newborn babies.  Aust Paediatr J . 1981;  125 273-276
  • 6 Sychowski P, Thomas P, Peabody J, Clark R. Home apnea monitor use in preterm infants discharged from newborn intensive care units.  J Pediatr . 2001;  139 245-248
  • 7 Burke R E, Macaya A, DeVivo D, Kenyon N, Janec E. Neonatal hypoxic-ischemic or excitotoxic striatal injury results in a decreased adult number of substantia nigra neurons.  Neuroscience . 1992;  50 559-569
  • 8 Oo T F, Henchcliffe C, Burke R E. Apoptosis in substantia nigra following developmental hypoxic-ischemic injury.  Neuroscience . 1995;  69 893-901
  • 9 Adair J, Filloux F. Effects of hypoxic-ischemic brain damage on dopaminergic markers in the neonatal rat: a regional autoradiographic analysis.  J Child Neurol . 1992;  7 199-207
  • 10 Zouakia A, Guilloteau D, Zimmer L, Besnard J C, Chalon S. Evolution of dopamine receptors in the rat after neonatal hypoxia-ischemia: autoradiographic studies.  Life Sci . 1997;  60 151-162
  • 11 Johnson M, Hanson G R, Gibb J W, Adair J, Filloux F. Effect of neonatal hypoxia-ischemia on nigro-striatal dopamine receptors and on striatal neuropeptide Y, dynorphin A and substance P concentrations in rats.  Brain Res Dev Brain Res . 1994;  83 109-118
  • 12 Lemasters J J, Nieminen A L, Qian T, Trost L C, Herman B. The mitochondrial permeability transition in toxic, hypoxic and reperfusion injury.  Mol Cell Biochem . 1997;  174 159-165
  • 13 Budd S L. Mechanisms of neuronal damage in brain hypoxia/ischemia: focus on the role of mitochondrial calcium accumulation.  Pharmacol Ther . 1998;  80 203-229
  • 14 Puka-Sundvall M, Wallin C, Gilland E. Impairment of mitochondrial respiration after cerebral hypoxia-ischemia in immature rats: relationship to activation of caspase-3 and neuronal injury.  Brain Res Dev Brain Res . 2000;  125 43-50
  • 15 Ungethum U, Chen Y, Gross J. Effects of perinatal asphyxia on the mesostriatal/mesolimbic dopamine system of neonatal and 4-week-old male rats.  Exp Brain Res . 1996;  112 403-410
  • 16 Gross J, Muller I, Chen Y. Perinatal asphyxia induces region-specific long-term changes in mRNA levels of tyrosine hydroxylase and dopamine D1 and D2 receptors in rat brain.  Mol Brain Res . 2000;  79 110-117
  • 17 Chen Y, Hillefors-Berglund M, Herrera-Marschitz M. Perinatal asphyxia induces long-term changes in dopamine D1, D2, and D3 receptor binding in the rat brain.  Exp Neurol . 1997;  146 74-80
  • 18 Brake W G, Sullivan R M, Gratton A. Perinatal distress leads to lateralized medial prefrontal cortical dopamine hypofunction in adult rats.  J Neurosci . 2000;  20 5538-5543
  • 19 Hue G E, Decker M J, Rye D B. Learning and Memory is Impaired in Juvenile Rats Exposed to Intermittent Hypoxia as Neonates. Society for Neuroscience Vol 27, Program Number 315.16 2001
  • 20 Decker M J, Hue G E, Feng P F, Rye D B. Diminished Wakefulness and Locomotor Hyperactivity in Juvenile Rats Exposed to Intermittent Hypoxia as Neonates. Society for Neuroscience Vol 27, Program Number 845.7 2001
  • 21 Decker M J, Caudle W M, Hue G E, Miller G W, Rye D B. Neonatal intermittent hypoxia induces hypodopaminergic activity in the striatum, decreased wakefulness, hyperactivity, and working memory impairment.  Sleep . 2002;  25 486J
  • 22 Rye D B, Bliwise D L, Dihenia B, Gurecki P. FAST TRACK: daytime sleepiness in Parkinson's disease.  J Sleep Res . 2000;  9 63-69
  • 23 Daley J, Turner R, Bliwise D, Rye D. Nocturnal sleep and daytime alertness in the MPTP-treated primate.  Sleep Res . 1999;  22(suppl.) B358A
  • 24 Wisor J N S P, Sora I, Uhl G E, Mignot E, Edgar D M. Dopaminergic role in stimulant-induced wakefulness.  J Neurosci . 2001;  21 1787-1794
  • 25 Olton D S, Samuelson R J. Remembrance of places passed: spatial memory in rats.  J Exp Psychol: Anim Behav Processes . 1976;  2 97-116
  • 26 Vaidya C J, Austin G, Kirkorian G. Selective effects of methylphenidate in attention deficit hyperactivity disorder: a functional magnetic resonance study.  Proc Nat Acad Sci . 1998;  95 14494-14499
  • 27 Rubia K, Overmeyer S, Taylor E. Hypofrontality in attention deficit hyperactivity disorder during higher-order motor control: a study with functional MRI.  Am J Psychiatry . 1999;  156 891-896
  • 28 Coull J T. Neural correlates of attention and arousal: insights from electrophysiology, functional neuroimaging and psychopharmacology.  Prog Neurobiol . 1998;  55 343-361
  • 29 Toft P B. Prenatal and perinatal striatal injury: a hypothetical cause of attention-deficit-hyperactivity disorder [review]?.  Pediatric Neurol . 1999;  21 602-610
  • 30 Braver T S, Barch D M, Cohen J D. Cognition and control in schizophrenia: a computational model of dopamine and prefrontal function.  Biol Psychiatry . 1999;  46 312-328
  • 31 Diamond A. Evidence for the importance of dopamine for prefrontal cortex functions early in life.  Philos Trans R Soc Lond B Biol Sci . 1996;  351 1483-1494
  • 32 Ascher J A, Cole J O, Colin J N. Bupropion: a review of its mechanism of antidepressant activity.  J Clin Psychiatry . 1995;  56 395-401
  • 33 Matsumoto N, Hanakawa T, Maki S, Graybiel A M, Kimura M. Role of [corrected] nigrostriatal dopamine system in learning to perform sequential motor tasks in a predictive manner [published erratum appears in J Neurophysiol 1999;82:13].  J Neurophysiol . 1999;  82 978-998
  • 34 Heilman K M, Voeller K K, Nadeau S E. A possible pathophysiologic substrate of attention deficit hyperactivity disorder.  J Child Neurol . 1991;  6(suppl) S76-S81
  • 35 Gainetdinov R R, Caron M G. An animal model of attention deficit hyperactivity disorder.  Mol Med Today . 2000;  6 43-44
  • 36 Zhuang X, Oosting R S, Jones S R, Gainetdinov R R, Miller G W, Caron M G. Hyperactivity and impaired response habituation in hyperdopaminergic mice.  Proc Natl Acad Sci USA . 2001;  98 1982-1987
  • 37 Parent A, Lavoie B, Smith Y, Bedard P. The dopaminergic nigropallidal projection in primates: distinct cellular origin and relative sparing in MPTP-treated monkeys.  Adv Neurol . 1990;  53 111-116
  • 38 Chiueh C C, Rauhala P. Free radicals and MPTP-induced selective destruction of substantia nigra compacta neurons.  Adv Pharmacol . 1998;  42 796-800
  • 39 Lou H C, Henriksen L, Bruhn P, Borner H, Nielsen J B. Striatal dysfunction in attention deficit and hyperkinetic disorder.  Arch Neurol . 1989;  46 48-52
  • 40 Pack A I, Black J E, Schwartz J R, Matheson J K. Modafinil as an adjunct therapy for daytime sleepiness in obstructive sleep apnea.  Am J Respir Crit Care Med . 2001;  164 1675-1681
    >