Semin Thromb Hemost 2000; Volume 26(Number 03): 227-232
DOI: 10.1055/s-2000-8467
Copyright © 2000 by Thieme Medical Publishers, Inc., 333 Seventh Avenue, New York, NY 10001, USA. Tel.: +1(212) 584-4662

Consequences of Homocysteine Export and Oxidation in the Vascular System

HENK. J. BLOM
  • Department of Pediatrics, University Hospital Nijmegen, Nijmegen, The Netherlands
Further Information

Publication History

Publication Date:
31 December 2000 (online)

ABSTRACT

The risk for arteriosclerosis and thrombosis of patients with severe hyperhomocysteinemia is reduced by homocysteine-lowering therapy. Whether this is the case in patients with mild hyperhomocysteinemia remains to be proved. Another challenge for researchers is to establish a satisfying pathological mechanism of the vasotoxicity of a disturbed homocysteine metabolism. Unfortunately, most in vitro studies use physiologically irrelevant concentrations or forms, or both, of homocysteine. The role of the different oxidized and reduced forms of homocysteine in its metabolism has gained little attention.

In the cell, homocysteine is mainly present in its reduced form. In this article export of homocysteine out of the cell is reported to be regulated by a ``reduced-homocysteine carrier.'' In vitro endothelial cells export homocysteine at a constant rate in a folate dose-dependent matter. Even at high-normal folate levels, endothelial cells export homocysteine. As soon as homocysteine is exported out of the cell, it will be oxidized to a disulfide with any compound containing a thiol function or undergo a disulfide exchange reaction, both resulting in formation of disulfides of homocysteine. Consequently, in plasma, about 99% of homocysteine is bound to disulfides. Before homocysteine can be metabolized, it needs to be taken up by the cell via carriers, channels, or receptors recognizing the different homocysteine disulfides. In the cell, the homocysteine disulfides are reduced, liberating homocysteine in its reduced form. Next, homocysteine can be metabolized after binding to the homocysteine-converting enzymes. In particular, the liver and kidney supposedly take up and metabolize significant amounts of homocysteine.

REFERENCES

  • 1 Mudd S H, Skovby F, Levy H L. The natural history of homocystinuria due to cystathionine beta-synthase deficiency.  Am J Hum Genet . 1985;  37 1-31
  • 2 McCully K S. Vascular pathology of homocysteinemia: Implications for the pathogenesis of arteriosclerosis.  Am J Pathol . 1969;  56 111-128
  • 3 Boushey C J, Beresford S A, Omenn G S, Motulsky A G. A quantitative assessment of plasma homocysteine as a risk factor for vascular disease.  Probable benefits of increasing folic acid intakes. JAMA . 1995;  274 1049-1057
  • 4 Refsum H, Ueland P M, Nygard O, Vollset S E. Homocysteine and cardiovascular disease.  Annu Rev Med . 1998;  49 31-62
  • 5 den Heijer M, Koster T, Blom H J. Hyperhomocysteinemia as a risk factor for deep-vein thrombosis.  N Engl J Med . 1996;  334 759-762
  • 6 den Heijer M, Blom H J, Gerrits W B. Is hyperhomocysteinaemia a risk factor for recurrent venous thrombosis?.  Lancet . 1995;  345 882-885
  • 7 Graham I M, Daly L E, Refsum H M. Plasma homocysteine as a risk factor for vascular disease: The European Concerted Action Project.  JAMA . 1997;  277 1775-1781
  • 8 Kluijtmans L A, Boers G H, Verbruggen B. Homozygous cystathionine beta-synthase deficiency, combined with factor V Leiden or thermolabile methylenetetrahydrofolate reductase in the risk of venous thrombosis.  Blood . 1998;  91 2015-2018
  • 9 Willems H PI, Gerrits W BJ, Rozendaal F R. The VITRO trial: Study design.  Neth J Med . 1998;  52 S43
  • 10 Welch G N, Loscalzo J. Homocysteine and atherothrombosis.  N Engl J Med . 1998;  338 1042-1050
  • 11 Blom H J, van der Molen E F. Pathobiochemical implications of hyperhomocysteinemia.  Fibrinolysis . 1994;  8 86-87
  • 12 Banerjee R V, Matthews R G. Cobalamin-dependent methionine synthase.  FASEB J . 1990;  4 1450-1459
  • 13 Finkelstein J D. The metabolism of homocysteine: pathways and regulation.  Eur J Pediatr . 1998;  S40-44 (S40-44)
  • 14 Vandermolen E F, Hiipakka M J, Vanlithzanders H. Homocysteine metabolism in endothelial cells of a patient homozygous for cystathionine beta-synthase (CS) deficiency.  Thromb Haemost . 1997;  78 827-833
  • 15 Christensen B, Refsum H, Vintermyr O, Ueland P M. Homocysteine export from cells cultured in the presence of physiological or superfluous levels of methionine: Methionine loading of non-transformed, transformed, proliferating, and quiescent cells in culture.  J Cell Physiol . 1991;  146 52-62
  • 16 van der Molen E F, van den Heuvel L P, te Poele Pothoff M T. The effect of folic acid on the homocysteine metabolism in human umbilical vein endothelial cells (HUVECs).  Eur J Clin Invest . 1996;  26 304-309
  • 17 Christensen B, Refsum H, Garras A, Ueland P M. Homocysteine remethylation during nitrous oxide exposure of cells cultured in media containing various concentrations of folates.  J Pharmacol Exp Ther . 1992;  261 1096-1105
  • 18 Refsum H, Guttormsen A B, Fiskerstrand T, Ueland P M. Hyperhomocysteinemia in terms of steady-state kinetics.  Eur J Pediatr . 1998;  S45-S49 (S45-S49)
  • 19 Ueland P M, Refsum H, Stabler S P. Total homocysteine in plasma or serum: Methods and clinical applications.  Clin Chem . 1993;  39 1764-1779
  • 20 Willems H P, Bos G M, Gerrits W B. Acidic citrate stabilizes blood samples for assay of total homocysteine.  Clin Chem . 1998;  44 342-345
  • 21 Ueland P M. Homocysteine species as components of plasma redox thiol status.  Clin Chem . 1995;  41 340-342
  • 22 Andersson A, Lindgren A, Hultberg B. Effect of thiol oxidation and thiol export from erythrocytes on determination of redox status of homocysteine and other thiols in plasma from healthy subjects and patients with cerebral infarction.  Clin Chem . 1995;  41 361-366
  • 23 Hultberg B, Andersson A, Arnadottir M. Reduced, free and total fractions of homocysteine and other thiol compounds in plasma from patients with renal failure.  Nephron . 1995;  70 62-67
  • 24 Mansoor M A, Guttormsen A B, Fiskerstrand T. Redox status and protein binding of plasma aminothiols during the transient hyperhomocysteinemia that follows homocysteine administration.  Clin Chem . 1993;  39 980-985
  • 25 Ueland P M, Mansoor M A, Guttormsen A B. Reduced, oxidized and protein-bound forms of homocysteine and other aminothiols in plasma comprise the redox thiol status-a possible element of the extracellular antioxidant defense system.  J Nutr . 1996;  126 1281S-1284S
  • 26 Svardal A, Refsum H, Ueland P M. Determination of in vivo protein binding of homocysteine and its relation to free homocysteine in the liver and other tissues of the rat.  J Biol Chem . 1986;  261 3156-3163.
    >