Aktuelle Neurologie 2014; 41(05): 294-302
DOI: 10.1055/s-0034-1370092
Übersicht
© Georg Thieme Verlag KG Stuttgart · New York

Motorische Rehabilitation von degenerativen Kleinhirnerkrankungen

Motor Rehabilitation of Degenerative Cerebellar Disorders
M. Küper
1   Klinik und Poliklinik für Neurologie, Universitätsklinikum Essen
2   Klinik für Neurologie und klinische Neurophysiologie, Klinikum Vest, Recklinghausen
› Author Affiliations
Further Information

Publication History

Publication Date:
18 June 2014 (online)

Zusammenfassung

Unter dem Begriff der Ataxien werden degenerative Erkrankungen des Kleinhirns und seiner Verbindungsbahnen, z. B. der afferenten Ataxie durch Affektion des Hinterstrangs, zusammengefasst. Ataxie bezeichnet auch das Leitsymptom von Kleinhirnerkrankungen. Während sich Symptome im Rahmen von fokalen Kleinhirnerkrankungen häufig gut rückbilden, führen degenerative Erkrankungen in der Regel zu fortschreitenden Bewegungsstörungen. Der Ataxieverlauf kann durch klinische Skalen dokumentiert werden. Am häufigsten wird die gut validierte „Scale for the Assessment and Rating of Ataxia“ (SARA) eingesetzt, aber auch die ältere „International Cooperative Ataxia Rating Scale“ (ICARS) kommt weiterhin zur Anwendung. Da nur bei einigen seltenen degenerativen Kleinhirnerkrankungen wirksame Medikamente verfügbar sind, stehen rehabilitative Maßnahmen im Mittelpunkt der Therapie. Erste kontrollierte klinische Studien konnten in den letzten Jahren positive Effekte der Physiotherapie belegen. Logopädie, Ergotherapie und Hilfsmittel werden ergänzend angewendet. Evidenzbasierte Leitlinien für die Physiotherapie der zerebellären Ataxie fehlen bislang. Eine wichtige offene Fragestellung ist, welche Art des Trainings welchem Patienten am besten hilft. Außerdem ist unklar, inwieweit Patienten mit degenerativen Erkrankungen langfristig von Physiotherapie profitieren und welchen Umfang das Training mindestens haben sollte. Im experimentellen Stadium befinden sich invasive und nicht invasive Neurostimulationsverfahren. Bildgebende Verfahren sind hilfreich, um die dem Trainingserfolg zugrunde liegenden Mechanismen besser zu verstehen, und könnten zukünftig neben den klinischen Skalen als Verlaufsparameter in Therapiestudien wichtig werden.

Abstract

The term ataxia comprises degenerative diseases of the cerebellum and its connections. Ataxia also denotes the clinically leading symptoms of cerebellar disorders. While focal cerebellar lesions tend to recover well, degenerative disorders normally lead to progressive disability. The natural history of ataxias can be documented by clinical scales. The „Scale for the Assessment and Rating of Ataxia“ (SARA) is well validated and most frequently used but the older „International Cooperative Ataxia Rating Scale“ (ICARS) is still applied as well. As there are only few rare cerebellar disorders treatable pharmacologically, rehabilitative treatments are a key aspect of therapy. First controlled clinical trials demonstrated positive effects of physiotherapy in recent years. Speech therapy, occupational therapy and supportive devices are used concomitantly. Evidence based guidelines for physiotherapy of cerebellar ataxia are lacking so far. One open question is which patient benefits best of which kind of training. Furthermore it is not clear, whether long-term physiotherapy is effective for patients with degenerative disease and what amount of training time is minimally required. Invasive and non-invasive brain stimulation techniques are currently in the experimental stage. Neuroimaging is helpful to understand the underlying mechanisms of effective training and may become an important surrogate marker in therapy studies apart from the clinical scales.

 
  • Literatur

  • 1 Klockgether T, Auburger G, Bürk K et al. Ataxien des Erwachsenenalters. In: Leitlinien für Diagnostik und Therapie in der Neurologie. Stuttgart: Thieme Verlag; 2012
  • 2 Schmahmann JD, Sherman JC. The cerebellar cognitive affective syndrome. Brain 1998; 121: 561-579
  • 3 Ng YS, Stein J, Ning M et al. Comparison of clinical characteristics and functional outcomes of ischemic stroke in different vascular territories. Stroke 2007; 38: 2309-2314
  • 4 Kelly PJ, Stein J, Shafqat S et al. Functional recovery after rehabilitation for cerebellar stroke. Stroke 2001; 32: 530-534
  • 5 Küper M, Döring K, Spangenberg C et al. Location and restoration of function after cerebellar tumor removal – a longitudinal study of children and adolescents. Cerebellum 2013; 12: 48-58
  • 6 Jacobi H, Bauer P, Giunti P et al. The natural history of spinocerebellar ataxia type 1, 2, 3, and 6: a 2-year follow-up study. Neurology 2011; 77: 1035-1041
  • 7 Metz G, Coppard N, Cooper JM et al. Rating disease progression of Friedreich’s ataxia by the International Cooperative Ataxia Rating Scale: analysis of a 603-patient database. Brain 2013; 136: 259-268
  • 8 Ilg W, Bastian AJ, Boesch S et al. Consensus Paper: Management of Degenerative Cerebellar Disorders. Cerebellum 2014; 13: 248-268
  • 9 Hewer RL, Cooper R, Morgan MH. An investigation into the value of treating intention tremor by weighting the affected limb. Brain 1972; 95: 579-590
  • 10 Brodal P. The Cerebellum. In: The Central Nervous System. Oxford: Oxford University Press; 2010: 343-361
  • 11 Reetz K, Costa AS, Mirzazade S et al. Genotype-specific patterns of atrophy progression are more sensitive than clinical decline in SCA1, SCA3 and SCA6. Brain 2013; 136: 905-917
  • 12 Ilg W, Synofzik M, Brötz D et al. Intensive coordinative training improves motor performance in degenerative cerebellar disease. Neurology 2009; 73: 1823-1830
  • 13 Ilg W, Brötz D, Burkard S et al. Long-term effects of coordinative training in degenerative cerebellar disease. Mov Disord 2010; 25: 2239-2246
  • 14 Ilg W, Schatton C, Schicks J et al. Video game-based coordinative training improves ataxia in children with degenerative ataxia. Neurology 2012; 79: 2056-2060
  • 15 Ilg W, Timmann D. Gait ataxia – specific cerebellar influences and their rehabilitation. Mov Disord 2013; 28: 1566-1575
  • 16 Morton SM, Bastian AJ. Relative contributions of balance and voluntary leg-coordination deficits to cerebellar gait ataxia. J Neurophysiol 2003; 89: 1844-1856
  • 17 Ilg W, Golla H, Thier P et al. Specific influences of cerebellar dysfunctions on gait. Brain 2007; 130: 786-798
  • 18 Morton SM, Bastian AJ. Cerebellar contributions to locomotor adaptations during splitbelt treadmill walking. J Neurosci 2006; 26: 9107-9116
  • 19 Rabe K, Livne O, Gizewski ER et al. Adaptation to visuomotor rotation and force field perturbation is correlated to different brain areas in patients with cerebellar degeneration. J Neurophysiol 2009; 10: 1961-1971
  • 20 Barash S, Melikyan A, Sivakov A et al. Saccadic dysmetria and adaptation after lesions of the cerebellar cortex. J Neurosci 1999; 19: 10931-10939
  • 21 Bastian AJ. Understanding sensorimotor adaptation and learning for rehabilitation. Curr Opin Neurol 2008; 21: 628-633
  • 22 Kawato M. Internal models for motor control and trajectory planning. Curr Opin Neurobiol 1999; 9: 718-727
  • 23 Trouillas P, Takayanagi T, Hallett M et al. International Cooperative Ataxia Rating Scale for pharmacological assessment of the cerebellar syndrome. The Ataxia Neuropharmacology Committee of the World Federation of Neurology. J Neurol Sci 1997; 145: 205-211
  • 24 Schmitz-Hübsch T, du Montcel ST et al. Scale for the assessment and rating of ataxia: development of a new clinical scale. Neurology 2006; 66: 1717-1720
  • 25 Lynch DR, Perlman SL, Meier T. A phase 3, double-blind, placebo-controlled trial of idebenone in friedreich ataxia. Arch Neurol 2010; 67: 941-947
  • 26 Wenning GK, Tison F, Seppi K et al. Development and validation of the Unified Multiple System Atrophy Rating Scale (UMSARS). Mov Disord 2004; 19: 1391-1402
  • 27 Marelli C, Figoni J, Charles P et al. Annual change in Friedreich’s ataxia evaluated by the Scale for the Assessment and Rating of Ataxia (SARA) is independent of disease severity. Mov Disord 2012; 27: 135-138
  • 28 Klockgether T, Lüdtke R, Kramer B et al. The natural history of degenerative ataxia: a retrospective study in 466 patients. Brain 1998; 121: 589-600
  • 29 Konczak J, Pierscianek D, Hirsiger S et al. Recovery of upper limb function after cerebellar stroke: lesion symptom mapping and arm kinematics. Stroke 2010; 41: 2191-2200
  • 30 Morton SM, Tseng Y-W, Zackowski KM et al. Longitudinal tracking of gait and balance impairments in cerebellar disease. Mov Disord 2010; 25: 1944-1952
  • 31 Schoch B, Regel JP, Frings M et al. Reliability and validity of ICARS in focal cerebellar lesions. Mov Disord 2007; 22: 2162-2169
  • 32 Konczak J, Schoch B, Dimitrova A et al. Functional recovery of children and adolescents after cerebellar tumour resection. Brain 2005; 128: 1428-1441
  • 33 Ilg W, Giese MA, Gizewski ER et al. The influence of focal cerebellar lesions on the control and adaptation of gait. Brain 2008; 131: 2913-2927
  • 34 Morton SM, Bastian AJ. Can rehabilitation help ataxia?. Neurology 2009; 73: 1818-1819
  • 35 Hatakenaka M, Miyai I, Mihara M et al. Impaired motor learning by a pursuit rotor test reduces functional outcomes during rehabilitation of poststroke ataxia. Neurorehabil Neural Repair 2012; 26: 293-300
  • 36 Klintsova AY, Goodlett CR, Greenough WT. Therapeutic motor training ameliorates cerebellar effects of postnatal binge alcohol. Neurotoxicol Teratol 2000; 22: 125-132
  • 37 Gill-Body KM, Popat RA, Parker SW et al. Rehabilitation of balance in two patients with cerebellar dysfunction. Phys Ther 1997; 77: 534-552
  • 38 Balliet R, Harbst KB, Kim D et al. Retraining of functional gait through the reduction of upper extremity weight-bearing in chronic cerebellar ataxia. Int Rehabil Med 1987; 8: 148-153
  • 39 Cernak K, Stevens V, Price R et al. Locomotor training using body-weight support on a treadmill in conjunction with ongoing physical therapy in a child with severe cerebellar ataxia. Phys Ther 2008; 88: 88-97
  • 40 Freund JE, Stetts DM. Use of trunk stabilization and locomotor training in an adult with cerebellar ataxia: a single system design. Physiother Theory Pract 2010; 26: 447-458
  • 41 Vaz DV, de Schettino RC, Rolla de Castro TR et al. Treadmill training for ataxic patients: a single-subject experimental design. Clin Rehabil 2008; 22: 234-241
  • 42 Miyai I, Ito M, Hattori N et al. Cerebellar ataxia rehabilitation trial in degenerative cerebellar diseases. Neurorehabil Neural Repair 2012; 26: 515-522
  • 43 Burciu RG, Fritsche N, Granert O et al. Brain changes associated with postural training in patients with cerebellar degeneration: a voxel-based morphometry study. J Neurosci 2013; 33: 4594-4604
  • 44 Wessel K, Zeffiro T, Lou JS et al. Regional cerebral blood flow during a self-paced sequential finger opposition task in patients with cerebellar degeneration. Brain 1995; 118: 379-393
  • 45 Synofzik M, Schatton C, Giese M et al. Videogame-based coordinative training can improve advanced, multisystemic early-onset ataxia. J Neurol 2013; 260: 2656-2658
  • 46 Fonteyn EMR, Keus SHJ, Verstappen CCP et al. Physiotherapy in Degenerative Cerebellar Ataxias: Utilisation, Patient Satisfaction, and Professional Expertise. Cerebellum 2013; epub ahead of print
  • 47 Manto M. Mechanisms of human cerebellar dysmetria: experimental evidence and current conceptual bases. J Neuroengineering Rehabil 2009; 6: 10
  • 48 Gallego JÁ, Rocon E, Belda-Lois JM et al. A neuroprosthesis for tremor management through the control of muscle co-contraction. J Neuroengineering Rehabil 2013; 10: 36
  • 49 Sapir S, Spielman J, Ramig LO et al. Effects of intensive voice treatment (the Lee Silverman Voice Treatment [LSVT]) on ataxic dysarthria: a case study. Am J Speech-Lang Pathol 2003; 12: 387-399
  • 50 Stocks R, Dacakis G, Phyland D et al. The effect of smooth speech on the speech production of an individual with ataxic dysarthria. Brain Inj 2009; 23: 820-829
  • 51 Silva RCR, Saute JAM, Silva ACF et al. Occupational therapy in spinocerebellar ataxia type 3: an open-label trial. Braz J Med Biol Res Rev 2010; 43: 537-542
  • 52 Ciancarelli I, Cofini V, Carolei A. Disability and occupational therapy in patients with Friedreich’s ataxia. G Ital Med Lav Ergon 2011; 33: 201-204
  • 53 Deuschl G, Kesssler K, Poewe W et al. Tremor. In: Leitlinien für Diagnostik und Therapie in der Neurologie. Stuttgart: Thieme; 2012
  • 54 Mammis A, Pourfar M, Feigin A et al. Deep brain stimulation for the treatment of tremor and ataxia associated with abetalipoproteinemia. Tremor Hyperkinetic Mov 2012; 2
  • 55 Hamel W, Herzog J, Kopper F et al. Deep brain stimulation in the subthalamic area is more effective than nucleus ventralis intermedius stimulation for bilateral intention tremor. Acta Neurochir 2007; 149: 749-758
  • 56 Senova S, Jarraya B, Iwamuro H et al. Unilateral thalamic stimulation safely improved fragile X-associated tremor ataxia: a case report. Mov Disord 2012; 27: 797-799
  • 57 Copeland BJ, Fenoy A, Ellmore TM et al. Deep Brain Stimulation of the Internal Globus Pallidus for Generalized Dystonia Associated with Spinocerebellar Ataxia Type 1: A Case Report. Neuromodulation Technol Neural Interface 2013; epub
  • 58 Mehanna R, Itin I. Which Approach is Better: Bilateral Versus Unilateral Thalamic Deep Brain Stimulation in Patients with Fragile X-Associated Tremor Ataxia Syndrome. Cerebellum 2013; epub ahead of print
  • 59 Fasano A, Herzog J, Raethjen J et al. Gait ataxia in essential tremor is differentially modulated by thalamic stimulation. Brain 2010; 133: 3635-3648
  • 60 Stolze H, Petersen G, Raethjen J et al. The gait disorder of advanced essential tremor. Brain 2001; 124: 2278-2286
  • 61 Earhart GM, Clark BR, Tabbal SD et al. Gait and balance in essential tremor: variable effects of bilateral thalamic stimulation. Mov Disord 2009; 24: 386-391
  • 62 Kronenbuerger M, Tronnier VM, Gerwig M et al. Thalamic deep brain stimulation improves eyeblink conditioning deficits in essential tremor. Exp Neurol 2008; 211: 387-396
  • 63 Gerwig M, Hajjar K, Dimitrova A et al. Timing of conditioned eyeblink responses is impaired in cerebellar patients. J Neurosci 2005; 25: 3919-3931
  • 64 Kronenbuerger M, Gerwig M, Brol B et al. Eyeblink conditioning is impaired in subjects with essential tremor. Brain 2007; 130: 1538-1551
  • 65 Reis J, Robertson EM, Krakauer JW et al. Consensus: Can transcranial direct current stimulation and transcranial magnetic stimulation enhance motor learning and memory formation?. Brain Stimulat 2008; 1: 363-369
  • 66 Hummel FC, Gerloff C. Transcranial brain stimulation after stroke. Nervenarzt 2012; 83: 957-965
  • 67 Farzan F, Wu Y, Manor B et al. Cerebellar TMS in Treatment of a Patient with Cerebellar Ataxia: Evidence from Clinical, Biomechanics and Neurophysiological Assessments. Cerebellum 2013; 12: 707-712
  • 68 Shiga Y, Tsuda T, Itoyama Y et al. Transcranial magnetic stimulation alleviates truncal ataxia in spinocerebellar degeneration. J Neurol Neurosurg Psychiatry 2002; 72: 124-126
  • 69 Galea JM, Jayaram G, Ajagbe L et al. Modulation of cerebellar excitability by polarity-specific noninvasive direct current stimulation. J Neurosci 2009; 29: 9115-9122
  • 70 Galea JM, Vazquez A, Pasricha N et al. Dissociating the roles of the cerebellum and motor cortex during adaptive learning: the motor cortex retains what the cerebellum learns. Cereb Cortex 2011; 21: 1761-1770
  • 71 Jayaram G, Galea JM, Bastian AJ et al. Human Locomotor Adaptive Learning Is Proportional to Depression of Cerebellar Excitability. Cereb Cortex 2011; 21: 1901-1909
  • 72 Boehringer A, Macher K, Dukart J et al. Cerebellar transcranial direct current stimulation modulates verbal working memory. Brain Stimulat 2013; 6: 649-653
  • 73 Pope PA, Miall RC. Task-specific facilitation of cognition by cathodal transcranial direct current stimulation of the cerebellum. Brain Stimulat 2012; 5: 84-94
  • 74 Pozzi NG, Minafra B, Zangaglia R et al. Transcranial Direct Current Stimulation (tDCS) of the Cortical Motor Areas in Three Cases of Cerebellar Ataxia. Cerebellum 2014; 13: 109-112
  • 75 Cohen JA, Barkhof F, Comi G et al. Oral fingolimod or intramuscular interferon for relapsing multiple sclerosis. N Engl J Med 2010; 362: 402-415
  • 76 Gold R, Kappos L, Arnold DL et al. Placebo-controlled phase 3 study of oral BG-12 for relapsing multiple sclerosis. N Engl J Med 2012; 367: 1098-1107
  • 77 Puget S, Boddaert N, Viguier D et al. Injuries to inferior vermis and dentate nuclei predict poor neurological and neuropsychological outcome in children with malignant posterior fossa tumors. Cancer 2009; 115: 1338-1347
  • 78 Hosp JA, Luft AR. Cortical plasticity during motor learning and recovery after ischemic stroke. Neural Plast 2011; 871296
  • 79 Kinomoto K, Takayama Y, Watanabe T et al. The mechanisms of recovery from cerebellar infarction: an fMRI study. Neuroreport 2003; 14: 1671-1675