Klin Monbl Augenheilkd 2014; 231(5): 490-495
DOI: 10.1055/s-0034-1368337
Übersicht
Georg Thieme Verlag KG Stuttgart · New York

Grundlagen allergischer Erkrankungen der Augenoberfläche und aktuelle medikamentöse Therapiekonzepte

Basic Immunology and Current Therapeutic Concepts in Ocular Allergy
U. Gehlsen
Zentrum für Augenheilkunde, Uniklinik Köln
,
C. Cursiefen
Zentrum für Augenheilkunde, Uniklinik Köln
,
P. Steven
Zentrum für Augenheilkunde, Uniklinik Köln
› Author Affiliations
Further Information

Publication History

eingereicht 30 December 2013

akzeptiert 11 February 2014

Publication Date:
05 May 2014 (online)

Zusammenfassung

Hintergrund: Die okuläre Allergie gehört zu den häufigsten Augenerkrankungen weltweit. Dem klinischen Phänotyp und der Pathogenese nach werden verschiedene Allergieformen unterschieden, die unterschiedliche Behandlungsstrategien erfordern. Der Übersichtsartikel stellt die zentralen immunologischen Pathomechanismen sowie aktuelle Behandlungsmöglichkeiten dar. Methoden: Literatursuche in PubMed und eigene klinische und experimentelle Daten. Ergebnisse: An der Pathogenese der okulären Allergie sind unterschiedliche Immunzellen wie dendritische Zellen, B-Zellen, T-Zellen, Mastzellen, Eosinophile und regulatorische T-Zellen beteiligt. Therapeutische Ansätze fokussieren auf eine Symptomverbesserung mittels Antihistaminika, Mastzellstabilisatoren und Kombinationswirkstoffen. In schweren Fällen werden Steroide und Calcineurin-Inhibitoren eingesetzt. Schlussfolgerungen: Obwohl in der Erforschung der Pathogenese der okulären Allergie in den vergangenen Jahren große Fortschritte gemacht wurden, sind noch Fragen z. B. zum Zusammenhang zwischen Trockenem Auge und okulärer Allergie ungeklärt. Zukünftige Therapieverfahren werden auf kürzlich beschriebene Mechanismen wie die Lymphangiogenese aufbauen und zunehmend kausalere Behandlungsmethoden ermöglichen.

Abstract

Background: Ocular allergy belongs to the most common ocular diseases globally. Following clinical phenotype and immunopathogenesis different forms of allergy are distinguished, which require different forms of therapeutic approach. This manuscript reviews the basic immunological processes involved in the development of ocular allergies and current and future therapeutic approaches. Methods: Results of a literature search in PubMed and our own clinical and experimental experience are presented. Results: In the immunopathogenesis of ocular allergy different immune cells such as dendritic cells, B-cells, T-cells, mast cells, eosinophils and regulatory T-cells are involved. Therapeutic approaches focus on either relief of symptoms using antihistamins or mast cell stabilisers or combinations of both. In severe cases steroids or calcineurin inhibitors are used. Discussion: Despite great progress in the investigation of ocular allergy in the past decade several open questions remain, such as the relation of ocular allergy with dry eye disease. Future therapeutic approaches will likely be based on recently identified new aspects such as lymphangiogenesis and will allow better and potentially causal treatment of ocular allergy.

 
  • Literatur

  • 1 Johansson SGO, Bieber T, Dahl R et al. Revised nomenclature for allergy for global use: Report of the Nomenclature Review Committee of the World Allergy Organization, October 2003. J Allergy Clin Immunol 2004; 113: 832-836
  • 2 Bielory L. Allergic and immunologic disorders of the eye. Part II: ocular allergy. J Allergy Clin Immunol 2000; 106: 1019-1032
  • 3 Messmer EM. [Ocular allergies]. Ophthalmologe 2005; 102: 527-543 quiz 544
  • 4 Schopf L, Luccioli S, Bundoc V et al. Differential modulation of allergic eye disease by chronic and acute ascaris infection. Invest Ophthalmol Vis Sci 2005; 46: 2772-2780
  • 5 Forister JF, Forister EF, Yeung KK et al. Prevalence of contact lens-related complications: UCLA contact lens study. Eye Contact Lens 2009; 35: 176-180
  • 6 McGill JI, Holgate ST, Church MK et al. Allergic eye disease mechanisms. Br J Ophthalmol 1998; 82: 1203-1214
  • 7 Saban DR, Calder V, Kuo CH et al. New twists to an old story: novel concepts in the pathogenesis of allergic eye disease. Curr Eye Res 2013; 38: 317-330
  • 8 Lachmann PJ, Peters SK, Rosen FS. Clinical Aspects of Immunology. Oxford: Blackwell Scientific Publications; 1993
  • 9 Fukuda K, Ohbayashi M, Morohoshi K et al. Critical role of IgE-dependent mast cell activation in a murine model of allergic conjunctivitis. J Allergy Clin Immunol 2009; 124: 827.e2-833.e2
  • 10 Tabbara KF. Immunopathogenesis of chronic allergic conjunctivitis. Int Ophthalmol Clin 2003; 43: 1-7
  • 11 Schlereth S, Lee HS, Khandelwal P et al. Blocking CCR7 at the ocular surface impairs the pathogenic contribution of dendritic cells in allergic conjunctivitis. Am J Pathol 2012; 180: 2351-2360
  • 12 Messmer EM, May CA, Stefani FH et al. Toxic eosinophil granule protein deposition in corneal ulcerations and scars associated with atopic keratoconjunctivitis. Am J Ophthalmol 2002; 134: 816-821
  • 13 Trocme SD, Gleich GJ, Kephart GM et al. Eosinophil granule major basic protein inhibition of corneal epithelial wound healing. Invest Ophthalmol Vis Sci 1994; 35: 3051-3056
  • 14 Trocme SD, Leiferman KM, George T et al. Neutrophil and eosinophil participation in atopic and vernal keratoconjunctivitis. Curr Eye Res 2003; 26: 319-325
  • 15 Moy JN, Gleich GJ, Thomas LL. Noncytotoxic activation of neutrophils by eosinophil granule major basic protein. Effect on superoxide anion generation and lysosomal enzyme release. J Immunol 1990; 145: 2626-2632
  • 16 Fukushima A, Ozaki A, Fukata K et al. Ag-specific recognition, activation, and effector function of T cells in the conjunctiva with experimental immune-mediated blepharoconjunctivitis. Invest Ophthalmol Vis Sci 2003; 44: 4366-4374
  • 17 Calder VL, Jolly G, Hingorani M et al. Cytokine production and mRNA expression by conjunctival T-cell lines in chronic allergic eye disease. Clin Exp Allergy 1999; 29: 1214-1222
  • 18 Bundoc VG, Keane-Myers A. IL-10 confers protection from mast cell degranulation in a mouse model of allergic conjunctivitis. Exp Eye Res 2007; 85: 575-579
  • 19 Fukushima A, Sumi T, Fukuda K et al. Modulation of murine experimental allergic conjunctivitis by treatment with alpha-galactosylceramide. Immunol Lett 2006; 107: 32-40
  • 20 Moser M, Murphy KM. Dendritic cell regulation of TH1-TH2 development. Nat Immunol 2000; 1: 199-205
  • 21 Maggi E. The TH1/TH2 paradigm in allergy. Immunotechnology 1998; 3: 233-244
  • 22 Stern ME, Siemasko KF, Niederkorn JY. The Th1/Th2 paradigm in ocular allergy. Curr Opin Allergy Clin Immunol 2005; 5: 446-450
  • 23 Siemasko KF, Gao J, Calder VL et al. In vitro expanded CD4+CD25+Foxp3+ regulatory T cells maintain a normal phenotype and suppress immune-mediated ocular surface inflammation. Invest Ophthalmol Vis Sci 2008; 49: 5434-5440
  • 24 Niederkorn JY. Immune regulatory mechanisms in allergic conjunctivitis: insights from mouse models. Curr Opin Allergy Clin Immunol 2008; 8: 472-476
  • 25 Foster CS, Rice BA, Dutt JE. Immunopathology of atopic keratoconjunctivitis. Ophthalmology 1991; 98: 1190-1196
  • 26 Nguyen NX, Martus P, Seitz B et al. Atopic dermatitis as a risk factor for graft rejection following normal-risk keratoplasty. Graefes Arch Clin Exp Ophthalmol 2009; 247: 573-574
  • 27 Abelson MB, Yamamoto GK, Allansmith MR. Effects of ocular decongestants. Arch Ophthalmol 1980; 98: 856-858
  • 28 Qasem AR, Bucolo C, Baiula M et al. Contribution of alpha4beta1 integrin to the antiallergic effect of levocabastine. Biochem Pharmacol 2008; 76: 751-762
  • 29 Abelson MB, McLaughlin JT, Gomes PJ. Antihistamines in ocular allergy: are they all created equal?. Curr Allergy Asthma Rep 2011; 11: 205-211
  • 30 Leonardi A, Di Stefano A, Vicari C et al. Histamine H4 receptors in normal conjunctiva and in vernal keratoconjunctivitis. Allergy 2011; 66: 1360-1366
  • 31 Namdar R, Valdez C. Alcaftadine: a topical antihistamine for use in allergic conjunctivitis. Drugs Today (Barc) 2011; 47: 883-890
  • 32 Abelson MB, Wun PJ, Nevius JM. Mast Cell Stabilizers. In: Abelson MB, ed. Allergic Diseases of the Eye. Philadephia: WB Saunders Co; 2000: 228-234
  • 33 Bielory L, Chun Y, Bielory BP et al. Impact of mometasone furoate nasal spray on individual ocular symptoms of allergic rhinitis: a meta-analysis. Allergy 2011; 66: 686-693
  • 34 Kaiser HB, Naclerio RM, Given J et al. Fluticasone furoate nasal spray: a single treatment option for the symptoms of seasonal allergic rhinitis. J Allergy Clin Immunol 2007; 119: 1430-1437
  • 35 Baiula M, Sparta A, Bedini A et al. Eosinophil as a cellular target of the ocular anti-allergic action of mapracorat, a novel selective glucocorticoid receptor agonist. Mol Vis 2011; 17: 3208-3223
  • 36 Ebihara N, Ohashi Y, Uchio E et al. A large prospective observational study of novel cyclosporine 0.1 % aqueous ophthalmic solution in the treatment of severe allergic conjunctivitis. J Ocul Pharmacol Ther 2009; 25: 365-372
  • 37 Lambiase A, Leonardi A, Sacchetti M et al. Topical cyclosporine prevents seasonal recurrences of vernal keratoconjunctivitis in a randomized, double-masked, controlled 2-year study. J Allergy Clin Immunol 2011; 128: 896.e9-897.e9
  • 38 Attas-Fox L, Barkana Y, Iskhakov V et al. Topical tacrolimus 0.03 % ointment for intractable allergic conjunctivitis: an open-label pilot study. Curr Eye Res 2008; 33: 545-549
  • 39 Chen SL, Yan J, Wang FS. Two topical calcineurin inhibitors for the treatment of atopic dermatitis in pediatric patients: a meta-analysis of randomized clinical trials. J Dermatolog Treat 2010; 21: 144-156
  • 40 Vichyanond P, Tantimongkolsuk C, Dumrongkigchaiporn P et al. Vernal keratoconjunctivitis: Result of a novel therapy with 0.1 % topical ophthalmic FK-506 ointment. J Allergy Clin Immunol 2004; 113: 355-358
  • 41 Brozek JL, Bousquet J, Baena-Cagnani CE et al. Allergic Rhinitis and its Impact on Asthma (ARIA) guidelines: 2010 revision. J Allergy Clin Immunol 2010; 126: 466-476
  • 42 Calderon MA, Penagos M, Sheikh A et al. Sublingual immunotherapy for allergic conjunctivitis: Cochrane systematic review and meta-analysis. Clin Exp Allergy 2011; 41: 1263-1272
  • 43 Frolund L, Durham SR, Calderon M et al. Sustained effect of SQ-standardized grass allergy immunotherapy tablet on rhinoconjunctivitis quality of life. Allergy 2010; 65: 753-757
  • 44 Mahdy RA, Nada WM, Marei AA. Subcutaneous allergen-specific immunotherapy versus topical treatment in vernal keratoconjunctivitis. Cornea 2012; 31: 525-528
  • 45 Ousler GW, Wilcox KA, Gupta G et al. An evaluation of the ocular drying effects of 2 systemic antihistamines: loratadine and cetirizine hydrochloride. Ann Allergy Asthma Immunol 2004; 93: 460-464
  • 46 Bock F, Maruyama K, Regenfuss B et al. Novel anti(lymph)angiogenic treatment strategies for corneal and ocular surface diseases. Prog Retin Eye Res 2013; 34: 89-124
  • 47 Flynn TH, Ohbayashi M, Dawson M et al. The effect of perioperative allergic conjunctivitis on corneal lymphangiogenesis after corneal transplantation. Br J Ophthalmol 2011; 95: 1451-1456
  • 48 Beauregard C, Stevens C, Mayhew E et al. Cutting edge: atopy promotes Th2 responses to alloantigens and increases the incidence and tempo of corneal allograft rejection. J Immunol 2005; 174: 6577-6581
  • 49 Reyes NJ, Chen PW, Niederkorn JY. Allergic conjunctivitis renders CD4(+) T cells resistant to t regulatory cells and exacerbates corneal allograft rejection. Am J Transplant 2013; 13: 1181-1192