Z Geburtshilfe Neonatol 2013; 217(03): 88-94
DOI: 10.1055/s-0033-1347179
Übersicht
© Georg Thieme Verlag KG Stuttgart · New York

Mütterlich-plazentare Interaktionen und fetale Programmierung

Maternal-Placental Interactions and Fetal Programming
M. Kadyrov*
1   Institut für Anatomie und Zellbiologie, Universitätsklinikum RWTH Aachen, Deutschland
,
G. Moser*
2   Institut für Zellbiologie, Histologie & Embryologie, Medizinische Universität Graz, Österreich
,
W. Rath
3   Frauenklinik für Gynäkologie und Geburtsmedizin, Universitätsklinikum RWTH Aachen, Deutschland
,
N. Kweider
1   Institut für Anatomie und Zellbiologie, Universitätsklinikum RWTH Aachen, Deutschland
,
C. J. Wruck
1   Institut für Anatomie und Zellbiologie, Universitätsklinikum RWTH Aachen, Deutschland
,
T. Pufe
1   Institut für Anatomie und Zellbiologie, Universitätsklinikum RWTH Aachen, Deutschland
,
B. Huppertz
2   Institut für Zellbiologie, Histologie & Embryologie, Medizinische Universität Graz, Österreich
› Author Affiliations
Further Information

Publication History

eingereicht 16 November 2012

angenommen nach Überarbeitung 26 April 2013

Publication Date:
28 June 2013 (online)

Zusammenfassung

Schwangerschaftskomplikationen führen nicht nur zu einer erhöhten maternalen und fetalen Morbidität und Mortalität, sie erhöhen auch das Risiko für Erkrankungen im späteren Leben. Viele epidemiologische Studien haben eine klare Assoziation zwischen einem ungünstigen intrauterinen Umfeld und einem erhöhten Risiko für Diabetes, Hypertension und kardiovaskuläre Erkrankungen, Depression, Adipositas und andere chronische Erkrankungen bei Erwachsenen gezeigt. Einige dieser Erkrankungen könnten verhindern werden, wenn ungünstige Stimuli während der Schwangerschaft vermieden würden wie psychosozialer Stress, Einnahme von Drogen, unausgewogene Ernährung und ungünstige Arbeitsbedingungen. Diese Stimuli haben das Potenzial, die Gesundheit im späteren Leben nachhaltig zu beeinflussen. Die Plazenta spielt eine Schlüsselrolle bei der Regulation der Nahrungsversorgung des Feten und produziert Hormone, die sowohl den fetalen als auch den maternalen Metabolismus kontrollieren. Daher wird jeder Faktor oder Stimulus, der die Funktion des Hormon-produzierenden plazentaren Trophoblasten verändert, kritische Veränderungen der plazentaren Funktion mit sich bringen und damit eine fetale Programmierung induzieren können. Die Faktoren, die die plazentare Entwicklung beeinflussen, können zu einer Behinderung der Versorgung des Feten mit Sauerstoff und Nährstoffen führen, entweder über eine direkte Störung der Plazentaschranke oder indirekt über eine Störung der Trophoblastinvasion. Für beide Wege sind entsprechende Pathologien beschrieben worden: Bei der Präeklampsie liegt die Störung beim villösen Trophoblasten, der Plazentaschranke, während bei einer intrauterinen Wachstumsrestriktion der Grund in einer Mangelinvasion des Trophoblasten liegt. In beiden Fällen kann die Konsequenz Unterernährung und/oder Hypoxie des Feten sein und damit eine negative Beeinflussung der fetalen Organ­entwicklung, vor allem von Herz und Hirn. Allerdings ist bis heute unklar, welche Mechanismen für die Störungen von Trophoblastdifferenzierung und -funktion verantwortlich sind.

Abstract

Pregnancy-related complications not only represent a risk for maternal and fetal morbidity and mortality, but are also a risk for several diseases later in life. Many epidemiological studies have shown clear associations between an adverse intrauterine environment and an increased risk of diabetes, hypertension, cardiovascular disease, depression, obesity, and other chronic diseases in the adult. Some of these syndromes could be prevented by avoiding adverse stimuli or insults including psychological stress during pregnancy, intake of drugs, insufficient diet and substandard working conditions. Hence, all of these stimuli have the potential to alter health later in life. The placenta plays a key role in regulating the nutrient supply to the fetus and producing hormones that control the fetal as well as the maternal metabolism. Thus, any factor or stimulus that alters the function of the hormone producing placental trophoblast will provoke critical alterations of placental function and hence could induce programming of the fetus. The factors that change placental development may inter­fere with nutrient and oxygen supply to the fetus. This may be achieved by a direct disturbance of the placental barrier or more indirectly by, e. g., disturbing trophoblast invasion. For both path­ways, the respective pathologies are known: while preeclampsia is caused by alterations of the villous trophoblast, intra-uterine growth restriction is caused by insufficient invasion of the extravillous trophoblast. In both cases the effect can be undernutrition and/or fetal hypoxia, both of which adversely affect organ development, especially of brain and heart. However, the mechanisms responsible for disturbances of trophoblast differentiation and function remain elusive.

* Beide Autoren haben zu gleichen Teilen zu dieser Arbeit beigetragen.


 
  • Literatur

  • 1 Myren M, Mose T, Mathiesen L et al. The human placenta – an alternative for studying fetal exposure. Toxicol In Vitro 2007; 21: 1332-1340
  • 2 Godfrey KM, Barker DJ. Fetal programming and adult health. Public Health Nutr 2001; 4: 611-624
  • 3 Bocheva G, Boyadjieva N. Epigenetic regulation of fetal bone development and placental transfer of nutrients: progress for osteoporosis. Interdiscip Toxicol 2011; 4: 167-172
  • 4 Kwong WY, Wild AE, Roberts P et al. Maternal undernutrition during the preimplantation period of rat development causes blastocyst abnormalities and programming of postnatal hypertension. Development 2000; 127: 4195-4202
  • 5 Giussani DA, Camm EJ, Niu Y et al. Developmental programming of cardiovascular dysfunction by prenatal hypoxia and oxidative stress. PLoS One 2012; 7: e31017
  • 6 Hagberg H, Gressens P, Mallard C. Inflammation during fetal and neonatal life: Implications for neurologic and neuropsychiatric disease in children and adults. Ann Neurol 2012; 71: 444-457
  • 7 Kaufmann P, Black S, Huppertz B. Endovascular trophoblast invasion: implications for the pathogenesis of intrauterine growth retardation and preeclampsia. Biol Reprod 2003; 69: 1-7
  • 8 Burton GJ, Watson AL, Hempstock J et al. Uterine glands provide histiotrophic nutrition for the human fetus during the first trimester of pregnancy. J Clin Endocrinol Metab 2002; 87: 2954-2959
  • 9 Moser G, Gauster M, Orendi K et al. Endoglandular trophoblast, an alternative route of trophoblast invasion? Analysis with novel confrontation co-culture models. Hum Reprod 2010; 25: 1127-1136
  • 10 Brosens IA, Robertson WB, Dixon HG. The role of the spiral arteries in the pathogenesis of preeclampsia. Obstet Gynecol Annu 1972; 1: 177-191
  • 11 Huppertz B. Placental origins of preeclampsia: challenging the current hypothesis. Hypertension 2008; 51: 970-975
  • 12 Burton GJ, Woods AW, Jauniaux E et al. Rheological and physiological consequences of conversion of the maternal spiral arteries for uteroplacental blood flow during human pregnancy. Placenta 2009; 30: 473-482
  • 13 Chafetz I, Kuhnreich I, Sammar M et al. First-trimester placental protein 13 screening for preeclampsia and intrauterine growth restriction. Am J Obstet Gynecol 2007; 197: 35. e31-35. e37
  • 14 Huppertz B, Sammar M, Chefetz I et al. Longitudinal determination of serum placental protein 13 during development of preeclampsia. Fetal Diagn Ther 2008; 24: 230-236
  • 15 Huppertz B. Placental pathology in pregnancy complications. Thromb Res 2011; 127 (Suppl. 03) S96-S99
  • 16 Lafeber HN, Rolph TP, Jones CT. Studies on the growth of the fetal guinea pig. The effects of ligation of the uterine artery on organ growth and development. J Dev Physiol 1984; 6: 441-459
  • 17 Jansson T, Thordstein M, Kjellmer I. Placental blood flow and fetal weight following uterine artery ligation. Temporal aspects of intrauterine growth retardation in the guinea pig. Biol Neonate 1986; 49: 172-180
  • 18 Ernst LM, Salafia CM, Carter AM et al. Hepatic histology in intrauterine growth retardation following uterine artery ligation in the guinea pig. Pediatr Pathol 1993; 13: 763-772
  • 19 Jones CT, Gu W, Harding JE et al. Studies on the growth of the fetal sheep. Effects of surgical reduction in placental size, or experimental manipulation of uterine blood flow on plasma sulphation promoting activity and on the concentration of insulin-like growth factors I and II. J Dev Physiol 1988; 10: 179-189
  • 20 Lawrence S, Stenzel W, Warshaw JB. Increased binding of epidermal growth factor to placental membranes of intrauterine growth restricted fetal rats. Pediatr Res 1989; 25: 214-218
  • 21 Price WA, Rong L, Stiles AD et al. Changes in IGF-I and -II, IGF binding protein, and IGF receptor transcript abundance after uterine artery ligation. Pediatr Res 1992; 32: 291-295
  • 22 Little W. On the influence of abnormal parturition difficult labours, premature birth, and asphyxia neonatorum on the mental and physical condition of the child, especially in relation to deformities. Trans Am Ophthalmol Soc 1862; 3: 293-344
  • 23 Dorner G. Problems and terminology of functional teratology. Acta Biol Med Ger 1975; 34: 1093-1095
  • 24 Barker DJ, Winter PD, Osmond C et al. Weight in infancy and death from ischaemic heart disease. Lancet 1989; 2: 577-580
  • 25 Barker DJ, Bull AR, Osmond C et al. Fetal and placental size and risk of hypertension in adult life. Br Med J 1990; 301: 259-262
  • 26 DFG-Forschungsbericht. Schwangerschaftsverlauf und Kindesentwicklung. Boppard Haraldt Boldt Verlag 1976
  • 27 Susser E, Neugebauer R, Hoek HW et al. Schizophrenia after prenatal famine. Further evidence. Arch Gen Psychiatry 1996; 53: 25-31
  • 28 Susser ES, Lin SP. Schizophrenia after prenatal exposure to the Dutch Hunger Winter of 1944-1945. Arch Gen Psychiatry 1992; 49: 983-988
  • 29 O’Dwyer JM. Schizophrenia in people with intellectual disability: the role of pregnancy and birth complications. J Intellect Disabil Res 1997; 41: 238-251
  • 30 Dalman C, Allebeck P, Cullberg J et al. Obstetric complications and the risk of schizophrenia: a longitudinal study of a national birth cohort. Arch Gen Psychiatry 1999; 56: 234-240
  • 31 Thompson C, Syddall H, Rodin I et al. Birth weight and the risk of depressive disorder in late life. Br J Psychiatry 2001; 179: 450-455
  • 32 Innes K, Byers T, Schymura M. Birth characteristics and subsequent risk for breast cancer in very young women. Am J Epidemiol 2000; 152: 1121-1128
  • 33 St Clair D, Xu M, Wang P et al. Rates of adult schizophrenia following prenatal exposure to the Chinese famine of 1959-1961. JAMA 2005; 294: 557-562
  • 34 Michels KB, Trichopoulos D, Robins JM et al. Birthweight as a risk factor for breast cancer. Lancet 1996; 348: 1542-1546
  • 35 Geddes J, Lawrie SM. Obstetric complications and schizophrenia: a meta-analysis. Br J Psychiatry 1995; 167: 786-793
  • 36 Baardman ME, Kerstjens-Frederikse WS, Corpeleijn E et al. Combined adverse effects of maternal smoking and high body mass index on heart development in offspring: evidence for interaction?. Heart 2012; 98: 474-479
  • 37 Walker SP, Wachs TD, Gardner JM et al. Child development: risk factors for adverse outcomes in developing countries. Lancet 2007; 369: 145-157
  • 38 Patra S, Pasrija S, Trivedi SS et al. Maternal and perinatal outcome in patients with severe anemia in pregnancy. Int J Gynaecol Obstet 2005; 91: 164-165
  • 39 Kadyrov M, Kosanke G, Kingdom J et al. Increased fetoplacental angiogenesis during first trimester in anaemic women. Lancet 1998; 352: 1747-1749
  • 40 Kadyrov M, Kingdom JC, Huppertz B. Divergent trophoblast invasion and apoptosis in placental bed spiral arteries from pregnancies complicated by maternal anemia and early-onset preeclampsia/intrauterine growth restriction. Am J Obstet Gynecol 2006; 194: 557-563
  • 41 Kadyrov M, Schmitz C, Black S et al. Pre-eclampsia and maternal anaemia display reduced apoptosis and opposite invasive phenotypes of extravillous trophoblast. Placenta 2003; 24: 540-548
  • 42 Naeye RL. Do placental weights have clinical significance?. Hum Pathol 1987; 18: 387-391
  • 43 Benirschke K, Kaufmann P, Baergen R. Pathology of the human placenta. New York: Springer; 2006
  • 44 Naeye RL. Maternal age, obstetric complications, and the outcome of pregnancy. Obstet Gynecol 1983; 61: 210-216
  • 45 Crowe C, Dandekar P, Fox M et al. The effects of anaemia on heart, placenta and body weight, and blood pressure in fetal and neonatal rats. J Physiol 1995; 488: 515-519
  • 46 Ersche KD, Jones PS, Williams GB et al. Abnormal brain structure implicated in stimulant drug addiction. Science 2012; 335: 601-604
  • 47 Patterson PH. Neuroscience. Maternal effects on schizophrenia risk. Science 2007; 318: 576-577
  • 48 Phung DT, Blickstein I, Goldman RD et al. The Northwestern Twin Chorionicity Study: I. Discordant inflammatory findings that are related to chorionicity in presenting versus nonpresenting twins. Am J Obstet Gynecol 2002; 186: 1041-1045
  • 49 Brown AS. Prenatal infection as a risk factor for schizophrenia. Schizophr Bull 2006; 32: 200-202
  • 50 Hyman L, Neborsky R. Risk factors for age-related macular degeneration: an update. Curr Opin Ophthalmol 2002; 13: 171-175
  • 51 Fatemi SH, Earle J, Kanodia R et al. Prenatal viral infection leads to pyramidal cell atrophy and macrocephaly in adulthood: implications for genesis of autism and schizophrenia. Cell Mol Neurobiol 2002; 22: 25-33
  • 52 Shi L, Fatemi SH, Sidwell RW et al. Maternal influenza infection causes marked behavioral and pharmacological changes in the offspring. J Neurosci 2003; 23: 297-302
  • 53 Zuckerman L, Rehavi M, Nachman R et al. Immune activation during pregnancy in rats leads to a postpubertal emergence of disrupted latent inhibition, dopaminergic hyperfunction, and altered limbic morphology in the offspring: a novel neurodevelopmental model of schizophrenia. Neuropsychopharmacol 2003; 28: 1778-1789
  • 54 Meyer U, Yee BK, Feldon J. The neurodevelopmental impact of prenatal infections at different times of pregnancy: the earlier the worse?. Neuroscientist 2007; 13: 241-256
  • 55 Meyer U. Schizophrenia and autism: Both shared and disorder-specific pathogenesis via perinatal inflammation?. Pediatric Res 2011; 69: 26-33
  • 56 Umbers AJ, Stanisic DI, Ome M et al. Does malaria affect placental development? evidence from in vitro models. PLoS One 2013; 8: e55269
  • 57 Beinder E. Fetal growth retardation and diseases in adult life. Gynäkol Geburtshilfliche Rundsch 2008; 48: 207-214
  • 58 Naeye RL. Umbilical cord length: clinical significance. J Pediatr 1985; 107: 278-281
  • 59 Moessinger AC, Blanc WA, Marone PA et al. Umbilical cord length as an index of fetal activity: experimental study and clinical implications. Pediatr Res 1982; 16: 109-112
  • 60 Susser EB, Brown A, Matte TD. Prenatal factors and adult mental and physical health. Can J Psychiatry 1999; 44: 326-334
  • 61 Walker A, Rosenberg M, Balaban-Gil K. Neurodevelopmental and neurobehavioral sequelae of selected substances of abuse and psychiatric medications in utero. Child Adolesc Psychiatr Clin N Am 1999; 8: 845-867
  • 62 Cannon TD, Rosso IM, Hollister JM et al. A prospective cohort study of genetic and perinatal influences in the etiology of schizophrenia. Schizophr Bull 2000; 26: 351-366
  • 63 Tsuang M. Schizophrenia: genes and environment. Biol Psychiatry 2000; 47: 210-220
  • 64 Fowden AL, Forhead AJ. Hormones as epigenetic signals in developmental programming. Exp Physiol 2009; 94: 607-625
  • 65 Dorner G, Plagemann A. Perinatal hyperinsulinism as possible predisposing factor for diabetes mellitus, obesity and enhanced cardiovascular risk in later life. Horm Metab Res 1994; 26: 213-221