Semin Thromb Hemost 2013; 39(05): 496-506
DOI: 10.1055/s-0033-1343890
Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

JAK2 Mutation-Related Disease and Thrombosis

Alessandro M. Vannucchi
1   Sezione di Ematologia, Dipartimento di Medicina Clinica e Sperimentale, Università degli Studi di Firenze, Italy
,
Paola Guglielmelli
1   Sezione di Ematologia, Dipartimento di Medicina Clinica e Sperimentale, Università degli Studi di Firenze, Italy
› Author Affiliations
Further Information

Publication History

Publication Date:
30 April 2013 (online)

Abstract

A recurrent JAK2V617F mutation is typically associated with chronic myeloproliferative neoplasms (MPNs) that include polycythemia vera (PV), essential thrombocythemia (ET), and primary myelofibrosis. This mutation results in a gain of function that is credited to underlie most of the pathogenesis and phenotypic characteristics of these disorders; it serves as a key diagnostic marker and represents a suitable target for JAK2 inhibitors. Because cardiovascular events represent the main cause of morbidity and mortality in PV and ET, current patients' risk stratification is based on variables predicting individual thrombotic risk (age and previous thrombotic history). However, evidence is accumulating that supports a role of JAK2V617F mutation as a novel risk factor for thrombosis, although prospective validation has not been provided yet. In this review, we discuss about potential mechanisms that link mutated JAK2 with the thrombotic propensity of MPN and the clinical correlates; hopefully, novel information could result in better patient management.

 
  • References

  • 1 Dameshek W. Some speculations on the myeloproliferative syndromes. Blood 1951; 6 (4) 372-375
  • 2 Tefferi A. The history of myeloproliferative disorders: before and after Dameshek. Leukemia 2008; 22 (1) 3-13
  • 3 Tefferi A, Thiele J, Orazi A , et al. Proposals and rationale for revision of the World Health Organization diagnostic criteria for polycythemia vera, essential thrombocythemia, and primary myelofibrosis: recommendations from an ad hoc international expert panel. Blood 2007; 110 (4) 1092-1097
  • 4 Vannucchi AM, Guglielmelli P, Tefferi A. Advances in understanding and management of myeloproliferative neoplasms. CA Cancer J Clin 2009; 59 (3) 171-191
  • 5 Barosi G, Mesa RA, Thiele J , et al; International Working Group for Myelofibrosis Research and Treatment (IWG-MRT). Proposed criteria for the diagnosis of post-polycythemia vera and post-essential thrombocythemia myelofibrosis: a consensus statement from the International Working Group for Myelofibrosis Research and Treatment. Leukemia 2008; 22 (2) 437-438
  • 6 Vannucchi AM. Insights into the pathogenesis and management of thrombosis in polycythemia vera and essential thrombocythemia. Intern Emerg Med 2010; 5 (3) 177-184
  • 7 Fialkow PJ. Stem cell origin of human myeloid blood cell neoplasms. Verh Dtsch Ges Pathol 1990; 74: 43-47
  • 8 Prchal JF, Axelrad AA. Letter: Bone-marrow responses in polycythemia vera. N Engl J Med 1974; 290 (24) 1382
  • 9 Fruchtman SM, Mack K, Kaplan ME, Peterson P, Berk PD, Wasserman LR. From efficacy to safety: a Polycythemia Vera Study group report on hydroxyurea in patients with polycythemia vera. Semin Hematol 1997; 34 (1) 17-23
  • 10 Berk PD, Goldberg JD, Donovan PB, Fruchtman SM, Berlin NI, Wasserman LR. Therapeutic recommendations in polycythemia vera based on Polycythemia Vera Study Group protocols. Semin Hematol 1986; 23 (2) 132-143
  • 11 Cortelazzo S, Finazzi G, Ruggeri M , et al. Hydroxyurea for patients with essential thrombocythemia and a high risk of thrombosis. N Engl J Med 1995; 332 (17) 1132-1136
  • 12 Landolfi R, Marchioli R, Kutti J , et al; European Collaboration on Low-Dose Aspirin in Polycythemia Vera Investigators. Efficacy and safety of low-dose aspirin in polycythemia vera. N Engl J Med 2004; 350 (2) 114-124
  • 13 Harrison CN, Campbell PJ, Buck G , et al; United Kingdom Medical Research Council Primary Thrombocythemia 1 Study. Hydroxyurea compared with anagrelide in high-risk essential thrombocythemia. N Engl J Med 2005; 353 (1) 33-45
  • 14 James C, Ugo V, Le Couédic JP , et al. A unique clonal JAK2 mutation leading to constitutive signalling causes polycythaemia vera. Nature 2005; 434 (7037) 1144-1148
  • 15 Baxter EJ, Scott LM, Campbell PJ , et al; Cancer Genome Project. Acquired mutation of the tyrosine kinase JAK2 in human myeloproliferative disorders. Lancet 2005; 365 (9464) 1054-1061
  • 16 Levine RL, Wadleigh M, Cools J , et al. Activating mutation in the tyrosine kinase JAK2 in polycythemia vera, essential thrombocythemia, and myeloid metaplasia with myelofibrosis. Cancer Cell 2005; 7 (4) 387-397
  • 17 Kralovics R, Passamonti F, Buser AS , et al. A gain-of-function mutation of JAK2 in myeloproliferative disorders. N Engl J Med 2005; 352 (17) 1779-1790
  • 18 Saharinen P, Takaluoma K, Silvennoinen O. Regulation of the Jak2 tyrosine kinase by its pseudokinase domain. Mol Cell Biol 2000; 20 (10) 3387-3395
  • 19 Saharinen P, Silvennoinen O. The pseudokinase domain is required for suppression of basal activity of Jak2 and Jak3 tyrosine kinases and for cytokine-inducible activation of signal transduction. J Biol Chem 2002; 277 (49) 47954-47963
  • 20 Velazquez L, Mogensen KE, Barbieri G, Fellous M, Uzé G, Pellegrini S. Distinct domains of the protein tyrosine kinase tyk2 required for binding of interferon-alpha/beta and for signal transduction. J Biol Chem 1995; 270 (7) 3327-3334
  • 21 Ungureanu D, Wu J, Pekkala T , et al. The pseudokinase domain of JAK2 is a dual-specificity protein kinase that negatively regulates cytokine signaling. Nat Struct Mol Biol 2011; 18 (9) 971-976
  • 22 Levine RL, Pardanani A, Tefferi A, Gilliland DG. Role of JAK2 in the pathogenesis and therapy of myeloproliferative disorders. Nat Rev Cancer 2007; 7 (9) 673-683
  • 23 Li J, Kent DG, Chen E, Green AR. Mouse models of myeloproliferative neoplasms: JAK of all grades. Dis Model Mech 2011; 4 (3) 311-317
  • 24 Tiedt R, Hao-Shen H, Sobas MA , et al. Ratio of mutant JAK2-V617F to wild-type Jak2 determines the MPD phenotypes in transgenic mice. Blood 2008; 111 (8) 3931-3940
  • 25 Dupont S, Massé A, James C , et al. The JAK2 617V > F mutation triggers erythropoietin hypersensitivity and terminal erythroid amplification in primary cells from patients with polycythemia vera. Blood 2007; 110 (3) 1013-1021
  • 26 Nussenzveig RH, Swierczek SI, Jelinek J , et al. Polycythemia vera is not initiated by JAK2V617F mutation. Exp Hematol 2007; 35 (1) 32-38
  • 27 Godfrey AL, Chen E, Pagano F , et al. JAK2V617F homozygosity arises commonly and recurrently in PV and ET, but PV is characterized by expansion of a dominant homozygous subclone. Blood 2012; 120 (13) 2704-2707
  • 28 Campbell PJ, Scott LM, Buck G , et al; United Kingdom Myeloproliferative Disorders Study Group; Medical Research Council Adult Leukaemia Working Party; Australasian Leukaemia and Lymphoma Group. Definition of subtypes of essential thrombocythaemia and relation to polycythaemia vera based on JAK2 V617F mutation status: a prospective study. Lancet 2005; 366 (9501) 1945-1953
  • 29 Scott LM, Tong W, Levine RL , et al. JAK2 exon 12 mutations in polycythemia vera and idiopathic erythrocytosis. N Engl J Med 2007; 356 (5) 459-468
  • 30 Passamonti F, Elena C, Schnittger S , et al. Molecular and clinical features of the myeloproliferative neoplasm associated with JAK2 exon 12 mutations. Blood 2011; 117 (10) 2813-2816
  • 31 Pardanani AD, Levine RL, Lasho T , et al. MPL515 mutations in myeloproliferative and other myeloid disorders: a study of 1182 patients. Blood 2006; 108 (10) 3472-3476
  • 32 Pikman Y, Lee BH, Mercher T , et al. MPLW515L is a novel somatic activating mutation in myelofibrosis with myeloid metaplasia. PLoS Med 2006; 3 (7) e270
  • 33 Staerk J, Lacout C, Sato T, Smith SO, Vainchenker W, Constantinescu SN. An amphipathic motif at the transmembrane-cytoplasmic junction prevents autonomous activation of the thrombopoietin receptor. Blood 2006; 107 (5) 1864-1871
  • 34 Vannucchi AM, Antonioli E, Guglielmelli P , et al. Characteristics and clinical correlates of MPL 515W > L/K mutation in essential thrombocythemia. Blood 2008; 112 (3) 844-847
  • 35 Beer PA, Campbell PJ, Scott LM , et al. MPL mutations in myeloproliferative disorders: analysis of the PT-1 cohort. Blood 2008; 112 (1) 141-149
  • 36 Guglielmelli P, Pancrazzi A, Bergamaschi G , et al; GIMEMA--Italian Registry of Myelofibrosis; MPD Research Consortium. Anaemia characterises patients with myelofibrosis harbouring Mpl mutation. Br J Haematol 2007; 137 (3) 244-247
  • 37 Vannucchi AM, Antonioli E, Guglielmelli P, Pardanani A, Tefferi A. Clinical correlates of JAK2V617F presence or allele burden in myeloproliferative neoplasms: a critical reappraisal. Leukemia 2008; 22 (7) 1299-1307
  • 38 Delhommeau F, Dupont S, Della Valle V , et al. Mutation in TET2 in myeloid cancers. N Engl J Med 2009; 360 (22) 2289-2301
  • 39 Vannucchi AM, Guglielmelli P. Molecular pathophysiology of Philadelphia-negative myeloproliferative disorders: beyond JAK2 and MPL mutations. Haematologica 2008; 93 (7) 972-976
  • 40 Vannucchi AM, Guglielmelli P, Rambaldi A, Bogani C, Barbui T. Epigenetic therapy in myeloproliferative neoplasms: evidence and perspectives. J Cell Mol Med 2009; 13 (8A) 1437-1450
  • 41 Shih AH, Abdel-Wahab O, Patel JP, Levine RL. The role of mutations in epigenetic regulators in myeloid malignancies. Nat Rev Cancer 2012; 12 (9) 599-612
  • 42 Vainchenker W, Delhommeau F, Constantinescu SN, Bernard OA. New mutations and pathogenesis of myeloproliferative neoplasms. Blood 2011; 118 (7) 1723-1735
  • 43 Vannucchi AM, Biamonte F. Epigenetics and mutations in chronic myeloproliferative neoplasms. Haematologica 2011; 96 (10) 1398-1402
  • 44 Guglielmelli P, Biamonte F, Score J , et al. EZH2 mutational status predicts poor survival in myelofibrosis. Blood 2011; 118 (19) 5227-5234
  • 45 Puda A, Milosevic JD, Berg T , et al. Frequent deletions of JARID2 in leukemic transformation of chronic myeloid malignancies. Am J Hematol 2012; 87 (3) 245-250
  • 46 Milosevic JD, Puda A, Malcovati L , et al. Clinical significance of genetic aberrations in secondary acute myeloid leukemia. Am J Hematol 2012; 87 (11) 1010-1016
  • 47 Harutyunyan A, Klampfl T, Cazzola M, Kralovics R. p53 lesions in leukemic transformation. N Engl J Med 2011; 364 (5) 488-490
  • 48 Cervantes F, Passamonti F, Barosi G. Life expectancy and prognostic factors in the classic BCR/ABL-negative myeloproliferative disorders. Leukemia 2008; 22 (5) 905-914
  • 49 Passamonti F, Rumi E, Pungolino E , et al. Life expectancy and prognostic factors for survival in patients with polycythemia vera and essential thrombocythemia. Am J Med 2004; 117 (10) 755-761
  • 50 Passamonti F. Prognostic factors and models in polycythemia vera, essential thrombocythemia, and primary myelofibrosis. Clin Lymphoma Myeloma Leuk 2011; 11 (Suppl. 01) S25-S27
  • 51 Hultcrantz M, Kristinsson SY, Andersson TM-L , et al. Patterns of survival among patients with myeloproliferative neoplasms diagnosed in Sweden from 1973 to 2008: a population-based study. J Clin Oncol 2012; 30 (24) 2995-3001
  • 52 Falanga A, Marchetti M. Thrombotic disease in the myeloproliferative neoplasms. Hematology (Am Soc Hematol Educ Program) 2012; 2012 (1) 571-581
  • 53 De Stefano V, Martinelli I. Splanchnic vein thrombosis: clinical presentation, risk factors and treatment. Intern Emerg Med 2010; 5 (6) 487-494
  • 54 Kiladjian JJ, Cervantes F, Leebeek FW , et al. The impact of JAK2 and MPL mutations on diagnosis and prognosis of splanchnic vein thrombosis: a report on 241 cases. Blood 2008; 111 (10) 4922-4929
  • 55 Michiels JJ, Berneman Z, Van Bockstaele D, van der Planken M, De Raeve H, Schroyens W. Clinical and laboratory features, pathobiology of platelet-mediated thrombosis and bleeding complications, and the molecular etiology of essential thrombocythemia and polycythemia vera: therapeutic implications. Semin Thromb Hemost 2006; 32 (3) 174-207
  • 56 Barbui T, Carobbio A, Cervantes F , et al. Thrombosis in primary myelofibrosis: incidence and risk factors. Blood 2010; 115 (4) 778-782
  • 57 Marchioli R, Finazzi G, Landolfi R , et al. Vascular and neoplastic risk in a large cohort of patients with polycythemia vera. J Clin Oncol 2005; 23 (10) 2224-2232
  • 58 Marchioli R, Finazzi G, Specchia G , et al; CYTO-PV Collaborative Group. Cardiovascular events and intensity of treatment in polycythemia vera. N Engl J Med 2013; 368 (1) 22-33
  • 59 De Stefano V, Za T, Rossi E , et al; GIMEMA CMD-Working Party. Recurrent thrombosis in patients with polycythemia vera and essential thrombocythemia: incidence, risk factors, and effect of treatments. Haematologica 2008; 93 (3) 372-380
  • 60 De Stefano V, Za T, Rossi E , et al; GIMEMA Chronic Myeloproliferative Neoplasms Working Party. Increased risk of recurrent thrombosis in patients with essential thrombocythemia carrying the homozygous JAK2 V617F mutation. Ann Hematol 2010; 89 (2) 141-146
  • 61 Barbui T, Barosi G, Birgegard G , et al; European LeukemiaNet. Philadelphia-negative classical myeloproliferative neoplasms: critical concepts and management recommendations from European LeukemiaNet. J Clin Oncol 2011; 29 (6) 761-770
  • 62 Passamonti F. How I treat polycythemia vera. Blood 2012; 120 (2) 275-284
  • 63 Harrison CN, Bareford D, Butt N , et al; British Committee for Standards in Haematology. Guideline for investigation and management of adults and children presenting with a thrombocytosis. Br J Haematol 2010; 149 (3) 352-375
  • 64 Stein BL, Saraf S, Sobol U , et al. Age-related differences in disease characteristics and clinical outcomes in polycythemia vera. Leuk Lymphoma 2013; (e-pub ahead of print) doi: 10.3109/10428194.2012.759656
  • 65 Marchetti M, Falanga A. Leukocytosis, JAK2V617F mutation, and hemostasis in myeloproliferative disorders. Pathophysiol Haemost Thromb 2008; 36 (3–4) 148-159
  • 66 Di Nisio M, Barbui T, Di Gennaro L , et al; European Collaboration on Low-dose Aspirin in Polycythemia Vera (ECLAP) Investigators. The haematocrit and platelet target in polycythemia vera. Br J Haematol 2007; 136 (2) 249-259
  • 67 Tefferi A, Gangat N, Wolanskyj AP. Management of extreme thrombocytosis in otherwise low-risk essential thrombocythemia; does number matter?. Blood 2006; 108 (7) 2493-2494
  • 68 Castaman G, Lattuada A, Ruggeri M, Tosetto A, Mannucci PM, Rodeghiero F. Platelet von Willebrand factor abnormalities in myeloproliferative syndromes. Am J Hematol 1995; 49 (4) 289-293
  • 69 Spivak JL. Polycythemia vera: myths, mechanisms, and management. Blood 2002; 100 (13) 4272-4290
  • 70 Pearson TC, Wetherley-Mein G. Vascular occlusive episodes and venous haematocrit in primary proliferative polycythaemia. Lancet 1978; 2 (8102) 1219-1222
  • 71 Streiff MB, Smith B, Spivak JL. The diagnosis and management of polycythemia vera in the era since the Polycythemia Vera Study Group: a survey of American Society of Hematology members' practice patterns. Blood 2002; 99 (4) 1144-1149
  • 72 Spivak JL. Polycythemia vera, the hematocrit, and blood-volume physiology. N Engl J Med 2013; 368 (1) 76-78
  • 73 Barbui T, Carobbio A, Rambaldi A, Finazzi G. Perspectives on thrombosis in essential thrombocythemia and polycythemia vera: is leukocytosis a causative factor?. Blood 2009; 114 (4) 759-763
  • 74 Landolfi R, Di Gennaro L, Barbui T , et al; European Collaboration on Low-Dose Aspirin in Polycythemia Vera (ECLAP). Leukocytosis as a major thrombotic risk factor in patients with polycythemia vera. Blood 2007; 109 (6) 2446-2452
  • 75 Carobbio A, Antonioli E, Guglielmelli P , et al. Leukocytosis and risk stratification assessment in essential thrombocythemia. J Clin Oncol 2008; 26 (16) 2732-2736
  • 76 Carobbio A, Finazzi G, Antonioli E , et al. Thrombocytosis and leukocytosis interaction in vascular complications of essential thrombocythemia. Blood 2008; 112 (8) 3135-3137
  • 77 Passamonti F, Rumi E, Pascutto C, Cazzola M, Lazzarino M. Increase in leukocyte count over time predicts thrombosis in patients with low-risk essential thrombocythemia. J Thromb Haemost 2009; 7 (9) 1587-1589
  • 78 Gangat N, Wolanskyj AP, Schwager SM, Hanson CA, Tefferi A. Leukocytosis at diagnosis and the risk of subsequent thrombosis in patients with low-risk essential thrombocythemia and polycythemia vera. Cancer 2009; 115 (24) 5740-5745
  • 79 De Stefano V, Za T, Rossi E , et al; GIMEMA Chronic Myeloproliferative Neoplasms Working Party. Leukocytosis is a risk factor for recurrent arterial thrombosis in young patients with polycythemia vera and essential thrombocythemia. Am J Hematol 2010; 85 (2) 97-100
  • 80 Antonioli E, Guglielmelli P, Pancrazzi A , et al. Clinical implications of the JAK2 V617F mutation in essential thrombocythemia. Leukemia 2005; 19 (10) 1847-1849
  • 81 Antonioli E, Guglielmelli P, Poli G , et al; Myeloproliferative Disorders Research Consortium (MPD-RC). Influence of JAK2V617F allele burden on phenotype in essential thrombocythemia. Haematologica 2008; 93 (1) 41-48
  • 82 Wolanskyj AP, Lasho TL, Schwager SM , et al. JAK2 mutation in essential thrombocythaemia: clinical associations and long-term prognostic relevance. Br J Haematol 2005; 131 (2) 208-213
  • 83 Vannucchi AM, Antonioli E, Guglielmelli P , et al. Clinical profile of homozygous JAK2 617V > F mutation in patients with polycythemia vera or essential thrombocythemia. Blood 2007; 110 (3) 840-846
  • 84 Vannucchi AM, Antonioli E, Guglielmelli P , et al; MPD Research Consortium. Prospective identification of high-risk polycythemia vera patients based on JAK2(V617F) allele burden. Leukemia 2007; 21 (9) 1952-1959
  • 85 Vannucchi AM, Pieri L, Guglielmelli P. JAK2 allele burden in the myeloproliferative neoplasms: effects on phenotype, prognosis and change with treatment. Therapeutic Advances in Hematology 2011; 2 (1) 21-32
  • 86 Ziakas PD. Effect of JAK2 V617F on thrombotic risk in patients with essential thrombocythemia: measuring the uncertain. Haematologica 2008; 93 (9) 1412-1414
  • 87 Dahabreh IJ, Zoi K, Giannouli S, Zoi C, Loukopoulos D, Voulgarelis M. Is JAK2 V617F mutation more than a diagnostic index? A meta-analysis of clinical outcomes in essential thrombocythemia. Leuk Res 2009; 33 (1) 67-73
  • 88 Lussana F, Caberlon S, Pagani C, Kamphuisen PW, Büller HR, Cattaneo M. Association of V617F Jak2 mutation with the risk of thrombosis among patients with essential thrombocythaemia or idiopathic myelofibrosis: a systematic review. Thromb Res 2009; 124 (4) 409-417
  • 89 Tefferi A, Strand JJ, Lasho TL , et al. Bone marrow JAK2V617F allele burden and clinical correlates in polycythemia vera. Leukemia 2007; 21 (9) 2074-2075
  • 90 Passamonti F, Rumi E, Pietra D , et al. A prospective study of 338 patients with polycythemia vera: the impact of JAK2 (V617F) allele burden and leukocytosis on fibrotic or leukemic disease transformation and vascular complications. Leukemia 2010; 24 (9) 1574-1579
  • 91 Silver RT, Vandris K, Wang YL , et al. JAK2(V617F) allele burden in polycythemia vera correlates with grade of myelofibrosis, but is not substantially affected by therapy. Leuk Res 2011; 35 (2) 177-182
  • 92 Carobbio A, Finazzi G, Antonioli E , et al. JAK2V617F allele burden and thrombosis: a direct comparison in essential thrombocythemia and polycythemia vera. Exp Hematol 2009; 37 (9) 1016-1021
  • 93 Malak S, Labopin M, Saint-Martin C, Bellanne-Chantelot C, Najman A. French Group of Familial Myeloproliferative Disorders. Long term follow up of 93 families with myeloproliferative neoplasms: life expectancy and implications of JAK2V617F in the occurrence of complications. Blood Cells Mol Dis 2012; 49 (3–4) 170-176
  • 94 De Stefano V, Fiorini A, Rossi E , et al. Incidence of the JAK2 V617F mutation among patients with splanchnic or cerebral venous thrombosis and without overt chronic myeloproliferative disorders. J Thromb Haemost 2007; 5 (4) 708-714
  • 95 Dentali F, Squizzato A, Brivio L , et al. JAK2V617F mutation for the early diagnosis of Ph- myeloproliferative neoplasms in patients with venous thromboembolism: a meta-analysis. Blood 2009; 113 (22) 5617-5623
  • 96 Qi X, Zhang C, Han G , et al. Prevalence of the JAK2V617F mutation in Chinese patients with Budd-Chiari syndrome and portal vein thrombosis: a prospective study. J Gastroenterol Hepatol 2012; 27 (6) 1036-1043
  • 97 Westbrook RH, Lea NC, Mohamedali AM , et al. Prevalence and clinical outcomes of the 46/1 haplotype, Janus kinase 2 mutations, and ten-eleven translocation 2 mutations in Budd-Chiari syndrome and their impact on thrombotic complications post liver transplantation. Liver Transpl 2012; 18 (7) 819-827
  • 98 Villani L, Bergamaschi G, Primignani M , et al. JAK2 46/1 haplotype predisposes to splanchnic vein thrombosis-associated BCR-ABL negative classic myeloproliferative neoplasms. Leuk Res 2012; 36 (1) e7-e9
  • 99 Guglielmelli P, Fatini C, Lenti M, Bosi A, Vannucchi AM. JAK2V617F mutation screening in patients with retinal vein thrombosis or recurrent fetal loss. Thromb Res 2009; 124 (3) 377-378
  • 100 Mercier E, Lissalde-Lavigne G, Gris JC. JAK2 V617F mutation in unexplained loss of first pregnancy. N Engl J Med 2007; 357 (19) 1984-1985
  • 101 Passamonti F, Rumi E, Pietra D , et al. Relation between JAK2 (V617F) mutation status, granulocyte activation, and constitutive mobilization of CD34+ cells into peripheral blood in myeloproliferative disorders. Blood 2006; 107 (9) 3676-3682
  • 102 Falanga A, Marchetti M, Evangelista V , et al. Polymorphonuclear leukocyte activation and hemostasis in patients with essential thrombocythemia and polycythemia vera. Blood 2000; 96 (13) 4261-4266
  • 103 Kralovics R, Teo SS, Buser AS , et al. Altered gene expression in myeloproliferative disorders correlates with activation of signaling by the V617F mutation of Jak2. Blood 2005; 106 (10) 3374-3376
  • 104 Falanga A, Marchetti M, Vignoli A , et al. V617F JAK-2 mutation in patients with essential thrombocythemia: relation to platelet, granulocyte, and plasma hemostatic and inflammatory molecules. Exp Hematol 2007; 35 (5) 702-711
  • 105 Panova-Noeva M, Marchetti M, Buoro S , et al. JAK2V617F mutation and hydroxyurea treatment as determinants of immature platelet parameters in essential thrombocythemia and polycythemia vera patients. Blood 2011; 118 (9) 2599-2601
  • 106 Panova-Noeva M, Marchetti M, Spronk HM , et al. Platelet-induced thrombin generation by the calibrated automated thrombogram assay is increased in patients with essential thrombocythemia and polycythemia vera. Am J Hematol 2011; 86 (4) 337-342
  • 107 Marchetti M, Castoldi E, Spronk HM , et al. Thrombin generation and activated protein C resistance in patients with essential thrombocythemia and polycythemia vera. Blood 2008; 112 (10) 4061-4068
  • 108 De Stefano V, Za T, Rossi E , et al. Influence of the JAK2 V617F mutation and inherited thrombophilia on the thrombotic risk among patients with essential thrombocythemia. Haematologica 2009; 94 (5) 733-737
  • 109 Arellano-Rodrigo E, Alvarez-Larrán A, Reverter JC , et al. Platelet turnover, coagulation factors, and soluble markers of platelet and endothelial activation in essential thrombocythemia: relationship with thrombosis occurrence and JAK2 V617F allele burden. Am J Hematol 2009; 84 (2) 102-108
  • 110 De Grandis M, Cambot M, Wautier MP , et al. JAK2V617F activates Lu/BCAM-mediated red cell adhesion in polycythemia vera through an EpoR-independent Rap1/Akt pathway. Blood 2013; 121 (4) 658-665
  • 111 Massa M, Rosti V, Ramajoli I , et al. Circulating CD34 + , CD133 + , and vascular endothelial growth factor receptor 2-positive endothelial progenitor cells in myelofibrosis with myeloid metaplasia. J Clin Oncol 2005; 23 (24) 5688-5695
  • 112 Rosti V, Bonetti E, Bergamaschi G , et al; AGIMM Investigators. High frequency of endothelial colony forming cells marks a non-active myeloproliferative neoplasm with high risk of splanchnic vein thrombosis. PLoS ONE 2010; 5 (12) e15277
  • 113 Teofili L, Martini M, Iachininoto MG , et al. Endothelial progenitor cells are clonal and exhibit the JAK2(V617F) mutation in a subset of thrombotic patients with Ph-negative myeloproliferative neoplasms. Blood 2011; 117 (9) 2700-2707
  • 114 Sozer S, Fiel MI, Schiano T, Xu M, Mascarenhas J, Hoffman R. The presence of JAK2V617F mutation in the liver endothelial cells of patients with Budd-Chiari syndrome. Blood 2009; 113 (21) 5246-5249
  • 115 Yoder MC, Mead LE, Prater D , et al. Redefining endothelial progenitor cells via clonal analysis and hematopoietic stem/progenitor cell principals. Blood 2007; 109 (5) 1801-1809
  • 116 Rosti V, Villani L, Riboni R , et al. Spleen endothelial cells from patients with myelofibrosis harbor the JAK2V617F mutation. Blood 2013; 121 (2) 360-368
  • 117 Hasselbalch HC. Perspectives on chronic inflammation in essential thrombocythemia, polycythemia vera, and myelofibrosis: is chronic inflammation a trigger and driver of clonal evolution and development of accelerated atherosclerosis and second cancer?. Blood 2012; 119 (14) 3219-3225
  • 118 Tefferi A, Vaidya R, Caramazza D, Finke C, Lasho T, Pardanani A. Circulating interleukin (IL)-8, IL-2R, IL-12, and IL-15 levels are independently prognostic in primary myelofibrosis: a comprehensive cytokine profiling study. J Clin Oncol 2011; 29 (10) 1356-1363
  • 119 Vaidya R, Gangat N, Jimma T , et al. Plasma cytokines in polycythemia vera: phenotypic correlates, prognostic relevance, and comparison with myelofibrosis. Am J Hematol 2012; 87 (11) 1003-1005
  • 120 Vannucchi AM. From palliation to targeted therapy in myelofibrosis. N Engl J Med 2010; 363 (12) 1180-1182
  • 121 Barbui T, Carobbio A, Finazzi G , et al; AGIMM and IIC Investigators. Inflammation and thrombosis in essential thrombocythemia and polycythemia vera: different role of C-reactive protein and pentraxin 3. Haematologica 2011; 96 (2) 315-318
  • 122 Verstovsek S, Mesa RA, Gotlib J , et al. A double-blind, placebo-controlled trial of ruxolitinib for myelofibrosis. N Engl J Med 2012; 366 (9) 799-807
  • 123 Harrison C, Kiladjian J-J, Al-Ali HK , et al. JAK inhibition with ruxolitinib versus best available therapy for myelofibrosis. N Engl J Med 2012; 366 (9) 787-798
  • 124 Verstovsek S, Kantarjian H, Mesa RA , et al. Safety and efficacy of INCB018424, a JAK1 and JAK2 inhibitor, in myelofibrosis. N Engl J Med 2010; 363 (12) 1117-1127
  • 125 Verstovsek S, Passamonti F, Rambaldi A , et al. Long-term efficacy and safety results from a phase II study of Ruxolitinib in patients with polycythemia vera. ASH Annual Meeting. Abstract 120(21):804