Deutsche Zeitschrift für Onkologie 2009; 41(3): 109-114
DOI: 10.1055/s-0029-1213578
Forschung

© Karl F. Haug Verlag in MVS Medizinverlage Stuttgart GmbH & Co. KG

Glucosinolate der Kreuzblütlerfamilie in Prävention und Therapie maligner Tumore

Ingrid Herr, Markus Büchler
Further Information

Publication History

Publication Date:
24 September 2009 (online)

Zusammenfassung

Das traditionelle Wissen der Nahrungsheilkunde erlebt derzeit aufgrund neuer Kenntnisse ernährungswissenschaftlicher und medizinischer Forschung eine relevante Bereicherung. Heute ist erklärbar, warum bestimmte Lebensmittel therapeutische Wirkungen besitzen und weshalb der Verzehr von Obst und Gemüse zu einer geringeren Häufigkeit bestimmter Krebsarten führen kann. Sekundären Pflanzenstoffen und vor allem Glucosinolaten aus Gemüse der Kreuzblütlerfamilie wird eine chemopräventive und antikanzerogene Wirkung zugeschrieben. Der vorliegende Artikel gibt eine Übersicht über sekundäre Pflanzenstoffe im Allgemeinen und fokussiert anschließend auf Mechanismen und antikanzerogene Wirkung der Kreuzblütlergewächse, darunter insbesondere der Kohlfamilie und ihres populären Mitglieds Brokkoli.

Summary

The traditional knowledge of naturopathy currently experiences a renaissance due to new knowledge of nutritional science and medical research. Today it can be explained why certain foods have therapeutic effects and why the consumption of fruits and vegetables may lead to a reduced frequency of certain cancer entities. Secondary plant products and especially glucosinolates from vegetables of the cruciferous plant family are supposed to have anticarcinogenic potential. The present article gives an overview about secondary plant products in general and focuses to mechanisms of anticarcinogenic effects of cruciferous plants, particular the brassica family and their famous member broccoli.

Literatur

  • 01 Ambrosone C B, McCann S E, Freudenheim J L. Breast cancer risk in premenopausal women is inversely associated with consumption of broccoli, a source of isothiocyanates, but is not modified by GST genotype.  J Nutr. 2004;  134 1134-1138
  • 02 Beliveau R, Gingras D. Krebszellen mögen keine Himbeeren. Nahrungsmittel gegen Krebs. 10. Aufl. München; Kösel 2008
  • 03 Bertl E, Bartsch H, Gerhauser C. Inhibition of angiogenesis and endothelial cell functions are novel sulforaphane-mediated mechanisms in chemoprevention.  Molecular Cancer Therapeutics. 2006;  5 575-585
  • 04 Chung F L, Conaway C C, Rao C V, Reddy B S. Chemoprevention of colonic aberrant crypt foci in Fischer rats by sulforaphane and phenethyl isothiocyanate.  Carcinogenesis. 2000;  21 2287-2291
  • 05 Cohen J H, Kristal A R, Stanford J L. Fruit and vegetable intakes and prostate cancer risk.  J National Cancer Inst. 2000;  92 61-68
  • 06 Conaway C C, Wang C X, Pittman B. et al . Phenethyl isothiocyanate and sulforaphane and their N-acetylcysteine conjugates inhibit malignant progression of lung adenomas induced by tobacco carcinogens in A/J mice.  Cancer Res. 2005;  65 8548-8557
  • 07 Cordell G A. Anticancer agents from plants. In: Reinhold L, Harborne JB, Swain T, eds. Progress in Phytochemistry Oxford; 1978: 273-316
  • 08 Cornblatt B S, Ye L, Dinkova-Kostova A T. et al . Preclinical and clinical evaluation of sulforaphane for chemoprevention in the breast.  Carcinogenesis. 2007;  28 1485-1490
  • 09 De Vos R, Blijleven W G H. The effect of processing conditions on glucosinolates in cruciferous vegetables.  Z Lebensm Unters Forsch. 1988;  187 525-529
  • 10 Fahey J W, Haristoy X, Dolan P M. et al . Sulforaphane inhibits extracellular, intracellular, and antibiotic-resistant strains of Helicobacter pylori and prevents benzo[a]pyrene-induced stomach tumors.  Proceedings of the National Academy of Sciences of the United States of America. 2002;  99 7610-7615
  • 11 Fahey J W, Zhang Y, Talalay P. Broccoli sprouts: an exceptionally rich source of inducers of enzymes that protect against chemical carcinogens.  Proceedings of the National Academy of Sciences of the United States of America. 1997;  94 10367-10372
  • 12 Fenwick G R, Heaney R K, Mullin W J. Glucosinolates and their breakdown products in food and food plants.  Crit Rev Food Sci Nutr. 1983;  18 123-148
  • 13 Fowke J H, Chung F L, Jin F. et al . Urinary isothiocyanate levels, brassica, and human breast cancer.  Cancer Res. 2003;  63 3980-3986
  • 14 Gamet-Payrastre L, Li P, Lumeau S. et al . Sulforaphane, a naturally occurring isothiocyanate, induces cell cycle arrest and apoptosis in HT29 human colon cancer cells.  Cancer Res. 2000;  60 1426-1433
  • 15 Gasper A V, Traka M, Bacon J R. et al . Consuming broccoli does not induce genes associated with xenobiotic metabolism and cell cycle control in human gastric mucosa.  J Nutr. 2007;  137 1718-1724
  • 16 Giovannucci E, Rimm E B, Liu Y, Stampfer M J, Willett W C. A prospective study of cruciferous vegetables and prostate cancer.  Cancer Epidemiol Biomarkers Prev. 2003;  12 1403-1409
  • 17 Heiss E, Herhaus C, Klimo K, Bartsch H, Gerhauser C. Nuclear factor kappa B is a molecular target for sulforaphane-mediated anti-inflammatory mechanisms.  J Biol Chem. 2001;  276 32008-32015
  • 18 Jacobey H, Habegger R, Fritz D. Gemüse als Arzneipflanze. Sekundäre Pflanzenstoffe in Gemüse mit Bedeutung für die menschliche Gesundheit. 1. Mitteilung: Gemüse aus der Familie der Liliaceae.  Ernährungs Umschau. 1988;  35 212-215
  • 19 Jacobey H, Habegger R, Fritz D. Gemüse als Arzneipflanze. Sekundäre Pflanzenstoffe in Gemüse und mit Bedeutung für die menschliche Gesundheit. 2. Mitteilung: Gemüse aus der Familie der Brassicaceae und der Familie der Apiaceae.  Ernährungs Umschau. 1988;  35 320-322
  • 20 Joseph M A, Moysich K B, Freudenheim J L. et al . Cruciferous vegetables, genetic polymorphisms in glutathione S-transferases M1 and T1, and prostate cancer risk.  Nutr Cancer. 2004;  50 206-213
  • 21 Juge N, Mithen R F, Traka M. Molecular basis for chemoprevention by sulforaphane: a comprehensive review.  Cell Mol Life Sci. 2007;  64 1105-1127
  • 22 Kallifatidis G, Rausch V, Baumann B. et al . Sulforaphane targets pancreatic tumour-initiating cells by NF-kappaB-induced antiapoptotic signalling.  Gut. 2009;  58 949-963
  • 23 Kirsh V A, Peters U, Mayne S T. et al . Prospective study of fruit and vegetable intake and risk of prostate cancer.  J National Cancer Inst. 2007;  99 1200-1209
  • 24 Kuroiwa Y, Nishikawa A, Kitamura Y. et al . Protective effects of benzyl isothiocyanate and sulforaphane but not resveratrol against initiation of pancreatic carcinogenesis in hamsters.  Cancer Lett. 2006;  241 275-280
  • 25 Lange R, Baumgrass R, Diedrich M, Henschel K-P, Kujawa M. Glucosinolate in der Ernährung – Pro und Contra einer Naturstoffklasse. Teil II: Abbau und Stoffwechsel.  Ernährungs Umschau. 1992;  39 292-296
  • 26 Leopold C A, Ardrey R. Toxic substances in plants and the food habits of early man.  Science. 1972;  176 512-514
  • 27 Lin H J, Probst-Hensch N M, Louie A D. et al . Glutathione transferase null genotype, broccoli, and lower prevalence of colorectal adenomas.  Cancer Epidemiol Biomarkers Prev. 1998;  7 647-652
  • 28 London S J, Yuan J M, Chung F L. et al . Isothiocyanates, glutathione S-transferase M1 and T1 polymorphisms, and lung-cancer risk: a prospective study of men in Shanghai, China.  Lancet. 2000;  356 724-729
  • 29 Nugon-Baudon L, Rabot S. Glucosinolates and glucosinolate derivatives: Implications for protection against chemical carcinogenesis.  Nutr Res Rev. 1994;  7 205-231
  • 30 Olea F, Parras P. Determination of serum levels of dietary thiocyanate.  J Anal Toxicol. 1992;  16 258-260
  • 31 Orzechowski R. A review of cardiovascular anatomy and physiology.  Am J Pharm Sci Support Public Health. 1972;  144 54-64
  • 32 Pham N A, Jacobberger J W, Schimmer A D. et al . The dietary isothiocyanate sulforaphane targets pathways of apoptosis, cell cycle arrest, and oxidative stress in human pancreatic cancer cells and inhibits tumor growth in severe combined immunodeficient mice.  Molecular Cancer Therapeutics. 2004;  3 1239-1248
  • 33 Pelt J M. Pflanzenmedizin: Heilkraft aus der Natur. Düsseldorf; Econ 1983
  • 34 Ratzka A, Vogel H, Kliebenstein D J. et al . Disarming the mustard oil bomb.  Proceedings of the National Academy of Sciences of the United States of America. 2002;  99 11223-11228
  • 35 Rosa E A S, Heaney R K. The effect of cooking and processing on the glucosinolate content: studies on four varieties of portuguese cabbage and hybrid white cabbage.  J Sci Food Agric. 1993;  62 259-265
  • 36 Seow A, Yuan J M, Sun C L. et al . Dietary isothiocyanates, glutathione S-transferase polymorphisms and colorectal cancer risk in the Singapore Chinese Health Study.  Carcinogenesis. 2002;  23 2055-2061
  • 37 Shankar S, Singh G, Srivastava R K. Chemoprevention by resveratrol: molecular mechanisms and therapeutic potential.  Front Biosci. 2007;  12 4839-4854
  • 38 Shishu, Singla A K, Kaur I P. Inhibition of mutagenicity of food-derived heterocyclic amines by sulphoraphene – an isothiocyanate isolated from radish.  Planta medica. 2003;  69 184-186
  • 39 Singh A V, Xiao D, Lew K L, Dhir R, Singh S V. Sulforaphane induces caspase-mediated apoptosis in cultured PC-3 human prostate cancer cells and retards growth of PC-3 xenografts in vivo.  Carcinogenesis. 2004;  25 83-90
  • 40 Sones K, Heaney R K, Fenwick G R. An estimate of the mean daily intake of glucosinolates from cruciferous vegetables in the UK.  J Sci Food Agric. 1984;  35 712-720
  • 41 Spitz M R, Duphorne C M, Detry M A. et al . Dietary intake of isothiocyanates: evidence of a joint effect with glutathione S-transferase polymorphisms in lung cancer risk.  Cancer Epidemiol Biomarkers Prev. 2000;  9 1017-1020
  • 42 Stan S D, Kar S, Stoner G D, Singh S V. Bioactive food components and cancer risk reduction.  J Cell Biochem. 2008;  104 339-356
  • 43 Teuscher E. Sekundärstoffe – Favoriten bei der Suche nach neuen Arzneistoffen?.  Dtsch Apoth-Ztg. 1990;  130 1627-1633
  • 44 Traka M, Gasper A V, Melchini A. et al . Broccoli consumption interacts with GSTM1 to perturb oncogenic signalling pathways in the prostate.  PLoS ONE. 2008;  3 e2568
  • 45 Wang L I, Giovannucci E L, Hunter D. et al . Dietary intake of Cruciferous vegetables, Glutathione S-transferase (GST) polymorphisms and lung cancer risk in a Caucasian population.  Cancer Causes Control. 2004;  15 977-985
  • 46 Watzl B, Leitzmann C. Bioaktive Substanzen in Lebensmitteln. 3. Aufl Stuttgart; Hippokrates 2005
  • 47 Yanaka A, Fahey J W, Fukumoto A. et al .Dietary sulforaphane-rich broccoli sprouts reduce colonization and attenuate gastritis in Helicobacter pylori-infected mice and humans. Cancer Prevention Research Philadelphia, Pa; 2009 2: 353-360
  • 48 Zhang Y, Kensler T W, Cho C G, Posner G H, Talalay P. Anticarcinogenic activities of sulforaphane and structurally related synthetic norbornyl isothiocyanates.  Proceedings of the National Academy of Sciences of the United States of America. 1994;  91 3147-3150
  • 49 Zhang Y, Li J, Tang L. Cancer-preventive isothiocyanates: dichotomous modulators of oxidative stress.  Free radical biology & medicine. 2005;  38 70-77
  • 50 Zhao B, Seow A, Lee E J. et al . Dietary isothiocyanates, glutathione S-transferase -M1, -T1 polymorphisms and lung cancer risk among Chinese women in Singapore.  Cancer Epidemiol Biomarkers Prev. 2001;  10 1063-1067

Korrespondenzadresse

Prof. Dr. rer. nat. Ingrid Herr

Experimentelle Chirurgie
Chirurgische Universitätsklinik

Im Neuenheimer Feld 365

69120 Heidelberg

Email: i.herr@dkfz.de

URL: http://www.klinikum.uni-heidelberg.de/MOC

    >