Klinische Neurophysiologie 2019; 50(02): 73-82
DOI: 10.1055/a-0858-1484
Übersicht
© Georg Thieme Verlag KG Stuttgart · New York

Transkranielle Sonografie des Hirnparenchyms: etablierte Anwendungen bei Erwachsenen

Transcranial Sonography of Brain Parenchyma: Established Applications in Adults
Uwe Walter
1   Klinik und Poliklinik für Neurologie, Universitätsmedizin Rostock
,
Stephanie Behnke
2   Klinik und Poliklinik für Neurologie, Universitätskliniken des Saarlandes, Homburg/Saar
› Author Affiliations
Further Information

Publication History

Publication Date:
13 May 2019 (online)

Zusammenfassung

Die transkranielle B-Bild-Sonografie (TCS) ist eine Bildgebungsmodalität, die das Hirnparenchym und das intrakranielle Ventrikelsystem bei intakter Schädelkalotte darstellt. Im Vergleich zur Magnetresonanztomografie kann die TCS tiefe echogene Hirnstrukturen mit höherer Bildauflösung darstellen und hat zudem die Vorteile hoher Mobilität, gesundheitlicher Unbedenklichkeit und geringer Störbarkeit durch Patientenbewegungen. Das eigenständige Bildgebungsprinzip der TCS erlaubt die Visualisierung charakteristischer Veränderungen bei diversen neurodegenerativen Erkrankungen, die mit anderen Verfahren nur schwierig darstellbar sind, wie die Hyperechogenität der Substantia nigra bei idiopathischem Parkinson-Syndrom und die Hyperechogenität des Nucleus lentiformis bei atypischen Parkinson-Syndromen. Etablierten Anwendungen der TCS sind das bettseitige Monitoring raumfordernder Läsionen (intrakranielle Blutungen, maligne Hirninfarkte) bei akuten Schlaganfallpatienten, die Früh- und Differenzialdiagnose des Parkinson-Syndroms, und die postoperative Positionskontrolle von Tiefenhirnstimulations-Elektroden. Neue Technologien wie die Echtzeit-MRT-TCS-Fusionsbildgebung und die digitalisierte Bildanalyse versprechen eine breitere Anwendung der TCS in den kommenden Jahren.

Abstract

Transcranial B-mode sonography (TCS) is a neuroimaging technique that displays the brain parenchyma and the intracranial ventricular system through the intact skull. In comparison to magnetic resonance tomography, TCS can currently achieve a higher image resolution of echogenic deep brain structures, and has the advantages of high mobility, non-invasiveness, and low susceptibility to movement artefacts. The different imaging principle of TCS allows visualization of characteristic changes in several neurodegenerative diseases, such as substantia nigra hyperechogenicity in Parkinson’s disease (PD), and lenticular nucleus hyperechogenicity in atypical Parkinsonian syndromes, that can hardly be visualized with other imaging methods. Established applications of TCS include the bedside monitoring of space-occupying lesions (intracranial hematomas, malignant brain infarctions) in acute stroke patients, the early and differential diagnosis of PD, and the postoperative position control of deep brain stimulation electrodes. Novel technologies such as real-time TCS-MRI fusion imaging and digitized images analysis promise a wider application of TCS in the coming years.

 
  • Literatur

  • 1 Behnke S, Becker G. Sonographic imaging of the brain parenchyma. Eur J Ultrasound 2002; 16: 73-80
  • 2 Berg D, Godau J, Walter U. Transcranial sonography in movement disorders. Lancet Neurol 2008; 7: 1044-1055
  • 3 Walter U, Behnke S, Eyding J. et al. Transcranial brain parenchyma sonography in movement disorders: State of the art. Ultrasound Med Biol 2007; 33: 15-25
  • 4 Go CL, Frenzel A, Rosales RL. et al. Assessment of substantia nigra echogenicity in German and Filipino populations using a portable ultrasound system. J Ultrasound Med 2012; 31: 191-196
  • 5 Walter U, Kanowski M, Kaufmann J. et al. Contemporary ultrasound systems allow high-resolution transcranial imaging of small echogenic deep intracranial structures similarly as MRI: A phantom study. Neuroimage 2008; 40: 551-558
  • 6 Walter U. Transkranielle B-Bild-Sonografie tiefer Hirnstrukturen: Qualitätskriterien und diagnostische Wertigkeit. Klin Neurophysiol 2013; 44: 176-186
  • 7 Postert T, Federlein J, Przuntek H. et al. Insufficient and absent acoustic temporal bone window: potential and limitations of transcranial contrast-enhanced color-coded sonography and contrast-enhanced power-based sonography. Ultrasound Med Biol 1997; 23: 857-862
  • 8 Walter U, Skoloudík D. Transcranial sonography (TCS) of brain parenchyma in movement disorders: Quality standards, diagnostic applications and novel technologies. Ultraschall Med 2014; 35: 322-331
  • 9 Prada F, Del Bene M, Mattei L. et al. Preoperative magnetic resonance and intraoperative ultrasound fusion imaging for real-time neuronavigation in brain tumor surgery. Ultraschall Med 2015; 36: 174-186
  • 10 Moringlane JR, Fuss G, Becker G. Peroperative transcranial sonography for electrode placement into the targeted subthalamic nucleus of patients with Parkinson disease: Technical note. Surg Neurol 2005; 63: 66-69
  • 11 Walter U, Wolters A, Wittstock M. et al. Deep brain stimulation in dystonia: Sonographic monitoring of electrode placement into the globus pallidus internus. Mov Disord 2009; 24: 1538-1541
  • 12 Walter U, Frenzel A. Ultraschall des Mittelhirns. Neurophysiol Lab 2017; 39: 81-91
  • 13 Kern R, Perren F, Kreisel S. et al. Multiplanar transcranial ultrasound imaging: Standards, landmarks and correlation with magnetic resonance imaging. Ultrasound Med Biol 2005; 31: 311-315
  • 14 Walter U, Kirsch M, Wittstock M. et al. Transcranial sonographic localization of deep brain stimulation electrodes is safe, reliable and predicts clinical outcome. Ultrasound Med Biol 2011; 37: 1382-1391
  • 15 Walter U, Klucken J, Benecke R. et al. Hirnsonografie, Riechtestung und motorische Testverfahren in der Frühdiagnose des idiopathischen Parkinson-Syndroms. Akt Neurol 2012; 39: 127-134
  • 16 Walter U, Müller JU, Rösche J. et al. Magnetic resonance-transcranial ultrasound fusion imaging: A novel tool for brain electrode location. Mov Disord 2016; 31: 302-309
  • 17 Oikawa H, Sasaki M, Tamakawa Y. et al. The substantia nigra in Parkinson disease: proton density-weighted spin-echo and fast short inversion time inversion-recovery MR findings. AJNR Am J Neuroradiol 2002; 23: 1747-1756
  • 18 van de Loo S, Walter U, Behnke S. et al. Reproducibility and diagnostic accuracy of substantia nigra sonography for the diagnosis of Parkinson’s disease. J Neurol Neurosurg Psychiatry 2010; 81: 1087-1092
  • 19 Chen L, Hagenah J, Mertins A. Feature analysis for Parkinson’s disease detection based on transcranial sonography image. Med Image Comput Comput Assist Interv 2012; 15: 272-279
  • 20 Plate A, Maiostre J, Levin J. et al. A baseline study for detection of Parkinson’s disease with 3D-transcranial sonography and uni-lateral reconstruction. J Neurol Sci 2019; 397: 16-21
  • 21 Skoloudík D, Jelínková M, Blahuta J. et al. Transcranial sonography of the substantia nigra: Digital image analysis. AJNR Am J Neuroradiol 2014; 35: 2273-2278
  • 22 Berg D, Hochstrasser H, Schweitzer KJ. et al. Disturbance of iron metabolism in Parkinson’s disease – ultrasonography as a biomarker. Neurotox Res 2006; 9: 1-13
  • 23 Walter U, Wagner S, Horowski S. et al. Transcranial brain sonography findings predict disease progression in multiple sclerosis. Neurology 2009; 73: 1010-1017
  • 24 Berg D, Godau J, Riederer P. et al. Microglia activation is related to substantia nigra echogenicity. J Neural Transm 2010; 117: 1287-1292
  • 25 Berg D, Becker G, Zeiler B. et al. Vulnerability of the nigrostriatal system as detected by transcranial ultrasound. Neurology 1999; 53: 1026-1031
  • 26 Mehnert S, Reuter I, Schepp K. et al. Transcranial sonography for diagnosis of Parkinson’s disease. BMC Neurol 2010; 10: 9
  • 27 Hagenah J, König IR, Sperner J. et al. Life-long increase of substantia nigra hyperechogenicity in transcranial sonography. Neuroimage 2010; 51: 28-32
  • 28 Behnke S, Double KL, Duma S. et al. Substantia nigra echomorphology in the healthy very old: Correlation with motor slowing. Neuroimage 2007; 34: 1054-1059
  • 29 Budisic M, Trkanjec Z, Bosnjak J. et al. Distinguishing Parkinson’s disease and essential tremor with transcranial sonography. Acta Neurol Scand 2009; 119: 17-21
  • 30 Ressner P, Skoloudík D, Hlustík P. et al. Hyperechogenicity of the substantia nigra in Parkinson’s disease. J Neuroimaging 2007; 17: 164-167
  • 31 Mijajlović M, Dragasević N, Stefanova E. et al. Transcranial sonography in spinocerebellar ataxia type 2. J Neurol 2008; 255: 1164-1167
  • 32 Stockner H, Sojer M, KS K. et al. Midbrain sonography in patients with essential tremor. Mov Disord 2007; 22: 414-417
  • 33 Fedotova EIu, Chechetkin AO, Shadrina MI. et al. Transcranial sonography in Parkinson’s disease. Zh Nevrol Psikhiatr Im S S Korsakova 2011; 111: 49-55
  • 34 Kim JY, Kim ST, Jeon SH. et al. Midbrain transcranial sonography in Korean patients with Parkinson’s disease. Mov Disord 2007; 22: 1922-1926
  • 35 Huang YW, Jeng JS, Tsai CF. et al. Transcranial imaging of substantia nigra hyperechogenicity in a Taiwanese cohort of Parkinson’s disease. Mov Disord 2007; 22: 550-555
  • 36 Hagenah JM, König IR, Becker B. et al. Substantia nigra hyperechogenicity correlates with clinical status and number of Parkin mutated alleles. J Neurol 2007; 254: 1407-1413
  • 37 Glaser M, Weber U, Hinrichs H. et al. Transkranielle Sonographie des Mittelhirns mit verschiedenen Ultraschallsystemen. Klin Neurophysiol 2006; 37: 165-168
  • 38 Vivo-Orti MN, Tembl JI, Sastre-Bataller I. et al. Evaluación de la sustancia negra mediante ultrasonografía transcraneal. Rev Neurol 2013; 56: 268-274
  • 39 Becker G, Becker T, Struck M. et al. Reduced echogenicity of brainstem raphe specific to unipolar depression: A transcranial color-coded real-time sonography study. Biol Psychiatry 1995; 38: 180-184
  • 40 Šilhán P, Jelínková M, Walter U. et al. Transcranial sonography of brainstem structures in panic disorder. Psychiatry Res 2015; 234: 137-143
  • 41 Seidel G, Kaps M, Gerriets T. et al. Evaluation of the ventricular system in adults by transcranial duplex sonography. J Neuroimaging 1995; 5: 105-108
  • 42 Walter U, Dressler D, Wolters A. et al. Sonographic discrimination of corticobasal degeneration vs progressive supranuclear palsy. Neurology 2004; 63: 504-509
  • 43 Wollenweber FA, Schomburg R, Probst M. et al. Width of the third ventricle assessed by transcranial sonography can monitor brain atrophy in a time- and cost-effective manner – results from a longitudinal study on 500 subjects. Psychiatry Res 2011; 191: 212-216
  • 44 Krogias C, Hoffmann K, Eyding J. et al. Evaluation of basal ganglia, brainstem raphe and ventricles in bipolar disorder by transcranial sonography. Psychiatry Res 2011; 194: 190-197
  • 45 Naumann M, Becker G, Toyka KV. et al. Lenticular nucleus lesion in idiopathic dystonia detected by transcranial sonography. Neurology 1996; 47: 1284-1290
  • 46 Walter U, Blitzer A, Benecke R. et al. Sonographic detection of basal ganglia abnormalities in spasmodic dysphonia. Eur J Neurol 2014; 21: 349-352
  • 47 Ritter MA, Dittrich R. Morbus Fahr: Extremausprägung der bilateralen striopallidodentaten Kalzinose – Dokumentation mit CCT und transkranieller Sonografie (TCS). Klin Neurophysiol 2010; 41: 33-34
  • 48 Brüggemann N, Schneider SA, Sander T. et al. Distinct basal ganglia hyperechogenicity in idiopathic basal ganglia calcification. Mov Disord 2010; 25: 2661-2664
  • 49 Seidel G, Kaps M, Dorndorf W. Transcranial color-coded duplex sonography of intracerebral hematomas in adults. Stroke 1993; 24: 1519-1527
  • 50 Becker G, Winkler J, Hofmann E. et al. Differentiation between ischemic and hemorrhagic stroke by transcranial color-coded real-time sonography. J Neuroimaging 1993; 3: 41-47
  • 51 Woydt M, Greiner K, Perez J. et al. Transcranial duplex-sonography in intracranial hemorrhage. Evaluation of transcranial duplex-sonography in the diagnosis of spontaneous and traumatic intracranial hemorrhage. Zentralbl Neurochir 1996; 57: 129-135
  • 52 Mäurer M, Shambal S, Berg D. et al. Differentiation between intracerebral hemorrhage and ischemic stroke by transcranial color-coded duplex-sonography. Stroke 1998; 29: 2563-2567
  • 53 Niesen WD, Burkhardt D, Hoeltje J. et al. Transcranial grey-scale sonography of subdural haematoma in adults. Ultraschall Med 2006; 27: 251-255
  • 54 Niesen WD, Rosenkranz M, Weiller C. Bedsided Transcranial Sonographic Monitoring for Expansion and Progression of Subdural Hematoma Compared to Computed Tomography. Front Neurol 2018; 9: 374
  • 55 Seidel G, Cangür H, Albers T. et al. Transcranial sonographic monitoring of hemorrhagic transformation in patients with acute middle cerebral artery infarction. J Neuroimaging 2005; 15: 326-330
  • 56 Seidel G, Cangür H, Albers T. et al. Sonographic evaluation of hemorrhagic transformation and arterial recanalization in acute hemispheric ischemic stroke. Stroke 2009; 40: 119-123
  • 57 Matsumoto N, Kimura K, Iguchi Y. et al. Evaluation of cerebral hemorrhage volume using transcranial color-coded duplex sonography. J Neuroimaging 2011; 21: 355-358
  • 58 Ovesen C, Christensen AF, Krieger DW. et al. Time course of early postadmission hematoma expansion in spontaneous intracerebral hemorrhage. Stroke 2014; 45: 994-999
  • 59 Stolz E, Gerriets T, Fiss I. et al. Comparison of transcranial color-coded duplex sonography and cranial CT measurements for determining third ventricle midline shift in space-occupying stroke. AJNR Am J Neuroradiol 1999; 20: 1567-1571
  • 60 Gerriets T, Stolz E, König S. et al. Sonographic monitoring of midline shift in space-occupying stroke: An early outcome predictor. Stroke 2001; 32: 442-447
  • 61 Llompart Pou JA, Abadal Centellas JM, Palmer Sans M. et al. Monitoring midline shift by transcranial color-coded sonography in traumatic brain injury. A comparison with cranial computerized tomography. Intensive Care Med 2004; 30: 1672-1675
  • 62 Tang SC, Huang SJ, Jeng JS. et al. Third ventricle midline shift due to spontaneous supratentorial intracerebral hemorrhage evaluated by transcranial color-coded sonography. J Ultrasound Med 2006; 25: 203-209
  • 63 Horstmann S, Koziol JA, Martinez-Torres F. et al. Sonographic monitoring of mass effect in stroke patients treated with hypothermia. Correlation with intracranial pressure and matrix metalloproteinase 2 and 9 expression. J Neurol Sci 2009; 276: 75-78
  • 64 Kukulska-Pawluczuk B, Książkiewicz B, Nowaczewska M. Imaging of spontaneous intracerebral hemorrhages by means of transcranial color-coded sonography. Eur J Radiol 2012; 81: 1253-1258
  • 65 Kiphuth IC, Huttner HB, Struffert T. et al. Sonographic monitoring of ventricle enlargement in posthemorrhagic hydrocephalus. Neurology 2011; 76: 858-862
  • 66 Becker G, Seufert J, Bogdahn U. et al. Degeneration of substantia nigra in chronic Parkinson’s disease visualized by transcranial color-coded real-time sonography. Neurology 1995; 45: 182-184
  • 67 Walter U, Dressler D, Probst T. et al. Transcranial brain sonography findings in discriminating between parkinsonism and idiopathic Parkinson disease. Arch Neurol 2007; 64: 1635-1640
  • 68 Behnke S, Runkel A, Kassar HA. et al. Long-term course of substantia nigra hyperechogenicity in Parkinson’s disease. Mov Disord 2013; 28: 455-459
  • 69 Berg D, Behnke S, Seppi K. et al. Enlarged hyperechogenic substantia nigra as a risk marker for Parkinson’s disease. Mov Disord 2013; 28: 216-219
  • 70 Walter U. Substantia nigra hyperechogenicity is a risk marker of Parkinson’s disease: no. J Neural Transm 2011; 118: 607-612
  • 71 Heinzel S, Kasten M, Behnke S. et al. Age- and sex-related heterogeneity in prodromal Parkinson’s disease. Mov Disord 2018; 33: 1025-1027
  • 72 Busse K, Heilmann R, Kleinschmidt S. et al. Value of combined midbrain sonography, olfactory and motor function assessment in the differential diagnosis of early Parkinson’s disease. J Neurol Neurosurg Psychiatry 2012; 83: 441-447
  • 73 Lerche S, Seppi K, Behnke S. et al. Risk factors and prodromal markers and the development of Parkinson’s disease. J Neurol 2014; 261: 180-187
  • 74 Walter U, Heilmann R, Kaulitz L. et al. Prediction of Parkinson’s disease subsequent to severe depression: A ten-year follow-up study. J Neural Transm (Vienna) 2015; 122: 789-797
  • 75 Doepp F, Plotkin M, Siegel L. et al. Brain parenchyma sonography and 123I-FP-CIT SPECT in Parkinson’s disease and essential tremor. Mov Disord 2008; 23: 405-410
  • 76 Walter U, Niehaus L, Probst T. et al. Brain parenchyma sonography discriminates Parkinson’s disease and atypical parkinsonian syndromes. Neurology 2003; 60: 74-77
  • 77 Gaenslen A, Unmuth B, Godau J. et al. The specificity and sensitivity of transcranial ultrasound in the differential diagnosis of Parkinson’s disease: A prospective blinded study. Lancet Neurol 2008; 7: 417-424
  • 78 Walter U, Dressler D, Wolters A. et al. Sonographic discrimination of dementia with Lewy bodies and Parkinson’s disease with dementia. J Neurol 2006; 253: 448-454
  • 79 Behnke S, Berg D, Naumann M. et al. Differentiation of Parkinson’s disease and atypical parkinsonian syndromes by transcranial ultrasound. J Neurol Neurosurg Psychiatry 2005; 76: 423-425
  • 80 Hellwig S, Reinhard M, Amtage F. et al. Transcranial sonography and [18F] fluorodeoxyglucose positron emission tomography for the differential diagnosis of parkinsonism: A head-to-head comparison. Eur J Neurol 2014; 21: 860-866
  • 81 Walter U, Krolikowski K, Tarnacka B. et al. Sonographic detection of basal ganglia lesions in asymptomatic and symptomatic Wilson disease. Neurology 2005; 64: 1726-1732
  • 82 Walter U, Dressler D, Lindemann C. et al. Transcranial sonography findings in welding-related Parkinsonism in comparison to Parkinson’s disease. Mov Disord 2008; 23: 141-145
  • 83 Behnke S, Hellwig D, Burmann J. et al. Evaluation of transcranial sonographic findings and MIBG cardiac scintigraphy in the diagnosis of idiopathic Parkinson’s disease. Parkinsonism Relat Disord 2013; 19: 995-999
  • 84 Fujita H, Suzuki K, Numao A. et al. Usefulness of Cardiac MIBG Scintigraphy, Olfactory Testing and Substantia Nigra Hyperechogenicity as Additional Diagnostic Markers for Distinguishing between Parkinson’s Disease and Atypical Parkinsonian Syndromes. PLoS One 2016; 11: e0165869
  • 85 Iranzo A, Lomena F, Stockner H. et al. Decreased striatal dopamine transporter uptake and substantia nigra hyperechogenicity as risk markers of synucleinopathy in patients with idiopathic rapid-eye-movement sleep behaviour disorder: A prospective study. Lancet Neurol 2010; 9: 1070-1077
  • 86 Berardelli A, Wenning GK, Antonini A. et al. EFNS/MDS-ES/ENS recommendations for the diagnosis of Parkinson’s disease. Eur J Neurol 2013; 20: 16-34
  • 87 Walter U. Transcranial sonography-assisted stereotaxy and follow-up of deep brain implants in patients with movement disorders. Int Rev Neurobiol 2010; 90: 274-285
  • 88 Ispierto L, Muñoz J, Cladellas JM. et al. Post-Operative Localization of Deep Brain Stimulation Electrodes in the Subthalamus Using Transcranial Sonography. Neuromodulation 2018; 21: 574-581