Rofo 2019; 191(04): 357-366
DOI: 10.1055/a-0853-2744
100. Deutscher Röntgenkongress
© Georg Thieme Verlag KG Stuttgart · New York

Vom Röntgen zum PET/MRT, und dann? – Zukunftsweisende Bildgebung in der Kinderradiologie

From Xrays to PET/MR, and then? – Future imaging in pediatric radiology
Gundula Staatz
1   Department of Diagnostic and Interventional Radiology, Section of Pediatric Radiology, Medical Center of the Johannes-Gutenberg-University Mainz, Germany
,
Heike Elisabeth Daldrup-Link
2   Department of Radiology, Stanford-University Medical Center, Stanford, California, USA
,
Jochen Herrmann
3   Section of Pediatric Radiology, Department of Diagnostic and Interventional Radiology and Nuclear Medicine, University-Medical-Center Hamburg-Eppendorf, Hamburg, Germany
,
Franz Wolfgang Hirsch
4   Department of Pediatric Radiology, University-Hospital Leipzig, Germany
,
Jürgen F. Schäfer
5   Department of Diagnostic and Interventional Radiology, Section of Pediatric Radiology, University-Hospital Tübingen, Tübingen, Germany
,
Anna Seehofnerova
6   Division of Pediatric Radiology, Department of Radiology, Medical University Graz, Austria
,
Erich Sorantin
6   Division of Pediatric Radiology, Department of Radiology, Medical University Graz, Austria
,
Ashok Joseph Theruvath
2   Department of Radiology, Stanford-University Medical Center, Stanford, California, USA
7   Department of Diagnostic and Interventional Radiology, Medical Center of the Johannes-Gutenberg-University Mainz, Germany
,
André Lollert
1   Department of Diagnostic and Interventional Radiology, Section of Pediatric Radiology, Medical Center of the Johannes-Gutenberg-University Mainz, Germany
› Author Affiliations
Further Information

Publication History

Publication Date:
21 March 2019 (online)

Zusammenfassung

Die Kinderradiologie steht heute vor weitreichenden Veränderungen. Basismodalitäten wie Röntgen und Ultraschall werden zunehmend durch neuere, moderne Techniken ergänzt. Dieser Übersichtsartikel stellt Fortschritte in der Kinderradiologie sowie technische Innovationen vor, welche in Zukunft noch größere Bedeutung erlangen könnten. Hierzu werden CT-Dosisreduktionstechniken inklusive der Anwendung künstlicher Intelligenz sowie Fortschritte in den Gebieten der Magnetresonanztomografie und molekularen Bildgebung dargestellt.

Kernaussagen

  • Technische Innovationen werden die Kinderradiologie signifikant verändern.

  • CT-Dosisreduktion ist insbesondere in pädiatrischen Patientenkollektiven bedeutsam.

  • Neue MR-Techniken werden die Notwendigkeit von Sedierung und Kontrastmittelapplikation reduzieren.

  • Die funktionelle MR-Bildgebung kann bei Patienten mit chronischen Lungenerkrankungen an Bedeutung gewinnen.

  • Die molekulare Bildgebung ermöglicht die Detektion, Charakterisierung und Quantifizierung molekularer Prozesse in Tumoren.

Abstract

Significant changes can be expected in modern pediatric radiology. New imaging techniques are progressively added to basic modalities like Xrays and ultrasound. This essay summarizes recent advances and technical innovations in pediatric radiology, which are supposed to gain further importance in the future. Thus, CT dose reduction techniques including artificial intelligence as well as advances in the fields of magnetic resonance and molecular imaging are presented.

Key Points

  • Technical innovations will lead to significant changes in pediatric radiology.

  • CT dose reduction is crucial for pediatric patient collectives.

  • New MR-techniques will lower the need for sedation and contrast media application.

  • Functional MR-imaging might gain further importance in patients with chronic lung disease.

  • Molecular imaging enables detection, characterization and quantification of molecular processes in tumors.

Citation Format

  • Staatz G, Daldrup-Link HE, Herrmann J et al. From Xrays to PET/MR, and then? – Future imaging in pediatric radiology. Fortschr Röntgenstr 2019; 191: 357 – 366

 
  • Literatur

  • 1 England JR, Cheng PM. Artificial Intelligence for Medical Image Analysis: A Guide for Authors and Reviewers. Am J Roentgenol 2018; DOI: 10.2214/Am J Roentgenol.18.20490.
  • 2 Lugo-Fagundo C, Vogelstein B, Yuille A. et al. Deep Learning in Radiology: Now the Real Work Begins. J Am Coll Radiol 2018; 15: 364-367
  • 3 Wurfl T, Hoffmann M, Christlein V. et al. Deep Learning Computed Tomography: Learning Projection-Domain Weights From Image Domain in Limited Angle Problems. IEEE Trans Med Imaging 2018; 37: 1454-1463
  • 4 Messerli M, Kluckert T, Knitel M. et al. Ultralow dose CT for pulmonary nodule detection with chest x-ray equivalent dose – a prospective intra-individual comparative study. Eur Radiol 2017; 27: 3290-3299
  • 5 Sorantin E, Weissensteiner S, Hasenburger G. et al. CT in children--dose protection and general considerations when planning a CT in a child. Eur J Radiol 2013; 82: 1043-1049
  • 6 Deak PD, Smal Y, Kalender WA. Multisection CT protocols: sex- and age-specific conversion factors used to determine effective dose from dose-length product. Radiology 2010; 257: 158-166
  • 7 Sorantin E, Riccabona M, Stucklschweiger G. et al. Experience with volumetric (320 rows) pediatric CT. Eur J Radiol 2013; 82: 1091-1097
  • 8 Daldrup-Link HE, Sammet C, Hernanz-Schulman M. et al. White Paper on P4 Concepts for Pediatric Imaging. J Am Coll Radiol 2016; 13: 590-597.e592
  • 9 Ahmad R, Hu HH, Krishnamurthy R. Reducing sedation for pediatric body MRI using accelerated and abbreviated imaging protocols. Pediatr Radiol 2018; 48: 37-49
  • 10 Jaimes C, Kirsch JE, Gee MS. Fast, free-breathing and motion-minimized techniques for pediatric body magnetic resonance imaging. Pediatr Radiol 2018; 48: 1197-1208
  • 11 Feinberg DA, Setsompop K. Ultra-fast MRI of the human brain with simultaneous multi-slice imaging. J Magn Reson 2013; 229: 90-100
  • 12 Obele CC, Glielmi C, Ream J. et al. Simultaneous Multislice Accelerated Free-Breathing Diffusion-Weighted Imaging of the Liver at 3T. Abdom imaging 2015; 40: 2323-2330
  • 13 Taron J, Martirosian P, Erb M. et al. Simultaneous multislice diffusion-weighted MRI of the liver: Analysis of different breathing schemes in comparison to standard sequences. J Magn Reson Imaging 2016; 44: 865-879
  • 14 Lustig M, Donoho DL, Santos JM. et al. Compressed Sensing MRI. IEEE Signal Processing Magazine 2008; 72: 72-82
  • 15 Lee JH, Choi YH, Cheon JE. et al. Improved abdominal MRI in non-breath-holding children using a radial k-space sampling technique. Pediatr Radiol 2015; 45: 840-846
  • 16 Chandarana H, Block TK, Rosenkrantz AB. et al. Free-breathing radial 3D fat-suppressed T1-weighted gradient echo sequence: a viable alternative for contrast-enhanced liver imaging in patients unable to suspend respiration. Invest Radiol 2011; 46: 648-653
  • 17 Goo HW, Ra YS. Advanced MRI for Pediatric Brain Tumors with Emphasis on Clinical Benefits. Korean J Radiol 2017; 18: 194-207
  • 18 Togao O, Yoshiura T, Keupp J. et al. Amide proton transfer imaging of adult diffuse gliomas: correlation with histopathological grades. Neuro Oncol 2014; 16: 441-448
  • 19 Dillman JR, Trout AT, Merrow AC. et al. Non-contrast three-dimensional gradient recalled echo Dixon-based magnetic resonance angiography/venography in children. Pediatr Radiol 2018; DOI: 10.1007/s00247-018-4297-3.
  • 20 Kording F, Schoennagel BP, de Sousa MT. et al. Evaluation of a Portable Doppler Ultrasound Gating Device for Fetal Cardiac MR Imaging: Initial Results at 1.5T and 3T. Magn Reson Med Sci 2018; 17: 308-317
  • 21 Schoennagel BP, Yamamura J, Kording F. et al. Fetal dynamic phase-contrast MR angiography using ultrasound gating and comparison with Doppler ultrasound measurements. Eur Radiol 2019; DOI: 10.1007/s00330-018-5940-y.
  • 22 Strater A, Huber A, Rudolph J. et al. 4D-Flow MRI: Technique and Applications. Fortschr Röntgenstr 2018; 190: 1025-1035
  • 23 Hernando D, Levin YS, Sirlin CB. et al. Quantification of liver iron with MRI: state of the art and remaining challenges. J Magn Reson Imaging 2014; 40: 1003-1021
  • 24 Reeder SB, Cruite I, Hamilton G. et al. Quantitative assessment of liver fat with magnetic resonance imaging and spectroscopy. J Magn Reson Imaging 2011; 34: 729-749
  • 25 Dillman JR, Serai SD, Trout AT. et al. Diagnostic performance of quantitative magnetic resonance imaging biomarkers for predicting portal hypertension in children and young adults with autoimmune liver disease. Pediatr Radiol 2019; DOI: 10.1007/s00247-018-4319-1.
  • 26 Hamilton JI, Jiang Y, Chen Y. et al. MR fingerprinting for rapid quantification of myocardial T1, T2, and proton spin density. Magn Reson Med 2017; 77: 1446-1458
  • 27 Chen Y, Chen MH, Baluyot KR. et al. MR fingerprinting enables quantitative measures of brain tissue relaxation times and myelin water fraction in the first five years of life. Neuroimage 2019; 186: 782-793
  • 28 Ma D, Gulani V, Seiberlich N. et al. Magnetic resonance fingerprinting. Nature 2013; 495: 187-192
  • 29 Kauczor HU, Kreitner KF. MRI of the pulmonary parenchyma. Eur Radiol 1999; 9: 1755-1764
  • 30 Tepper LA, Ciet P, Caudri D. et al. Validating chest MRI to detect and monitor cystic fibrosis lung disease in a pediatric cohort. Pediatr Pulmonol 2016; 51: 34-41
  • 31 Koumellis P, van Beek EJ, Woodhouse N. et al. Quantitative analysis of regional airways obstruction using dynamic hyperpolarized 3He MRI-preliminary results in children with cystic fibrosis. J Magn Reson Imaging 2005; 22: 420-426
  • 32 Walkup LL, Thomen RP, Akinyi TG. et al. Feasibility, tolerability and safety of pediatric hyperpolarized (129)Xe magnetic resonance imaging in healthy volunteers and children with cystic fibrosis. Pediatr Radiol 2016; 46: 1651-1662
  • 33 Gutberlet M, Kaireit TF, Voskrebenzev A. et al. Free-breathing Dynamic (19)F Gas MR Imaging for Mapping of Regional Lung Ventilation in Patients with COPD. Radiology 2018; 286: 1040-1051
  • 34 Hemberger KR, Jakob PM, Breuer FA. Multiparametric oxygen-enhanced functional lung imaging in 3D. Magma 2015; 28: 217-226
  • 35 Nikolaou K, Schoenberg SO, Brix G. et al. Quantification of pulmonary blood flow and volume in healthy volunteers by dynamic contrast-enhanced magnetic resonance imaging using a parallel imaging technique. Invest Radiol 2004; 39: 537-545
  • 36 Eichinger M, Puderbach M, Fink C. et al. Contrast-enhanced 3D MRI of lung perfusion in children with cystic fibrosis--initial results. Eur Radiol 2006; 16: 2147-2152
  • 37 Stahl M, Wielputz MO, Graeber SY. et al. Comparison of Lung Clearance Index and Magnetic Resonance Imaging for Assessment of Lung Disease in Children with Cystic Fibrosis. Am J Respir Crit Care Med 2017; 195: 349-359
  • 38 Martirosian P, Boss A, Fenchel M. et al. Quantitative lung perfusion mapping at 0.2 T using FAIR True-FISP MRI. Magn Reson Med 2006; 55: 1065-1074
  • 39 Schraml C, Schwenzer NF, Martirosian P. et al. Non-invasive pulmonary perfusion assessment in young patients with cystic fibrosis using an arterial spin labeling MR technique at 1.5 T. Magma 2012; 25: 155-162
  • 40 Bauman G, Puderbach M, Deimling M. et al. Non-contrast-enhanced perfusion and ventilation assessment of the human lung by means of fourier decomposition in proton MRI. Magn Reson Med 2009; 62: 656-664
  • 41 Kjorstad A, Corteville DM, Henzler T. et al. Non-invasive quantitative pulmonary V/Q imaging using Fourier decomposition MRI at 1.5T. Z Med Phys 2015; 25: 326-332
  • 42 Higano NS, Fleck RJ, Spielberg DR. et al. Quantification of neonatal lung parenchymal density via ultrashort echo time MRI with comparison to CT. J Magn Reson Imaging 2017; 46: 992-1000
  • 43 Sheikh K, Guo F, Capaldi DP. et al. Ultrashort echo time MRI biomarkers of asthma. J Magn Reson Imaging 2017; 45: 1204-1215
  • 44 Fleischer S, Tsiflikas I, Langlouis V. et al. Assessment of the Severity of Disease in Patients with Cystic Fibrosis using MRI of the Lung: Signal Intensity and Lung Volumes Compared to the Lung-Clearance-Index and Forced Expiratory-Volume-in-1-Second. Radiological Society of North America Scientific Assembly and Annual Meeting, Chicago IL 2016 November 27 – December 2, Chicago IL
  • 45 Daldrup-Link H, Gambhir SS. Pediatric Molecular Imaging. In: Treves ST. Hrsg Pediatric Nuclear Medicine and Molecular Imaging. Heidelberg: Springer; 2014: 671-596
  • 46 Willmann JK, Bonomo L, Carla Testa A. et al. Ultrasound Molecular Imaging With BR55 in Patients With Breast and Ovarian Lesions: First-in-Human Results. J Clin Oncol 2017; 35: 2133-2140
  • 47 Perreault S, Ramaswamy V, Achrol AS. et al. MRI surrogates for molecular subgroups of medulloblastoma. AJNR Am J Neuroradiol 2014; 35: 1263-1269
  • 48 James ML, Gambhir SS. A molecular imaging primer: modalities, imaging agents, and applications. Phys Rev 2012; 92: 897-965
  • 49 Coleman JL, Navid F, Furman WL. et al. Safety of ultrasound contrast agents in the pediatric oncologic population: a single-institution experience. Am J Roentgenol 2014; 202: 966-970
  • 50 Kiessling I, Bzyl J, Kiessling F. Molecular ultrasound imaging and its potential for paediatric radiology. Pediatr Radiol 2011; 41: 176-184
  • 51 Lindner JR. Molecular imaging with contrast ultrasound and targeted microbubbles. J Nucl Cardiol 2004; 11: 215-221
  • 52 Harmsen S, Teraphongphom N, Tweedle MF. et al. Optical Surgical Navigation for Precision in Tumor Resections. Mol Imaging Biol 2017; 19: 357-362
  • 53 Shi C, Zhang C, Su Y. et al. Cyanine dyes in optical imaging of tumours. Lancet Oncol 2010; 11: 815-816
  • 54 Lee H, Proudlock FA, Gottlob I. Pediatric Optical Coherence Tomography in Clinical Practice-Recent Progress. Invest Ophthalmol Vis Sci 2016; 57: Oct69-79
  • 55 Uslu L, Donig J, Link M. et al. Value of 18F-FDG PET and PET/CT for evaluation of pediatric malignancies. J Nucl Med 2015; 56: 274-286
  • 56 Walter F, Czernin J, Hall T. et al. Is there a need for dedicated bone imaging in addition to 18F-FDG PET/CT imaging in pediatric sarcoma patients?. J Pediatr Hematol Oncol 2012; 34: 131-136
  • 57 Cheuk DK, Sabin ND, Hossain M. et al. PET/CT for staging and follow-up of pediatric nasopharyngeal carcinoma. Eur J Nucl Med Mol Imaging 2012; 39: 1097-1106
  • 58 Kleis M, Daldrup-Link H, Matthay K. et al. Diagnostic value of PET/CT for the staging and restaging of pediatric tumors. Eur J Nucl Med Mol Imaging 2009; 36: 23-36
  • 59 London K, Stege C, Cross S. et al. 18F-FDG PET/CT compared to conventional imaging modalities in pediatric primary bone tumors. Pediatr Radiol 2012; 42: 418-430
  • 60 Volker T, Denecke T, Steffen I. et al. Positron emission tomography for staging of pediatric sarcoma patients: results of a prospective multicenter trial. J Clin Oncol 2007; 25: 5435-5441
  • 61 Voss SD. Pediatric oncology and the future of oncological imaging. Pediatr Radiol 2011; 41 (Suppl. 01) S172-S185
  • 62 McCarville MB. New frontiers in pediatric oncologic imaging. Cancer Imaging 2008; 8: 87-92
  • 63 Gallagher FA, Bohndiek SE, Kettunen MI. et al. Hyperpolarized 13C MRI and PET: in vivo tumor biochemistry. J Nucl Med 2011; 52: 1333-1336
  • 64 Bohndiek SE, Kettunen MI, Hu DE. et al. Hyperpolarized [1-13C]-ascorbic and dehydroascorbic acid: vitamin C as a probe for imaging redox status in vivo. J Am Chem Soc 2011; 133: 11795-11801
  • 65 Brindle KM, Bohndiek SE, Gallagher FA. et al. Tumor imaging using hyperpolarized 13C magnetic resonance spectroscopy. Magn Reson Med 2011; 66: 505-519
  • 66 Hu S, Balakrishnan A, Bok RA. et al. 13C-pyruvate imaging reveals alterations in glycolysis that precede c-Myc-induced tumor formation and regression. Cell Metab 2011; 14: 131-142
  • 67 Daldrup-Link H. How PET/MR Can Add Value For Children With Cancer. Curr Radiol Rep 2017; 5: 15 . Epub 2017
  • 68 Ponisio MR, McConathy J, Laforest R. et al. Evaluation of diagnostic performance of whole-body simultaneous PET/MRI in pediatric lymphoma. Pediatr Radiol 2016; 46: 1258-1268
  • 69 Gawande RS, Gonzalez G, Messing S. et al. Role of diffusion-weighted imaging in differentiating benign and malignant pediatric abdominal tumors. Pediatr Radiol 2013; 43: 836-845
  • 70 Klenk C, Gawande R, Uslu L. et al. Ionising radiation-free whole-body MRI versus (18)F-fluorodeoxyglucose PET/CT scans for children and young adults with cancer: a prospective, non-randomised, single-centre study. Lancet Oncol 2014; 15: 275-285
  • 71 Bakhshi S, Radhakrishnan V, Sharma P. et al. Pediatric nonlymphoblastic non-Hodgkin lymphoma: baseline, interim, and posttreatment PET/CT versus contrast-enhanced CT for evaluation--a prospective study. Radiology 2012; 262: 956-968
  • 72 Riad R, Omar W, Kotb M. et al. Role of PET/CT in malignant pediatric lymphoma. Eur J Nucl Med Mol Imaging 2010; 37: 319-329
  • 73 Bestic JM, Peterson JJ, Bancroft LW. Pediatric FDG PET/CT: Physiologic uptake, normal variants, and benign conditions [corrected]. Radiographics 2009; 29: 1487-1500
  • 74 Stanescu L, Ishak GE, Khanna PC. et al. FDG PET of the brain in pediatric patients: imaging spectrum with MR imaging correlation. Radiographics 2013; 33: 1279-1303