Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Research Article
  • Published:

A functional polymorphism of the cytochrome P450 1A2 (CYP1A2) gene: association with tardive dyskinesia in schizophrenia

Abstract

Tardive dyskinesia (TD) is a common and potentially irreversible side effect associated with long-term treatment with typical antipsychotics. Approximately, 80% or more of patients with schizophrenia are smokers. Smoking is a potent inducer of the CYP1A2 enzyme, and is known to cause a significant decrease in plasma concentrations of some antipsychotics. Therefore, person-to-person differences in the extent of CYP1A2 induction by smoking may contribute to risk for the development of TD. Recently, a (C→A) genetic polymorphism in the first intron of the CYP1A2 gene was found to be associated with variation in CYP1A2 inducibility in healthy volunteer smokers. The aim of this study was to test the clinical importance of the (C→A) polymorphism in CYP1A2 in relation to TD severity. A total of 85 patients with schizophrenia were assessed for TD severity using the Abnormal Involuntary Movement Scale (AIMS), and were subsequently genotyped for the (C→A) polymorphism in CYP1A2. The mean AIMS score in patients with the (C/C) genotype (associated with reduced CYP1A2 inducibility) was 2.7- and 3.4-fold greater than in those with the (A/C) or (A/A) genotype, respectively (F[2,82] = 7.4, P = 0.0007). Further, a subanalysis in the 44 known smokers in our sample, revealed a more pronounced effect. The means AIMS score in smokers was 5.4- and 4.7-fold greater in (C/C) homozygotes when compared to heterozygotes and (A/A) homozygotes, respectively (F[2,41] = 3.7, P = 0.008). These data suggest that the (C→A) genetic polymorphism in the CYP1A2 gene may serve as a genetic risk factor for the development of TD in patients with schizophrenia. Further studies in independent samples are warranted to evaluate the applicability of our findings to the general patient population receiving antipsychotic medications.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  1. Kane JM, Smith JM . Tardive dyskinesia: prevalence and risk factors, 1959 to 1979 Arch Gen Psychiatry 1982; 39: 473–481

    Article  CAS  PubMed  Google Scholar 

  2. Chakos MH, Alvir JM, Woerner MG, Koreen A, Geisler S, Mayerhoff D et al. Incidence and correlates of tardive dyskinesia in first episode of schizophrenia Arch Gen Psychiatry 1996; 53: 313–319

    Article  CAS  PubMed  Google Scholar 

  3. Bergen J, Kitchin R, Berry G . Predictors of the course of tardive dyskinesia in patients receiving neuroleptics Biol Psychiatry 1992; 32: 580–594

    Article  CAS  PubMed  Google Scholar 

  4. Peck CC, Barr WH, Benet LZ, Collins J, Desjardins RE, Furst DE et al. Opportunities for integration of pharmacokinetics, pharmacodynamics, and toxicokinetics in rational drug development Clin Pharmacol Ther 1992; 51: 465–473

    Article  CAS  PubMed  Google Scholar 

  5. Rowland M, Tozer TN (eds) . Clinical Pharmacokinetics. Concepts and Applications. 3rd edition Williams & Wilkins: Pennsylvania 1995

    Google Scholar 

  6. Ozdemir V, Masellis M, Basile VS, Kalow W, Meltzer HY, Lieberman JA et al. Variability in response to clozapine: potential role of cytochrome P450 1A2 and the dopamine D4 receptor gene CNS Spectrums 1999; 4: 30–56

    Article  Google Scholar 

  7. Weinhold P, Wegner JT, Kane JM . Familial occurrence of tardive dyskinesia J Clin Psychiatry 1981; 42: 165–166

    CAS  PubMed  Google Scholar 

  8. Yassa R, Ananth J . Familial tardive dyskinesia Am J Psychiatry 1981; 138: 1618–1619

    Article  CAS  PubMed  Google Scholar 

  9. Waddington JL, Youssef HA . The expression of schizophrenia, affective disorder and vulnerability to tardive dyskinesia in an extensive pedigree Br J Psychiatry 1988; 153: 376–381

    Article  CAS  PubMed  Google Scholar 

  10. O'Callaghan E, Larkin C, Kinsella A, Waddington JL . Obstetric complications, the putative familial-sporadic distinction, and tardive dyskinesia in schizophrenia Br J Psychiatry 1990; 157: 578–584

    Article  CAS  PubMed  Google Scholar 

  11. Rosengarten H, Schweitzer JW, Friedhoff AJ . Possible genetic factors underlying the pathophysiology of tardive dyskinesia Pharmacol Biochem Behav 1994; 49: 663–667

    Article  CAS  PubMed  Google Scholar 

  12. Steen VM, Lovlie R, MacEwan T, McCreadie RG . Dopamine D3-receptor gene variant and susceptibility to tardive dyskinesia in schizophrenic patients Mol Psychiatry 1997; 2: 139–145

    Article  CAS  PubMed  Google Scholar 

  13. Basile VS, Masellis M, Badri F, Paterson AD, Meltzer HY, Lieberman JA et al. Association of the Mscl polymorphism of the dopamine D3 receptor gene with tardive dyskinesia in schizophrenia Neuropsychopharmacology 1999; 21: 17–27

    Article  CAS  PubMed  Google Scholar 

  14. Segman R, Neeman T, Heresco-Levy U, Finkel B, Karagichev L, Schlafman M et al. Genotypic association between the dopamine D3 receptor and tardive dyskinesia in chronic schizophrenia Mol Psychiatry 1999; 4: 247–253

    Article  CAS  PubMed  Google Scholar 

  15. Bertilsson L, Dahl ML, Ekqvist B, Llerena A . Disposition of the neuroleptics perphenazine, zuclopenthixol, and haloperidol cosegregates with polymorphic debrisoquine hydroxylation Psychopharmacol Ser 1993; 10: 230–237

    CAS  PubMed  Google Scholar 

  16. Bertilsson L, Dahl M-L . Polymorphic drug oxidation. Relevance to the treatment of psychiatric disorders CNS Drugs 1996; 5: 200–223

    Article  CAS  Google Scholar 

  17. Ozdemir V, Naranjo CA, Herrmann N, Reed K, Sellers EM, Kalow W . Paroxetine potentiates the central nervous system side-effects of perphenazine: contribution of cytochrome P450 2D6 inhibition in vivo Clin Pharmacol Ther 1997; 62: 334–347

    Article  CAS  PubMed  Google Scholar 

  18. Kalow W . Pharmacogenetics in biological perspective Pharmacol Rev 1997; 49: 369–379

    CAS  PubMed  Google Scholar 

  19. Kalow W . Interethnic variation of drug metabolism Trends Pharmacol Sci 1991; 12: 102–107

    Article  CAS  PubMed  Google Scholar 

  20. Bertilsson L . Geographical/interracial differences in polymorphic drug oxidation. Current state of knowledge of cytochromes P450 (CYP) 2D6 and 2C19 Clin Pharmacokinet 1995; 29: 192–209

    Article  CAS  PubMed  Google Scholar 

  21. Lin K-M, Poland RE, Wan Y-JY, Smith MW, Lesser IM . The evolving science of pharmacogenetics: clinical and ethnic perspectives Psychopharmacol Bull 1996; 32: 205–217

    CAS  PubMed  Google Scholar 

  22. Spina E, Sturiale V, Valvo S, Ancione M, Di Rosa AE, Meduri M et al. Debrisoquine oxidation phenotype and neuroleptic-induced dystonic reactions Acta Psychiatr Scand 1992; 86: 364–366

    Article  CAS  PubMed  Google Scholar 

  23. Arthur H, Dahl ML, Siwers B, Sjoqvist F . Polymorphic drug metabolism in schizophrenic patients with tardive dyskinesia J Clin Psychopharmacol 1995; 15: 211–216

    Article  CAS  PubMed  Google Scholar 

  24. Pollock BG, Mulsant BH, Sweet RA, Rosen J, Altieri LP, Perel JM . Prospective cytochrome 450 phenotyping for neuroleptic treatment in dementia Psychopharmacol Bull 1995; 31: 327–331

    CAS  PubMed  Google Scholar 

  25. Andreassen OA, MacEwan T, Gulbrandsen AK, McCreadie RG, Steen VM . Non-functional CYP2D6 alleles and risk for neuroleptic-induced movement disorders in schizophrenic patients Psychopharmacology 1997; 131: 174–179

    Article  CAS  PubMed  Google Scholar 

  26. Armstrong M, Daly AK, Blennerhassett R, Ferrier N, Idle JR . Antipsychotic drug-induced movement disorders in schizophrenics in relation to CYP2D6 genotype Br J Psychiatry 1997; 170: 23–26

    Article  CAS  PubMed  Google Scholar 

  27. Kapitany T, Meszaros K, Lenzinger E, Schindler SD, Barnas C, Fuchs K et al. Genetic polymorphisms for drug metabolism (CYP2D6) and tardive dyskinesia in schizophrenia Schizophr Res 1998; 32: 101–106

    Article  CAS  PubMed  Google Scholar 

  28. Ohmori O, Suzuki T, Kojima H, Shinkai T, Terao T, Mita T et al. Tardive dyskinesia and debrisoquine 4-hydroxylase (CYP2D6) genotype in Japanese schizophrenics Schizophr Res 1998; 32: 107–113

    Article  CAS  PubMed  Google Scholar 

  29. Shimada T, Yamazaki H, Mimura M, Inui Y, Guengerich FP . Interindividual variations in human liver cytochrome P-450 enzymes involved in the oxidation of drugs, carcinogens and toxic chemicals: studies with liver microsomes of 30 Japanese and 30 Caucasians J Pharmacol Exp Ther 1994; 270: 414–423

    CAS  PubMed  Google Scholar 

  30. Brøsen K, Gram LF . Clinical significance of the sparteine/debrisoquine oxidation polymorphism Eur J Clin Pharmacol 1989; 36: 537–547

    Article  PubMed  Google Scholar 

  31. Sindrup SH, Brosen K, Gram LF, Hallas J, Skjelbo E, Allen A et al. The relationship between paroxetine and the sparteine oxidation polymorphism Clin Pharmacol Ther 1992; 51: 278–287

    Article  CAS  PubMed  Google Scholar 

  32. Jerling M, Dahl ML, Aberg-Wistedt A, Liljenberg B, Landell NE, Bertilsson L et al. The CYP2D6 genotype predicts the oral clearance of the neuroleptic agents perphenazine and zuclopenthixol Clin Pharmacol Ther 1996; 59: 423–428

    Article  CAS  PubMed  Google Scholar 

  33. Linnet K, Wiborg O . Steady-state serum concentrations of the neuroleptic perphenazine in relation to CYP2D6 genetic polymorphism Clin Pharmacol Ther 1996; 60: 41–47

    Article  CAS  PubMed  Google Scholar 

  34. Ozdemir V, Tyndale RF, Reed K, Herrmann N, Sellers EM, Kalow W et al. Paroxetine steady-state concentration in relation to CYP2D6 genotype in extensive metabolizers J Clin Psychopharmacol 1999; 19: 472–475

    Article  CAS  PubMed  Google Scholar 

  35. Dahl-Puustinen ML, Liden A, Alm C, Nordin C, Bertilsson L . Disposition of perphenazine is related to polymorphic debrisoquin hydroxylation in human beings Clin Pharmacol Ther 1989; 46: 78–81

    Article  CAS  PubMed  Google Scholar 

  36. Pantuck EJ, Pantuck CB, Anderson KE, Conney AH, Kappas A . Cigarette smoking and chlorpromazine disposition and actions Clin Pharmacol Ther 1982; 31: 533–538

    Article  CAS  PubMed  Google Scholar 

  37. Stimmel GL, Falloon IR . Chlorpromazine plasma levels, adverse effects, and tobacco smoking: case report J Clin Psychiatry 1983; 44: 420–422

    CAS  PubMed  Google Scholar 

  38. Ereshefsky L, Jann MW, Saklad SR, Davis CM, Richards AL, Burch NR . Effects of smoking on fluphenazine clearance in psychiatric inpatients Biol Psychiatry 1985; 20: 329–332

    Article  CAS  PubMed  Google Scholar 

  39. Jann MW, Saklad SR, Ereshefsky L, Richards AL, Harrington CA, Davis CM . Effects of smoking on haloperidol and reduced haloperidol plasma concentrations and haloperidol clearance Psychopharmacology (Berl) 1986; 90: 468–470

    Article  CAS  Google Scholar 

  40. Miller DD, Kelly MW, Perry PJ, Coryell WH . The influence of cigarette smoking on haloperidol pharmacokinetics Biol Psychiatry 1990; 28: 529–531

    Article  CAS  PubMed  Google Scholar 

  41. Shimoda K, Someya T, Morita S, Hirokane G, Noguchi T, Yokono A et al. Lower plasma levels of haloperidol in smoking than in nonsmoking schizophrenic patients Ther Drug Monit 1999; 21: 293–296

    Article  CAS  PubMed  Google Scholar 

  42. Kalow W, Tang BK . Caffeine as a metabolic probe: exploration of the enzyme-inducing effect of cigarette smoking Clin Pharmacol Ther 1991; 49: 44–48

    Article  CAS  PubMed  Google Scholar 

  43. Hughes JR, Hatsukami DK, Mitchell JE, Dahlgren LA . Prevalence of smoking among psychiatric outpatients Am J Psychiatry 1986; 143: 993–997

    Article  CAS  PubMed  Google Scholar 

  44. Lohr JB, Flynn K . Smoking and schizophrenia Schizophr Res 1992; 8: 93–102

    Article  CAS  PubMed  Google Scholar 

  45. Smith SS, Fiore MC . The epidemiology of tobacco use, dependence, and cessation in the United States Prim Care 1999; 26: 433–461

    Article  CAS  PubMed  Google Scholar 

  46. Preskorn SH . Clinically relevant pharmacology of selective serotonin reuptake inhibitors. An overview with emphasis on pharmacokinetics and effects on oxidative drug metabolism Clin Pharmacokinet 1997; 32: (suppl 1) 1–21

    Article  CAS  PubMed  Google Scholar 

  47. Kashuba AD, Nafziger AN, Kearns GL, Leeder JS, Gotschall R, Rocci ML Jr et al. Effect of fluvoxamine therapy on the activities of CYP1A2, CYP2D6, and CYP3A as determined by phenotyping Clin Pharmacol Ther 1998; 64: 257–268

    Article  CAS  PubMed  Google Scholar 

  48. Ozdemir V, Naranjo CA, Shulman RW, Herrmann N, Sellers EM, Kalow W et al. Determinants of interindividual variability and extent of CYP2D6 and CYP1A2 inhibition by paroxetine and fluvoxamine in vivo J Clin Psychopharmacol 1998; 18: 198–207

    Article  CAS  PubMed  Google Scholar 

  49. Rasmussen BB, Nielsen TL, Brøsen K . Fluvoxamine is a potent inhibitor of the metabolism of caffeine in vitro Pharmacol Toxicol 1998; 83: 240–245

    Article  CAS  PubMed  Google Scholar 

  50. Daniel DG, Randolph C, Jaskiw G, Handel S, Williams T, Abi-Dargham A et al. Coadministration of fluvoxamine increases serum concentrations of haloperidol J Clin Psychopharmacol 1994; 14: 340–343

    Article  CAS  PubMed  Google Scholar 

  51. von Moltke LL, Greenblatt DJ, Duan SX, Schmider J, Kudchadker L, Fogelman SM et al. Phenacetin O-deethylation by human liver microsomes in vitro: inhibition by chemical probes, SSRI antidepressants, nefazodone and venlafaxine Psychopharmacology 1996; 128: 398–407

    Article  CAS  PubMed  Google Scholar 

  52. von Moltke LL, Greenblatt DJ, Court MH, Duan SX, Harmatz JS, Shader RI . Inhibition of alprazolam and desipramine hydroxylation in vitro by paroxetine and fluvoxamine: comparison with other selective serotonin reuptake inhibitor antidepressants J Clin Psychopharmacol 1995; 15: 125–131

    Article  CAS  PubMed  Google Scholar 

  53. Miller M, Opheim KE, Raisys VA, Motulsky AG . Theophylline metabolism: variation and genetics Clin Pharmacol Ther 1984; 35: 170–182

    Article  CAS  PubMed  Google Scholar 

  54. Kalow W, Tang BK . Use of caffeine metabolite ratios to explore CYP1A2 and xanthine oxidase activities Clin Pharmacol Ther 1991; 50: 508–519

    Article  CAS  PubMed  Google Scholar 

  55. Kalow W, Tang BK, Endrenyi L . Hypothesis: comparisons of inter- and intra-individual variations can substitute for twin studies in drug research Pharmacogenetics 1998; 8: 283–289

    Article  CAS  PubMed  Google Scholar 

  56. Sachse C, Brockmoller J, Bauer S, Roots I . Functional significance of C→A polymorphism in intron 1 of the cytochrome P450 CYP1A2 gene tested with caffeine Br J Clin Pharmacol 1999; 47: 445–449

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Lahiri DK, Nurnberger JI Jr . A rapid nonenzymatic method for the preparation of HMW DNA from blood for RFLP studies Nucleic Acids Res 1991; 19: 5444

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Kalow W . Pharmacogenetics: Heredity and the Response to Drugs WB Saunders: Philadelphia 1962

    Google Scholar 

  59. Vesell ES . Reflections from distant cuvettes Drug Metab Rev 1996; 28: 493–511

    Article  CAS  PubMed  Google Scholar 

  60. Weber WW . Pharmacogenetics Oxford University Press: New York 1997

    Google Scholar 

  61. Kalow W, Ozdemir V, Tang BK, Tothfalusi L, Endrenyi L . The science of pharmacological variability: an essay Clin Pharmacol Ther 1999; 66: 445–447

    Article  CAS  PubMed  Google Scholar 

  62. Okey AB . Enzyme induction in the cytochrome P-450 system Pharmacol Ther 1990; 45: 241–298

    Article  CAS  PubMed  Google Scholar 

  63. Albers LJ, Reist C, Helmeste D, Vu R, Tang SW . Paroxetine shifts imipramine metabolism Psychiatry Res 1996; 59: 189–196

    Article  CAS  PubMed  Google Scholar 

  64. Kalow W . Pharmacogenetic research: a revolutionary science J Psychiatry Neurosci 1999; 24: 139–140

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Nakajima M, Yokoi T, Mizutani M, Kinoshita M, Funayama M, Kamataki T . Genetic polymorphism in the 5′-flanking region of human CYP1A2 gene: effect on the CYP1A2 inducibility in humans J Biochem 1999; 125: 803–808

    Article  CAS  PubMed  Google Scholar 

  66. Tang BK, Kalow W . Assays for CYP1A2 by testing in vivo metabolism of caffeine in humans Meth Enzymol 1996; 272: 124–131

    Article  CAS  Google Scholar 

  67. Kirch DG, Alho AM, Wyatt RJ . Hypothesis: a nicotine-dopamine interaction linking smoking with Parkinson's disease and tardive dyskinesia Cell Mol Neurobiol 1988; 8: 285–291

    Article  CAS  PubMed  Google Scholar 

  68. Nilsson A, Waller L, Rosengren A, Adlerberth A, Wilhelmsen L . Cigarette smoking is associated with abnormal involuntary movements in the general male population—a study of men born in 1933 Biol Psychiatry 1997; 41: 717–723

    Article  CAS  PubMed  Google Scholar 

  69. Basile VS, Ozdemir V, Masellis M, Walker M, Kalow W, Meltzer HY et al. Tardive dyskinesia in schizophrenia: potential role and interaction of the cytochrome P450 1A2 and dopamine D3 receptor genes Am J Hum Genet 1999; 65: 242

    Google Scholar 

  70. Macciardi FM, Basile VS, Kennedy JL . Modelling gene–gene interactions in complex traits Am J Hum Genet 1999; 65: 210

    Google Scholar 

Download references

Acknowledgements

JL Kennedy is supported by operating grants from the Ontario Mental Health Foundation and the Medical Research Council of Canada (MT15007) and a NARSAD Independent Investigator Award. V Özdemir is supported by a postdoctoral fellowship from the Ontario Mental Health Foundation and a NARSAD Young Investigator Award.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J L Kennedy.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Basile, V., Özdemir, V., Masellis, M. et al. A functional polymorphism of the cytochrome P450 1A2 (CYP1A2) gene: association with tardive dyskinesia in schizophrenia. Mol Psychiatry 5, 410–417 (2000). https://doi.org/10.1038/sj.mp.4000736

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.mp.4000736

Keywords

Search

Quick links