Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Stem Cells

CXCR4 antagonists mobilize childhood acute lymphoblastic leukemia cells into the peripheral blood and inhibit engraftment

Abstract

The role of CXCL12 in the bone marrow (BM) homing and growth of B-cell progenitor acute lymphoblastic leukemia (ALL) has been established. However, the effect of modulating CXCL12/CXCR4 interactions on the retention of ALL cells within the supportive BM microenvironment and the expansion and dissemination of ALL cells in vivo has not been examined. We used mouse models of human childhood and murine leukemia and specific peptide and small molecule CXCR4 antagonists to examine the importance of CXCL12/CXCR4 in the development of leukemia in vivo. CXCR4 antagonists mobilized ALL cells into the peripheral blood (PB). Extended administration of CXCR4 antagonists to mice with leukemia resulted in a reduction in the number of leukemic cells in the PB and spleens of animals compared to control treated animals in three of the five cases tested. There was also a marked reduction in the dissemination of ALL cells to extramedullary sites including liver and kidney in all cases where this occurred. Considering the inhibitory effect of stromal layers on the activity of chemotherapeutic agents and the interactive effect of CXCL12 antagonists with chemotherapeutic agents in vitro, this raises the possibility of using these agents to potentiate the effects of current chemotherapy regimens.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Pui C, Relling M, Campana D, Evans W . Childhood acute lymphoblastic leukemia. Rev Clin Exp Hematol 2002; 6: 161–180.

    Article  CAS  PubMed  Google Scholar 

  2. Bhatia S . Late effects among survivors of leukemia during childhood and adolescence. Blood Cells Mol Dis 2003; 31: 84–92.

    Article  PubMed  Google Scholar 

  3. Juarez J, Bendall L, Bradstock K . Chemokines and their receptors as therapeutic targets: the role of the SDF-1/CXCR4 axis. Curr Pharm Des 2004; 10: 1245–1259.

    Article  CAS  PubMed  Google Scholar 

  4. Peled A, Petit I, Kollet O, Magid M, Ponomaryov T, Byk T et al. Dependence of human stem cell engraftment and repopulation of NOD/SCID mice on CXCR4. Science 1999; 283: 845–848.

    Article  CAS  PubMed  Google Scholar 

  5. Kollet O, Spiegel A, Peled A, Petit I, Byk T, Hershkoviz R et al. Rapid and efficient homing of human CD34(+)CD38(−/low)CXCR4(+) stem and progenitor cells to the bone marrow and spleen of NOD/SCID and NOD/SCID/B2m(null) mice. Blood 2001; 97: 3283–3291.

    Article  CAS  PubMed  Google Scholar 

  6. Liles W, Broxmeyer H, Rodger E, Wood B, Hubel K, Cooper S et al. Mobilization of hematopoietic progenitor cells in healthy volunteers by AMD3100, a CXCR4 antagonist. Blood 2003; 102: 2728–2730.

    Article  CAS  PubMed  Google Scholar 

  7. Broxmeyer H, Orschell C, Clapp D, Hangoc G, Cooper S, Plett P et al. Rapid mobilization of murine and human hematopoietic stem and progenitor cells with AMD3100, a CXCR4 antagonist. J Exp Med 2005; 201: 1307–1318.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Lee Y, Gotoh A, Kwon H, You M, Kohli L, Mantel C et al. Enhancement of intracellular signaling associated with hematopoietic progenitor cell survival in response to SDF-1/CXCL12 in synergy with other cytokines. Blood 2002; 99: 4307–4317.

    Article  CAS  PubMed  Google Scholar 

  9. Lataillade J, Clay D, Dupuy C, Rigal S, Jasmin C, Bourin P et al. Chemokine SDF-1 enhances circulating CD34(+) cell proliferation in synergy with cytokines: possible role in progenitor survival. Blood 2000; 95: 756–768.

    CAS  PubMed  Google Scholar 

  10. Koshiba T, Hosotani R, Miyamoto Y, Ida J, Tsuji S, Nakajima S et al. Expression of stromal cell-derived factor 1 and CXCR4 ligand receptor system in pancreatic cancer: a possible role for tumor progression. Clin Cancer Res 2000; 6: 3530–3535.

    CAS  PubMed  Google Scholar 

  11. Muller A, Homey B, Soto H, Ge N, Catron D, Buchanan M et al. Involvement of chemokine receptors in breast cancer metastasis. Nature 2001; 410: 50–56.

    Article  CAS  PubMed  Google Scholar 

  12. Burger J, Kipps T . CXCR4: a key receptor in the crosstalk between tumor cells and their microenvironment. Blood 2006; 107: 1761–1767.

    Article  CAS  PubMed  Google Scholar 

  13. Nagasawa T, Hirota S, Tachibana K, Takakura N, Nishikawa S, Kitamura Y et al. Defects of B-cell lymphopoiesis and bone-marrow myelopoiesis in mice lacking the CXC chemokine PBSF/SDF-1. Nature 1996; 382: 635–638.

    Article  CAS  PubMed  Google Scholar 

  14. Ma Q, Jones D, Borghesani P, Segal R, Nagasawa T, Kishimoto T et al. Impaired B-lymphopoiesis, myelopoiesis, and derailed cerebellar neuron migration in CXCR4- and SDF-1-deficient mice. Proc Natl Acad Sci USA 1998; 95: 9448–9453.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Zou YR, Kottmann AH, Kuroda M, Taniuchi I, Littman DR . Function of the chemokine receptor CXCR4 in haematopoiesis and in cerebellar development. Nature 1998; 393: 595–599.

    Article  CAS  PubMed  Google Scholar 

  16. Bradstock KF, Gottlieb DJ . Interaction of acute leukemia cells with the bone marrow microenvironment: implications for control of minimal residual disease. Leuk Lymphoma 1995; 18: 1–16.

    Article  CAS  PubMed  Google Scholar 

  17. Shen W, Bendall L, Gottlieb D, Bradstock K . The chemokine receptor CXCR4 enhances integrin mediated in vitro adhesion and facilitates engraftment of leukemic precursor-B cells in the bone marrow. Exp Hematol 2001; 29: 1439–1447.

    Article  CAS  PubMed  Google Scholar 

  18. Nishii K, Katayama N, Miwa H, Shikami M, Masuya M, Shiku H et al. Survival of human leukaemic B-cell precursors is supported by stromal cells and cytokines: association with the expression of bcl-2 protein. Br J Haematol 1999; 105: 701–710.

    Article  CAS  PubMed  Google Scholar 

  19. Juarez J, Bradstock K, Gottlieb D, Bendall L . Effects of inhibitors of the chemokine receptor CXCR4 on acute lymphoblastic leukemia cells in vitro. Leukemia 2003; 17: 1294–1300.

    Article  CAS  PubMed  Google Scholar 

  20. Murakami T, Maki W, Cardones A, Fang H, Tun Kyi A, Nestle F et al. Expression of CXC chemokine receptor-4 enhances the pulmonary metastatic potential of murine B16 melanoma cells. Cancer Res 2002; 62: 7328–7334.

    CAS  PubMed  Google Scholar 

  21. Tamamura H, Hori A, Kanzaki N, Hiramatsu K, Mizumoto M, Nakashima H et al. T140 analogs as CXCR4 antagonists identified as anti-metastatic agents in the treatment of breast cancer. FEBS Lett 2003; 550: 79–83.

    Article  CAS  PubMed  Google Scholar 

  22. Rubin J, Kung A, Klein R, Chan J, Sun Y, Schmidt K et al. A small-molecule antagonist of CXCR4 inhibits intracranial growth of primary brain tumors. Proc Natl Acad Sci USA 2003; 100: 13513–13518.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Bendall LJ, Kortlepel K, Gottlieb DJ . Human acute myeloid leukemia cells bind to bone marrow stroma via a combination of beta 1 and beta 2 integrin mechanisms. Blood 1993; 82: 3125–3132.

    CAS  PubMed  Google Scholar 

  24. Mihara K, Imai C, Coustan-Smith E, Dome J, Dominici M, Vanin E et al. Development and functional characterization of human bone marrow mesenchymal cells immortalized by enforced expression of telomerase. Br J Haematol 2003; 120: 846–849.

    Article  CAS  PubMed  Google Scholar 

  25. Takenaga M, Tamamura H, Hiramatsu K, Nakamura N, Yamaguchi Y, Kitagawa A et al. A single treatment with microcapsules containing a CXCR4 antagonist suppresses pulmonary metastasis of murine melanoma. Biochem Biophys Res Commun 2004; 320: 226–232.

    Article  CAS  PubMed  Google Scholar 

  26. Makrynikola V, Bianchi A, Bradstock K, Gottlieb D, Hewson J . Migration of acute lymphoblastic leukemia cells into bone marrow stroma. Leukemia 1994; 8: 1734–1743.

    CAS  PubMed  Google Scholar 

  27. Filshie R, Gottlieb D, Bradstock K . VLA-4 is involved in the engraftment of the human pre-B acute lymphoblastic leukaemia cell line NALM-6 in SCID mice. Br J Haematol 1998; 102: 1292–1300.

    Article  CAS  PubMed  Google Scholar 

  28. Bradstock KF, Makrynikola V, Bianchi A, Shen W, Hewson J, Gottlieb DJ . Effects of the chemokine stromal-derived factor-1 on the migration and localisation of precursor-B acute lymphoblastic leukemia cells within bone marrow stromal layers. Leukemia 2000; 14: 882–888.

    Article  CAS  PubMed  Google Scholar 

  29. Spiegel A, Kollet O, Peled A, Abel L, Nagler A, Bielorai B et al. Unique SDF-1 induced activation of human precursor-B ALL cells due to altered CXCR4 expression and signaling. Blood 2003; 103: 2900–2907.

    Article  PubMed  Google Scholar 

  30. Tamamura H, Hiramatsu K, Kusano S, Terakubo S, Yamamoto N, Trent J et al. Synthesis of potent CXCR4 inhibitors possessing low cytotoxicity and improved biostability based on T140 derivatives. Org Biomol Chem 2003; 1: 3656–3662.

    Article  CAS  PubMed  Google Scholar 

  31. Cashman J, Clark-Lewis I, Eaves A, Eaves C . Stromal-derived factor 1 inhibits the cycling of very primitive human hematopoietic cells in vitro and in NOD/SCID mice. Blood 2002; 99: 792–799.

    Article  CAS  PubMed  Google Scholar 

  32. Bendall L, Baraz R, Juarez J, Shen W, Bradstock K . Defective p38 mitogen-activated protein kinase signaling impairs chemotaxic but not proliferative responses to stromal-derived factor-1alpha in acute lymphoblastic leukemia. Cancer Res 2005; 65: 3290–3298.

    Article  CAS  PubMed  Google Scholar 

  33. Foudi A, Jarrier P, Zhang Y, Wittner M, Geay J, Lecluse Y et al. Reduced retention of radioprotective hematopoietic cells within the bone marrow microenvironment in CXCR4−/− chimeric mice. Blood 2006; 107: 2243–2251.

    Article  CAS  PubMed  Google Scholar 

  34. Crazzolara R, Kreczy A, Mann G, Heitger A, Eibl G, Fink F et al. High expression of the chemokine receptor CXCR4 predicts extramedullary organ infiltration in childhood acute lymphoblastic leukaemia. Br J Haematol 2001; 115: 545–553.

    Article  CAS  PubMed  Google Scholar 

  35. Zeelenberg IS, Ruuls-Van Stalle L, Roos E . The chemokine receptor CXCR4 is required for outgrowth of colon carcinoma micrometastases. Cancer Res 2003; 63: 3833–3839.

    CAS  PubMed  Google Scholar 

  36. Bertolini F, Dell'Agnola C, Mancuso P, Rabascio C, Burlini A, Monestiroli S et al. CXCR4 neutralization, a novel therapeutic approach for non-Hodgkin's lymphoma. Cancer Res 2002; 62: 3106–3112.

    CAS  PubMed  Google Scholar 

  37. Tavor S, Petit I, Porozov S, Avigdor A, Dar A, Leider-Trejo L et al. CXCR4 regulates migration and development of human acute myelogenous leukemia stem cells in transplanted NOD/SCID mice. Cancer Res 2004; 64: 2817–2824.

    Article  CAS  PubMed  Google Scholar 

  38. Bonig H, Priestley G, Papayannopoulou T . Hierarchy of molecular-pathway usage in bone marrow homing and its shift by cytokines. Blood 2006; 107: 79–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Christopherson Kn, Hangoc G, Mantel C, Broxmeyer H . Modulation of hematopoietic stem cell homing and engraftment by CD26. Science 2004; 305: 1000–1003.

    Article  CAS  PubMed  Google Scholar 

  40. Konopleva M, Konoplev S, Hu W, Zaritskey A, Afanasiev B, Andreeff M . Stromal cells prevent apoptosis of AML cells by up-regulation of anti-apoptotic proteins. Leukemia 2002; 16: 1713–1724.

    Article  CAS  PubMed  Google Scholar 

  41. Ponomaryov T, Peled A, Petit I, Taichman R, Habler L, Sandbank J et al. Induction of the chemokine stromal-derived factor-1 following DNA damage improves human stem cell function. J Clin Invest 2000; 106: 1331–1339.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We acknowledge Drs Mitsuko Takenaga and Rie Igarashi in St Marianna University for preparation of 4-fluoro-benzoyl-TE14011-PLA. This work was funded by the Anthony Rothe Memorial Trust, National Health and Medical Research Council of Australia Grant No. 352326, the Cancer Institutes NSW, Westmead Millennium Foundation and a Faculty of Medicine/Medical Foundation Postgraduate Research Scholarship from the University of Sydney (JJ).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L J Bendall.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Juarez, J., Dela Pena, A., Baraz, R. et al. CXCR4 antagonists mobilize childhood acute lymphoblastic leukemia cells into the peripheral blood and inhibit engraftment. Leukemia 21, 1249–1257 (2007). https://doi.org/10.1038/sj.leu.2404684

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.leu.2404684

Keywords

This article is cited by

Search

Quick links