Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Engraftment

Impact of CD34 subsets on engraftment kinetics in allogeneic peripheral blood stem cell transplantation

Abstract

Summary:

Our objective was to evaluate, probably for the first time, the impact of CD34 subsets on engraftment kinetics in allogeneic PBSC transplantation (PBSCT). PBSC graft components were analyzed in 62 cases for the absolute count/kg of total CD34+ and the following subsets: DR− and +, CD71+/−, CD38+/−, CD33+/− and CD61+/−. Time to ANC >0.5 and >1 × 109/l and platelets >20 and >50 × 109/l was reported. The median value for each parameter was used to discriminate rapid from slow engraftment. Four parameters showed significant predictive power of early neutrophil engraftment, namely CD34+/DR− (P=0.002), CD34+/38− (P=0.02), CD34+/CD61− (P=0.04) and total CD34+ cell dose (P=0.04). Four parameters showed significant predictive power of early platelet engraftment, namely CD34+/CD61+ (P=0.02), CD34+/CD38− and total CD34+ cell dose (P=0.04) and CD34+/CD71− (P=0.05). Comparing patients who received >to those who received < the threshold dose(s), only CD34+/CD38− lost its significance for neutrophil engraftment; and only CD34+/CD61+ retained its significance for platelet engraftment (P=0.03); furthermore, the former group required significantly fewer platelet transfusions (P=0.018). We concluded that in allogeneic PBSCT, the best predictor of early neutrophil engraftment is the absolute CD34+/DR− and for early platelet engraftment is the absolute CD34+/CD61+ cell dose.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  1. Andrews RG, Briddell RA, Hill R et al. Engraftment of primates with G-CSF mobilized peripheral blood CD34+ progenitor cells expanded in G-CSF, SCF, MGDF decreases the duration and severity of neutropenia. Stem Cells 1999; 17: 210–218.

    Article  CAS  PubMed  Google Scholar 

  2. Siena S, Schavo R, Pedrazzoli P, Carlo-Stella C . Therapeutic relevance of CD34 cell dose and blood cell transplantation for cancer therapy. J Clin Oncol 2000; 18: 1360–1377.

    Article  CAS  PubMed  Google Scholar 

  3. Zaucha JM, Gooley T, Bensinger WI et al. CD34 cell dose in granulocyte colony-stimulating factor-mobilized peripheral blood mononuclear allografts affects engraftment kinetics and development of extensive chronic graft versus host disease after human leukocyte antigen-identical sibling transplantation. Blood 2001; 98: 3221–3227.

    Article  CAS  PubMed  Google Scholar 

  4. Belvedere O, Feruglio C, Malangone W et al. Increased blood volume and CD34+/CD38− progenitor cell recovery using a novel umbilical cord blood collection system. Stem Cells 2000; 18: 245–251.

    Article  CAS  PubMed  Google Scholar 

  5. Cutler C, Giri S, Jeyapalan S . Incidence of acute and chronic graft versus host disease after allogeneic peripheral blood stem cell and bone marrow transplantation: a meta-analysis. Blood 2000; 96: 205a (Abstract).

    Google Scholar 

  6. Mahmoud HK, Fahmy OA, Kamel A et al. Peripheral blood vs bone marrow as a source for allogeneic hematopoietic stem cell transplantation. Bone Marrow Transplant 1999; 24: 355–358.

    Article  CAS  PubMed  Google Scholar 

  7. Sutherland DR, Anderson L, Keeney M et al. The ISHAGE guidelines for CD34+ cell determination by flow cytometry. J Hematother 1996; 5: 213–226.

    Article  CAS  PubMed  Google Scholar 

  8. Cutler C, Antin JH . Peripheral blood stem cells for allogeneic transplantation: a review. Stem Cells 2001; 19: 108–117.

    Article  CAS  PubMed  Google Scholar 

  9. Schmitz N, Bacigalupo A, Hasenclever D . Allogeneic bone marrow transplantation vs filgrastim-mobilised peripheral blood progenitor cell transplantation in patients with early leukaemia: first results of randomised multicentre trial of European Group for Blood and Marrow Transplantation. Bone Marrow Transplant 1998; 21: 995–1002.

    Article  CAS  PubMed  Google Scholar 

  10. Blaise D, Kuentz M, Bontrop RE, Fortanier C . Randomized trial of bone marrow versus lenogastrim-primed blood cell allogeneic transplantation in patients with early-stage leukemia: a report from the Societe Francaise de Greffe de Moelle. J Clin Oncol 2000; 18: 534–546.

    Article  Google Scholar 

  11. Powles R, Mehta J, Kulkarni S . Allogeneic and bone marrow stem cell transplantation in hematological malignant diseases: a randomised trial. Lancet 2000; 335: 1231–1237.

    Article  Google Scholar 

  12. Champlin RE, Schmitz N, Horowitz MM et al. Blood stem cells compared with bone marrow as a source of hematopoieic cells for allogeneic transplantation. Blood 2000; 95: 3702–3709.

    CAS  PubMed  Google Scholar 

  13. Pratt G, Rawstron AC, English AE et al. Analysis of CD34+ cell subsets in stem cell harvests can more reliably predict rapidity and durability of engraftment than total CD34+ cell dose, but steady state levels do not correlate with bone marrow reserve. Br J Haematol 2001; 114: 937–943.

    Article  CAS  PubMed  Google Scholar 

  14. Miflin G, Russell NH, Hutchinson RM . Allogeneic blood stem cell transplantation for haematological malignancies – an analysis of kinetics of engraftment and GVHD risk. Bone Marrow Transplant 1997; 19: 9–13.

    Article  CAS  PubMed  Google Scholar 

  15. Shpall EJ, Champlin R, Glaspy JA . Effect of CD34+ peripheral blood progenitor cell dose on hematopoietic recovery. Biol Blood Marrow Transplant 1998; 4: 84–92.

    Article  CAS  PubMed  Google Scholar 

  16. Johnsen HE, Knudsen LM, Shiodt I et al. Delayed platelet recovery is predicted by CD34+ subset enumeration and not by CD34+ quantification in most patients autotransplanted. The International Society for Hematotherapy and Graft Engineering (ISHAGE), Oslo, Norway, May 28–June 1 (Abstract).

  17. Mavroudis DA, Read EJ, Cottler-Fox M et al. CD34+ cell dose predicts survival, post transplant morbidity and rate of hematologic recovery after allogeneic marrow transplants for hematologic malignancies. Blood 1996; 88: 3223–3229.

    CAS  PubMed  Google Scholar 

  18. Ilhan O, Arslan O, Arat M . The impact of the CD34+ cell dose on engraftment in allogeneic peripheral blood stem cell transplantation. Transfus Sci 1999; 20: 69–71.

    Article  CAS  PubMed  Google Scholar 

  19. Banett D, Granger V, Kraan J et al. Reduction of intra- and inter laboratory variation in CD34+ stem cell enumeration using stable test material, standard protocol and targeted training. Br J Haematol 2000; 108: 784–792.

    Article  Google Scholar 

  20. Gonzalez-Requejo A, Madero L, Diaz MA et al. Progenitor cell subset and engraftment kinetics in children undergoing autologous peripheral blood stem cell transplantation. Br J Haematol 1998; 101: 104–110.

    Article  CAS  PubMed  Google Scholar 

  21. Pecora AL, Preti RA, Gleim GW et al. CD34+CD33- cells influence days to engraftment and transfusion requirements in autologous blood stem-cell recipients. J Clin Oncol 1998; 16: 2093–2104.

    Article  CAS  PubMed  Google Scholar 

  22. Millar BC, Millar JL, Shepherd V et al. The importance of CD34+/CD33− cells in platelet engraftment after intensive therapy for cancer patients given peripheral blood stem cell rescue. BMT 1998; 22: 469–475.

    CAS  Google Scholar 

  23. Vigorito AC, Azevedo WM, Marques JF . A randomized prospective comparison of allogeneic bone marrow and peripheral blood progenitor cell transplantation in the treatment of haematological malignancies. Bone Marrow Transplant 1998; 22: 1145–1151.

    Article  CAS  PubMed  Google Scholar 

  24. Bensinger WI, Martin PJ, Storer B et al. Transplantation of bone marrow as compared with peripheral blood cells from HLA identical relatives in patients with hematologic cancers. N Engl J Med 2001; 244: 175–181.

    Article  Google Scholar 

  25. Azevedo WM, Aranha FJP, Gouvea AC et al. Allogeneic transplantation with blood stem cells mobilized by rhG-CSF for hematological malignancies. Bone Marrow Transplat 1995; 16: 647–653.

    CAS  Google Scholar 

  26. Przepiorka D, Smith TL, Folloder J . Risk factors for acute graft-versus-host disease after allogeneic blood stem cell transplantation. Blood 1999; 94: 1465–1470.

    CAS  PubMed  Google Scholar 

  27. Kubel M, Leiblein S, Ponisch W . Comparison of HLA-identical transplantation of unselected blood stem cells (PBSCT) and bone marrow (BMT) from related donors in patients with hematologic malignancy: a single center report. Bone Marrow Transplant 1998; 22 (Suppl. 2): S27 (Abstract).

    Google Scholar 

  28. Couban S, Simpson DR, Barnett MJ et al. A randomized multicenter comparison of bone marrow and peripheral blood in recipients of matched sibling allogeneic transplants for myeloid malignancies. Blood 2002; 100: 1525–1531.

    Article  CAS  PubMed  Google Scholar 

  29. Flowers MED, Parker PM, Johnston LJ et al. Comparison of chronic graft-versus-host disease after transplantation of peripheral blood stem cells versus bone marrow in allogeneic recipients: long term follow up of a randomized trial. Blood 2002; 100: 415–419.

    Article  CAS  PubMed  Google Scholar 

  30. Elmaagacli A, Beelen DW, Opalka B . The risk of residual molecular and cytogenetic disease in patients with Philadelphia-chromosome positive first chronic phase chronic myelogenous leukemia is reduced after transplantation of allogeneic peripheral blood stem cells compared with bone marrow. Blood 1999; 94: 384–389.

    CAS  PubMed  Google Scholar 

  31. Bensinger WI, Martin P, Clift R . A prospective randomized trial of peripheral blood stem cells (PBSC) or bone marrow (BM) for patients undergoing allogeneic transplantation for hematologic malignancies. Blood 1999; 94 (Suppl 1): 10a (Abstract).

    Google Scholar 

  32. Diez-Campelo M, Perez-Sim JA, Martino A et al. Impact of CD34+ cell dose on the outcome of patients undergoing reduced intensity conditioning allogeneic peripheral blood stem cell transplantation. Hematol J 2003; 4 (Suppl 2): 0460 (Abstract).

    Google Scholar 

  33. Haas R, Witt B, Mohle R et al. Sustained long-term hematopoiesis after myeloablative therapy with peripheral blood progenitor cell support. Blood 1995; 85: 3754–3761.

    CAS  PubMed  Google Scholar 

  34. Salazar R, Sola C, Maroto P . Factors affecting CD34+ cell mobilization with cyclophosphamide and G-CSF and hematopoietic recovery after high-dose chemotherapy and stem cell support in solid tumor patients. Proc Am Soc Clin Oncol 1996; 17: 95a (Abstract).

    Google Scholar 

  35. Beguin O, Baudoux E, Sautois B . Hematopoietic recovery in cancer patients after transplantation of autologous peripheral blood CD34+ cells or unmanipulated peripheral blood stem and progenitor cells. Transfusion 1998; 38: 199–208.

    Article  CAS  PubMed  Google Scholar 

  36. Stewart DA, Guo D, Luider J et al. The CD34+90+ cell dose does not predict early engraftment of autologous blood stem cell as well as the total CD34+ cell dose. Bone Marrow Transplant 2000; 25: 435–440.

    Article  CAS  PubMed  Google Scholar 

  37. Dazzi C, Cariello A, Rosti G et al. Relationships between total CD34+ cells reinfused, CD34+ subsets and engraftment kinetics in breast cancer patients. Hematologica 2000; 85: 396–402.

    CAS  Google Scholar 

  38. Baech J, Johnsen HE . Concise review: technical aspects and clinical impact of hematopoietic progenitor subset quantification. Stem Cells 2000; 18: 76–86.

    Article  CAS  PubMed  Google Scholar 

  39. Drecksen MW, Gerritsen WR, Rodenhuis S et al. Expression of adhesion molecules on CD34+ cells: CD34+ L-selectin+ cells predict a rapid platelet recovery after peripheral blood stem cell transplantation. Blood 1995; 11: 3313–3319.

    Google Scholar 

  40. Drecksen MW, Rodenhuis S, Dirkson MKA et al. Subsets of CD34+ cells and rapid hematopoietic recovery after peripheral-blood stem-cell transplantation. J Clin Oncol 1995; 13: 1922–1932.

    Article  Google Scholar 

  41. Verfaillie CM, Ploemacher R, Di Persio J et al. ISHAGE scientific committee report: assays to determine hematopoietic stem cell content in blood or marrow grafts. Cytotherapy 1999; 1: 41–49.

    Article  CAS  PubMed  Google Scholar 

  42. Watts MJ, Sullivan AM, Jamieson E et al. Progenitor-cell mobilization after low-dose cyclophosphamide and granulocyte colony-stimulating factor: an analysis of progenitor-cell quantity and quality and factors predicting for these parameters in 101 pretreated patients with malignant lymphoma. J Clin Oncol 1997; 15: 535–546.

    Article  CAS  PubMed  Google Scholar 

  43. Van-der Wall E, Richel DJ, Holtkamp MJ et al. Bone marrow reconstitution after high-dose chemotherapy and autologous peripheral blood stem cell transplantation: effect of graft size. Ann Oncol 1994; 5: 795–802.

    Article  CAS  PubMed  Google Scholar 

  44. Bensinger WI, Appelbaum FR, Rowley S et al. Factors influencing collection and engraftment of autologous peripheral blood stem cells. J Clin Oncol 1995; 13: 2547–2555.

    Article  CAS  PubMed  Google Scholar 

  45. Glaspy J, Lu ZJ, Wheeler C . Economic rationale for infusing optimal numbers of CD34+ cells in peripheral blood progenitor cell transplants. Blood 1997; 90 (Suppl. 1): 370a (Abstract).

    Google Scholar 

  46. Kiss JE, Rybka WB, Winkelsein A et al. Relationships of CD34+ cell dose to early and late hematopoiesis following autologous peripheral-blood stem-cell transplantation. Bone Marrow Transplant 1997; 19: 303–310.

    Article  CAS  PubMed  Google Scholar 

  47. Ketterer N, Salles G, Raba M et al. High CD34+ cell counts decrease hematologic toxicity of autologous peripheral blood progenitor cell transplantation. Blood 1998; 91: 3148–3155.

    CAS  PubMed  Google Scholar 

  48. Migliaccio AR, Adamson JW, Stevens CE et al. Cell dose and speed of engraftment in placental/umbilical cord blood transplantation: graft progenitor cell content is a better predictor than nucleated cell quantity. Blood 2000; 96: 2717–2722.

    CAS  PubMed  Google Scholar 

  49. Von Drygalski A, Xu G, Constantinescu D et al. The frequency and proliferative potential of megakaryocytic colony-forming cells (Meg-CFC) in cord blood, cytokine mobilized peripheral blood and bone marrow, their correlation with total CFC numbers: implications for the quantitation of Meg-CFC to predict platelet engraftment following cord blood transplantation. BMT 2000; 25: 1029–1034.

    Google Scholar 

  50. Sola C, Maroto P, Salazar R . High dose chemotherapy (HDC) and peripheral blood stem cell (PBSC) autologous transplantation: influence of the number of infused CD34+ cells in hematopoietic recovery and support measures required. Oncol 1996; 15: 538 (Abstract).

    Google Scholar 

  51. Henon PH, Sovalat H, Bourderont D . Importance of CD34+ cell subsets in autologous PBSC transplantation, the mulhouse experience using CD34+ CD38− cells as predictive tool for hematopoietic engraftment. J Biol Regul Homeost 2001; 15: 62–67.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A M Kamel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kamel, A., El-Sharkawy, N., Mahmoud, H. et al. Impact of CD34 subsets on engraftment kinetics in allogeneic peripheral blood stem cell transplantation. Bone Marrow Transplant 35, 129–136 (2005). https://doi.org/10.1038/sj.bmt.1704755

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.bmt.1704755

Keywords

This article is cited by

Search

Quick links