Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

CAR T cell–induced cytokine release syndrome is mediated by macrophages and abated by IL-1 blockade

Abstract

Chimeric antigen receptor (CAR) therapy targeting CD19 is an effective treatment for refractory B cell malignancies, especially acute lymphoblastic leukemia (ALL)1. Although a majority of patients will achieve a complete response following a single infusion of CD19-targeted CAR-modified T cells (CD19 CAR T cells)2,3,4, the broad applicability of this treatment is hampered by severe cytokine release syndrome (CRS), which is characterized by fever, hypotension and respiratory insufficiency associated with elevated serum cytokines, including interleukin-6 (IL-6)2,5. CRS usually occurs within days of T cell infusion at the peak of CAR T cell expansion. In ALL, it is most frequent and more severe in patients with high tumor burden2,3,4. CRS may respond to IL-6 receptor blockade but can require further treatment with high dose corticosteroids to curb potentially lethal severity2,3,4,5,6,7,8,9. Improved therapeutic and preventive treatments require a better understanding of CRS physiopathology, which has so far remained elusive. Here we report a murine model of CRS that develops within 2–3 d of CAR T cell infusion and that is potentially lethal and responsive to IL-6 receptor blockade. We show that its severity is mediated not by CAR T cell–derived cytokines, but by IL-6, IL-1 and nitric oxide (NO) produced by recipient macrophages, which enables new therapeutic interventions.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: A mouse model of CRS recapitulates clinical CAR T cell–induced CRS.
Fig. 2: Tumor–CAR T cell interactions trigger myeloid cell recruitment and activation.
Fig. 3: Modulation of macrophage function determines CRS severity.
Fig. 4: IL-1Ra protects from severe CRS without compromising antitumor efficacy.

Similar content being viewed by others

References

  1. Sadelain, M., Rivière, I. & Riddell, S. Therapeutic T cell engineering. Nature 545, 423–431 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  2. Davila, M. L. et al. Efficacy and toxicity management of 19-28z CAR T cell therapy in B cell acute lymphoblastic leukemia. Sci. Transl. Med. 6, 224ra25 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Maude, S. L. et al. Chimeric antigen receptor T cells for sustained remissions in leukemia. N. Engl. J. Med. 371, 1507–1517 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Park, J. H. et al. Long-term follow-up of CD19 CAR therapy in acute lymphoblastic leukemia. N. Engl. J. Med. 378, 449–459 (2018).

    Article  PubMed  CAS  Google Scholar 

  5. Barrett, D. M., Teachey, D. T. & Grupp, S. A. Toxicity management for patients receiving novel T-cell engaging therapies. Curr. Opin. Pediatr. 26, 43–49 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Bonifant, C. L., Jackson, H. J., Brentjens, R. J. & Curran, K. J. Toxicity and management in CAR T-cell therapy. Mol. Ther. Oncolytics 3, 16011 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Brudno, J. N. & Kochenderfer, J. N. Toxicities of chimeric antigen receptor T cells: recognition and management. Blood 127, 3321–3330 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Oluwole, O. O. & Davila, M. L. At the bedside: clinical review of chimeric antigen receptor (CAR) T cell therapy for B cell malignancies. J. Leukoc. Biol. 100, 1265–1272 (2016).

    Article  PubMed  CAS  Google Scholar 

  9. Neelapu, S. S. et al. Chimeric antigen receptor T-cell therapy—assessment and management of toxicities. Nat. Rev. Clin. Oncol. 15, 47–62 (2018).

    Article  PubMed  CAS  Google Scholar 

  10. Lee, D. W. et al. T cells expressing CD19 chimeric antigen receptors for acute lymphoblastic leukaemia in children and young adults: a phase 1 dose-escalation trial. Lancet 385, 517–528 (2015).

    Article  PubMed  CAS  Google Scholar 

  11. Teachey, D. T. et al. Identification of predictive biomarkers for cytokine release syndrome after chimeric antigen receptor T-cell therapy for acute lymphoblastic leukemia. Cancer Discov. 6, 664–679 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Hay, K. A. et al. Kinetics and biomarkers of severe cytokine release syndrome after CD19 chimeric antigen receptor-modified T-cell therapy. Blood 130, 2295–2306 (2017).

    Article  PubMed  CAS  Google Scholar 

  13. Cray, C., Zaias, J. & Altman, N. H. Acute phase response in animals: a review. Comp. Med. 59, 517–526 (2009).

    PubMed  PubMed Central  CAS  Google Scholar 

  14. Meek, R. L., Eriksen, N. & Benditt, E. P. Murine serum amyloid A3 is a high density apolipoprotein and is secreted by macrophages. Proc. Natl Acad. Sci. USA 89, 7949–7952 (1992).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Vandevelde, M., Higgins, R. & Overmann A. Veterinary Neuropathology: Essentials of Theory and Practice. in Veterinary Neuropathology: Essentials of Theory and Practice 29 (Wiley, Hoboken, NJ, USA, 2012).

  16. Gust, J. et al. Endothelial activation and blood–brain barrier disruption in neurotoxicity after adoptive immunotherapy with CD19 CAR-T cells. Cancer Discov. 7, 1404–1419 (2017).

    Article  PubMed  CAS  Google Scholar 

  17. Rincon, M. Interleukin-6: from an inflammatory marker to a target for inflammatory diseases. Trends Immunol. 33, 571–577 (2012).

    Article  PubMed  CAS  Google Scholar 

  18. Quezada, S. A., Jarvinen, L. Z., Lind, E. F. & Noelle, R. J. CD40/CD154 interactions at the interface of tolerance and immunity. Annu. Rev. Immunol. 22, 307–328 (2004).

    Article  PubMed  CAS  Google Scholar 

  19. Bossen, C. et al. Interactions of tumor necrosis factor (TNF) and TNF receptor family members in the mouse and human. J. Biol. Chem. 281, 13964–13971 (2006).

    Article  PubMed  CAS  Google Scholar 

  20. Tucker, T. A. & Schwiebert, L. M. CD40 ligation decreases its protein half-life at the cell surface. Eur. J. Immunol. 38, 864–869 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Wang, H. et al. A novel role of the scaffolding protein JLP in tuning CD40-induced activation of dendritic cells. Immunobiology 218, 835–843 (2013).

    Article  PubMed  CAS  Google Scholar 

  22. Wang, H. M. et al. Scaffold protein JLP is critical for CD40 signaling in B lymphocytes. J. Biol. Chem. 290, 5256–5266 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Elgueta, R. et al. Molecular mechanism and function of CD40/CD40L engagement in the immune system. Immunol. Rev. 229, 152–172 (2009).

    Article  PubMed  CAS  Google Scholar 

  24. Murray, P. J. & Wynn, T. A. Protective and pathogenic functions of macrophage subsets. Nat. Rev. Immunol. 11, 723–737 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Ohashi, Y. et al. Hypotension and reduced nitric oxide–elicited vasorelaxation in transgenic mice overexpressing endothelial nitric oxide synthase. J. Clin. Invest. 102, 2061–2071 (1998).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Titheradge, M. A. Nitric oxide in septic shock. Biochim. Biophys. Acta 1411, 437–455 (1999).

    Article  PubMed  CAS  Google Scholar 

  27. Moore, W. M. et al. L-N6-(1-iminoethyl)lysine: a selective inhibitor of inducible nitric oxide synthase. J. Med. Chem. 37, 3886–3888 (1994).

    Article  PubMed  CAS  Google Scholar 

  28. Garvey, E. P. et al. 1400W is a slow, tight binding, and highly selective inhibitor of inducible nitric-oxide synthase in vitro and in vivo. J. Biol. Chem. 272, 4959–4963 (1997).

    Article  PubMed  CAS  Google Scholar 

  29. Dinarello, C. A. Immunological and inflammatory functions of the interleukin-1 family. Annu. Rev. Immunol. 27, 519–550 (2009).

    Article  PubMed  CAS  Google Scholar 

  30. Saini, A. S., Shenoy, G. N., Rath, S., Bal, V. & George, A. Inducible nitric oxide synthase is a major intermediate in signaling pathways for the survival of plasma cells. Nat. Immunol. 15, 275–282 (2014).

    Article  PubMed  CAS  Google Scholar 

  31. Sims, J. E. & Smith, D. E. The IL-1 family: regulators of immunity. Nat. Rev. Immunol. 10, 89–102 (2010).

    Article  PubMed  CAS  Google Scholar 

  32. Zhao, Z. et al. Structural design of engineered costimulation determines tumor rejection kinetics and persistence of CAR T cells. Cancer Cell 28, 415–428 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. van der Stegen, S. J. et al. Preclinical in vivo modeling of cytokine release syndrome induced by ErbB-retargeted human T cells: identifying a window of therapeutic opportunity? J. Immunol. 191, 4589–4598 (2013).

    Article  PubMed  CAS  Google Scholar 

  34. Dinarello, C. A., Simon, A. & van der Meer, J. W. Treating inflammation by blocking interleukin-1 in a broad spectrum of diseases. Nat. Rev. Drug Discov. 11, 633–652 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Shultz, L. D. et al. Multiple defects in innate and adaptive immunologic function in NOD/LtSz-scid mice. J. Immunol. 154, 180–191 (1995).

    PubMed  CAS  Google Scholar 

  36. Serreze, D. V., Gaedeke, J. W. & Leiter, E. H. Hematopoietic stem-cell defects underlying abnormal macrophage development and maturation in NOD/Lt mice: defective regulation of cytokine receptors and protein kinase C. Proc. Natl Acad. Sci. USA 90, 9625–9629 (1993).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Ohteki, T., Suzue, K., Maki, C., Ota, T. & Koyasu, S. Critical role of IL-15–IL-15R for antigen-presenting cell functions in the innate immune response. Nat. Immunol. 2, 1138–1143 (2001).

    Article  PubMed  CAS  Google Scholar 

  38. Gutierrez, E. G., Banks, W. A. & Kastin, A. J. Blood-borne interleukin-1 receptor antagonist crosses the blood–brain barrier. J. Neuroimmunol. 55, 153–160 (1994).

    Article  PubMed  CAS  Google Scholar 

  39. Liu, J., Zhao, M. L., Brosnan, C. F. & Lee, S. C. Expression of type II nitric oxide synthase in primary human astrocytes and microglia: role of IL-1β and IL-1 receptor antagonist. J. Immunol. 157, 3569–3576 (1996).

    PubMed  CAS  Google Scholar 

  40. Tarassishin, L., Suh, H. S. & Lee, S. C. LPS and IL-1 differentially activate mouse and human astrocytes: role of CD14. Glia 62, 999–1013 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  41. Gade, T. P. et al. Targeted elimination of prostate cancer by genetically directed human T lymphocytes. Cancer Res. 65, 9080–9088 (2005).

    Article  PubMed  CAS  Google Scholar 

  42. Maher, J., Brentjens, R. J., Gunset, G., Rivière, I. & Sadelain, M. Human T-lymphocyte cytotoxicity and proliferation directed by a single chimeric TCRζ /CD28 receptor. Nat. Biotechnol. 20, 70–75 (2002).

    Article  PubMed  CAS  Google Scholar 

  43. Rivière, I., Brose, K. & Mulligan, R. C. Effects of retroviral vector design on expression of human adenosine deaminase in murine bone marrow transplant recipients engrafted with genetically modified cells. Proc. Natl Acad. Sci. USA 92, 6733–6737 (1995).

    Article  PubMed  PubMed Central  Google Scholar 

  44. Gong, M. C. et al. Cancer patient T cells genetically targeted to prostate-specific membrane antigen specifically lyse prostate cancer cells and release cytokines in response to prostate-specific membrane antigen. Neoplasia 1, 123–127 (1999).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

We thank the Alexander S. Onassis Public Benefit Foundation for their support (T.G.). We thank the following MSK core facilities for their outstanding support: flow cytometry core facility, laboratory of comparative pathology, animal facility, integrated genomics operation and bioinformatics core. We thank G. Gunset, Z. Zhao, A. Dobrin and P. Lindenbergh for their assistance with some experiments. This study was supported by Juno Therapeutics and the MSK Cancer Center Support Grant/Core Grant (P30 CA008748).

Author information

Authors and Affiliations

Authors

Contributions

T.G. designed the study, performed experiments, analyzed and interpreted the data and wrote the manuscript. S.J.C.v.d.S. helped design and perform in vivo experiments. J.E. performed in vivo experiments. M.H. performed in vivo experiments. A.P. performed and interpreted histopathological studies. M.S. designed the study, analyzed and interpreted the data and wrote the manuscript.

Corresponding author

Correspondence to Michel Sadelain.

Ethics declarations

Competing interests

A patent application on CRS prevention listing T.G. and M.S. as co-inventors has been filed by MSK.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Giavridis, T., van der Stegen, S.J.C., Eyquem, J. et al. CAR T cell–induced cytokine release syndrome is mediated by macrophages and abated by IL-1 blockade. Nat Med 24, 731–738 (2018). https://doi.org/10.1038/s41591-018-0041-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41591-018-0041-7

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing